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Recently it has been shown that Repeat-Until-Success (RUS) circuits can approximate a given
single-qubit unitary with an expected number of T gates of about 1/3 of what is required by
optimal, deterministic, ancilla-free decompositions over the Clifford+T gate set. In this work, we
introduce a more general and conceptually simpler circuit decomposition method that allows for
synthesis into protocols that probabilistically implement quantum circuits over several universal
gate sets including, but not restricted to, the Clifford+T gate set. The protocol, which we call
Probabilistic Quantum Circuits with Fallback (PQF), implements a walk on a discrete Markov chain
in which the target unitary is an absorbing state and in which transitions are induced by multi-qubit
unitaries followed by measurements. In contrast to RUS protocols, the presented PQF protocols
terminate after a finite number of steps. Specifically, we apply our method to the Clifford+T ,
Clifford+V , and Clifford+π/12 gate sets to achieve decompositions with expected gate counts of
logb(1/ε)+O(log(log(1/ε))), where b is a quantity related to the expansion property of the underlying
universal gate set.

I. INTRODUCTION

Techniques to efficiently compile higher-level quantum
algorithms into lower-level fault-tolerant circuits are a
critical step for the implementation of a scalable, gen-
eral purpose quantum computer. Several universal fault-
tolerant gate sets arise from augmenting the set of Clif-
ford gates by additional gates that arise naturally from
the underlying fault-tolerance scheme. An important ex-
ample is the Clifford+T basis, consisting of controlled-
NOTs (CNOT) and Hadamard (H) gates, together with
the T gate, which is given by T =

[
1 0
0 eiπ/4

]
. Further

examples of interest are the Clifford+V basis in which
the set of Clifford gates is augmented by the 6 non-
Clifford gates 1√

5
(1 ± 2iP ), where P ∈ {X,Y, Z}, and

the Clifford+π/12 basis in which the gate K =
[
1 0
0 eiπ/6

]
is added.

While the Solovay-Kitaev algorithm [1, 2] allows to
solve the synthesis problem for any universal gate set,
there are certain disadvantages to this approach, in par-
ticular the large depth of the resulting circuits: to the
best of our knowledge the resulting depth is only known
to scale as O(log3.97(1/ε)), where ε is the target approx-
imation error with which the single qubit unitary has
to be implemented. Also the compilation-time of the
Solovay-Kitaev method, i.e., the time it takes to execute
the classical algorithm that produces the output circuit is
quite high, namely almost cubic in log(1/ε). This makes
the application of the algorithm for small values of the
target precision, say in a regime where ε ∼ 10−15, dif-
ficult if not impossible. On the other hand, there exist
several quantum algorithms that would require this level
of target approximation error in order to scale to instance
sizes of practical interest.

Happily, it was shown recently [3–6] that for the
Clifford+T basis, elementary number theory can be
leveraged to obtain much more efficient algorithms for
approximating a single-qubit gates. We refer to these
methods as being deterministic and ancilla-free as they

lead to a decomposition of the target unitary that can
be executed in an entirely pre-determined sequence of
single-qubit unitaries over the given gate set. The num-
ber of T gates in the resulting circuits scales close to
3 log2(1/ε) for Z-rotations, which is within a constant
factor of the information-theoretic lower bound. Also,
the compilation-time of these methods is low: using rea-
sonable number-theoretic conjectures for which there ex-
ists an overwhelming amount of empirical evidence, the
compilation-time follows the same scaling (up to loga-
rithmic factors). Any non-axial rotation V can be de-
composed into axial rotations such that [1]

V = eiδRz(α)HRz(β)HRz(γ), (1)

for real values α, β, γ, δ. This yields an upper bound of
9 log2(1/ε) for all of the above mentioned deterministic,
ancilla-free methods for general rotations.

In contrast to this, it was recently shown [7] that by us-
ing non-deterministic circuits that employ a small num-
ber of ancilla qubits, the number of T gates can be fur-
ther reduced by a factor of 2.5 on average for axial ro-
tations, namely to O(1.15 log2(1/ε)). Again, using Euler
angles, this leads to a complexity of an expected number
of O(3.45 log2(1/ε)) for general rotations. For decompo-
sition of a given unitary U , these so-called Repeat-Until-
Success (RUS) circuits [8] consist of repeated application
of a Clifford+T sequence on an input state |ψ〉 and an an-
cilla qubit, followed by measurement of the ancilla qubit
to project the input state |ψ〉 to the state U |ψ〉 [7, 8].

An RUS circuit allows for a potentially unlimited se-
quence of trial and correction cycles with guaranteed fi-
nite expected cost below the lower bound achieved by a
purely unitary circuit design. The correction circuit in
each cycle can be designed to have zero cost, namely
by requiring it to be a circuit consisting only of Pauli
gates. The synthesis algorithm for RUS circuits over the
Clifford+T basis is based on a randomized search and
achieves an expected mean T -count with a leading term
of (1 + δ) log2(1/ε), where δ = 0.15 was achievable for
practically important precisions ε [7].
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In contrast, the Probabilistic Quantum Circuit with
Fallback (PQF) protocols introduced in the present work
entail at most a small finite number of trials (possibly all
different), and one final, purely unitary, correction step.
The final correction step, or fallback, may have consid-
erable cost, however the probability of requiring the fall-
back step can be very small allowing for an improved
expected cost for decomposition. Synthesizing a PQF cir-
cuit to approximate a given target is remarkably simpler
than in the RUS case. In addition, we generalize PQF to
three universal quantum bases: Clifford+T , Clifford+V
[9], and Clifford+π/12. Clifford+V was previously con-
sidered for purely unitary, deterministic decomposition
of single-qubit gates and resulted in the shortest known
single-qubit circuits [10, 11]. Clifford+π/12 has been
identified as relevant for quantum computer architectures
based on metaplectic anyons [12].

We present an efficient algorithm for single-qubit de-
composition based on our PQF protocol. We describe
the algorithmic steps in detail for each of the three bases
considered. Our algorithm achieves an expected gate
count of logb(1/ε) + O(log(log(1/ε))), where b is related
to the scaling of the number of unique circuits that can
be formed over the underlying basis. More precisely, b is
defined so that for a given depth t the number of unique
circuits scales as Θ(bt), i.e., b characterizes the expan-
sion of the underlying set of generators. Specifically,
we have b = 2 for Clifford+T , b = 5 for Clifford+V ,
and b = 4 for Clifford+π/12. The PQF protocol can be
generalized to several bases as the exactly representable
unitaries over a given basis are representable as unita-
rizations of matrices over rings of cyclotomic integers of
order 4m, m ∈ {1, 2, 3}, where m = 1 for Clifford+V , 2
for Clifford+T , and 3 for Clifford+π/12. We aim to gen-
eralize our designs to other cyclotomic orders in future
work.

II. DESIGN OF PROBABILISTIC QUANTUM
CIRCUITS WITH FALLBACK

In this section, we define Probabilistic Quantum Cir-
cuits with Fallback (PQF). Our PQF protocol employs
both probabilistic and deterministic subcircuits. The for-
mer are referred to as primary and the latter as fallback.
We focus on the case of PQF circuits for single qubit uni-
taries that are axial rotations around the Z-axis, which
by the Euler angle decomposition Eq (1) will imply PQF
protocols for arbitary single qubit unitaries. However,
we point out that in principle the probabilistic circuit
design described in this paper can also be applied to
multi-qubit unitaries and even to systems consisting of
higher-dimensional subsystems, such as e.g. qutrits.

The primary subcircuits can be synthesized using ex-
isting synthesis methods [9, 13] that given G and ε gen-
erate a probabilistic circuit P (G, ε) to perform an ε-
approximation of the gate G with probability p > 0 and
performs some other unitary gate G1 with probability

|0〉 /m
U(Gk, ε)

. . . |0〉 /m
U(G1, ε)

|ψ〉 /n ? . . . ? U(G0, ε) V |ψ〉

Figure 1: PQF protocol to implement unitary V = Gk.

1− p. Let CP (G, ε) be the execution cost of the P (G, ε)
circuit. The fallback subcircuit can be constructed using
a synthesis method that for a given unitary target gate G
and a desired precision ε generates an ε-approximation
circuit F (G, ε) with a known execution cost CF (G, ε),
such as those in [4, 6, 9].

If CP (G, ε) is uniformly smaller than pCF (G, ε), then
an ε-approximation of the gate G using PQF will have
lower expected cost than implementing the fallback cir-
cuit at cost CF (G, ε). To this end, we create a circuit
with classical feedback that first performs the subcircuit
P (G, ε) with the (desired) outcome ∼ G|ψ〉 upon measur-
ing 0 or (undesired) outcome G1|ψ〉 upon measuring 1. If
the measurement outcome is 1, the circuit then performs

F (GG†1, ε) on G1|ψ〉. The expected cost the entire circuit

protocol is CP (G, ε)+(1−p)CF (GG†1, ε), which is smaller

than CF (G, ε) if and only if CP (G, ε) < pCF (GG†1, ε).
The concatenated circuit, denoted as PQF (G, ε, 1),

is a special case of a nested probabilistic circuit,
PQF (G, ε, k), k ∈ Z, k ≥ 0, defined inductively as fol-
lows:

PQF (G, ε, 0) = F (G, ε) (2)

PQF (G, ε, k) =

P (G, ε) ∪BC(PQF (GF †k , ε, k − 1)),

where Fk is the undesirable outcome of the P circuit and
BC denotes binary classical control on such an outcome.

The general layout of a PQF circuit is shown in Figure
1. The “question mark” box denotes the binary classi-
cal control switch that implements the remainder of the
circuit if and only if the measurement result is 1. Let
Fj |ψ〉 be the undesired result upon measurement of 1 at

the j-th round of the protocol. Then Gj−1 = GjF
†
j and

we note that the synthesis algorithm computes Πk−1
j=0Gj .

It follows that if PQF (G, ε, 1) is a cost improvement
over PQF (G, ε, 0), then PQF (G, ε, k) is a cost improve-
ment over PQF (G, ε, k − 1) for any k > 0. However,
we show that the incremental improvement scales like
O((1− p)k) and therefore near-optimal performance can
be achieved with a relatively small number of rounds k.

Both the PQF and RUS protocol require synthesis of
unitary subcircuits. In PQF, the primary probabilistic
subcircuits vary at each round, and the final fallback cir-
cuit, if necessary, is deterministic. In RUS, the same
probabilistic subcircuit is applied in each round, followed
by the same correction if necessary.

In Figure 2 we compare the Markov chain [14] corre-
sponding to the implementation of an RUS protocol to
that corresponding to a PQF protocol. Both protocols
implement a target single qubit unitary transformation
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I I I · · ·

G

1−p 1−p 1−p

p p p

I Fk Fk−1 · · · F1

G

1−pk 1−pk−1 1−pk−2

pk pk−1 pk−2 1

a) b)

Figure 2: Markov chains for the implementation of a target unitary transformation G. Shown are state transitions
for a) Repeat-Until-Success (RUS) protocols and b) Probabilistic Circuits with Fallback (PQF) protocols.

G for a given target approximation ε by performing a
random walk on the nodes, where the target unitary G
is an absorbing state, i.e., the walk terminates once it
arrives in this state. In general, each node represents the
unitary transformation that has been applied to the in-
put state at the respective stage in the protocol. Both, in
case of RUS and PQF protocols, each transition between
nodes is probabilistic and is induced by the success or
failure of a multi-qubit unitary followed by a measure-
ment. In the case of the RUS protocol shown in Figure 2
a), the applied transformation in case of failure is always
the identity—or, more generally, a local Clifford opera-
tion which however can easily be corrected to become the
identity, whence we represent this case by the identity op-
erator I also—whereas in case of the PQF protocol each
intermediate node corresponds to an operation Fj , i.e.,
as shown in Figure 1 b), the state is Fj |ψj〉, where Fj be
the undesired result upon measurement of 1 at the j-th
attempt of the protocol and |ψj〉 was the state in the pre-
vious round, where j = k, k−1, . . . , 1. The probability of
success of this step is denoted by pj and the probability
of failure correspondingly by 1− pj .

If we find ourselves in node j of the protocol we not
only know the entire history of previous failed attempts
to implement the target gate G, we can also attempt
to reach the target state G by applying a probabilistic

circuit that implements Gj−1 := GjF
†
j where Gj was

defined in a previous round. In any case we will imple-
ment G after at most k steps as G = Π`

j=0Gj , where
` ∈ {0, . . . , k} denotes the first point in time where the
protocol had a successful transition to the target gate G.

It is useful to think of the probabilistic transitions into
the nodes labeled with Fj for j = k, k− 1, . . . , 2 as being
very cheap, whereas the last transition (the “fallback”)
from F1 → G is expensive, but will always lead to the
absorbing state, i.e., it guarantees that the protocol im-
plements G with precision ε after at most k rounds.

Note the that RUS designs might require a potentially
unbounded number of iterations to reach the accepting
state to implement the target gate G. In contrast, a
PQF design with k stages is guaranteed to always im-
plement the target gate after at most k attempts. An
important difference between the two models is that in
(a) the target for each transition is independent of the

stage so that the cost just depends on the target unitary
G and the target error ε, whereas in (b) the target de-
pends on the stage and the approximation error. The
two main advantages of using PQF designs are that it
is easier synthesize circuits for various different universal
gate sets and that the finiteness of the designs facilitates
the layout of the circuit onto a fault-tolerant quantum
computer architecture.

III. COST ANALYSIS OF PQF CIRCUITS

The optimal T -count has been proven to be an invari-
ant of the unitary operation represented by a Clifford+T
circuit [15–17]. In particular, the optimal T -count is the
same across various definitions of canonical and normal
forms for Clifford+T circuits. At present, similar invari-
ants have not been shown for the Clifford+π/12 basis.
For the analysis that follows, the upper bounds proven
in Appendix E suffice.

Consider a measurement of the ancilla qubits in the
PQF design, such that one measurement outcome is la-
beled “favorable” and all other measurement outcomes
are labeled “unfavorable”. Let the probability of the “fa-
vorable” outcome be p and the unitary applied to the
target qubits upon favorable measurement be V . Let
C(U) be the cost of a circuit that performs U . Assuming
that the cost of performing Clifford gates is negligible,
the expected T -count of an RUS circuit is approximately
E[C(V )] = C(U)/p [7].

We assume that all rounds of the PQF circuit shown
in Figure 1 have the same probability pk of the favorable
outcome that are all roughly equal to the same value,
say p. Furthermore, we assume that the probability q of
unfavorable outcome satisfies q = 1 − p � p and that
each round roughly has the same execution cost CP (ε).
We note that all these assumptions are justified by the
properties of the PQF protocol derived in the following
sections and obtain the following:

Lemma 1. For a fixed ε,

1. The expectation of the cost of the PQF protocol with
k > 0 rounds is

CP (ε)/p+O(qk).
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2. The variance is given by

CP (ε)2q/p2 +O(qk).

Proof. 1. Let Ek be the expected cost of the k-round
protocol. Assuming q = 1 − p << p we note that p =
1/p− q(p+ 1)/p = 1/p+O(q). Clearly, we have that

E1 = pCP (ε) + q(CP (ε) + CF (ε))

= CP (ε)/p+O(q)CP (ε) + q(CP (ε) + CF (ε))

= CP (ε)/p+O(q).

This provides a basis for induction on k. We have Ek+1 =
pCP (ε)+q(CP (ε)+Ek) = CP (ε)+qEk . By the induction
hypothesis this is equal to CP (ε)+q(CP (ε)/p+O(qk))) =
(p+ q)CP (ε)/p+O(qk+1) which proves claim (1).

2. Let E
(2)
k be the expectation of the square of the cost.

We are going to prove by induction that E
(2)
k = (1 +

q)/p2CP (ε)2 + O(qk). For the basis of the induction we
observe that

p = (1 + q)/p2 + p− (1 + q) +O(q2)

= (1 + q)/p2 − 2q +O(q2)

= (1 + q)/p2 +O(q).

Therefore, we obtain that

E
(2)
1 = pCP (ε)2 + q(CP (ε) + CF (ε))2

= (1 + q)/p2CP (ε)2 +O(q)CP (ε)2

+q(CP (ε) + CF (ε))2.

This in turn implies

E
(2)
k+1 = pCP (ε)2 + qCP (ε)2 + 2qCP (ε)Ek + qE(2)k

= CP (ε)2 + 2qCP (ε)(CP (ε)/p+O(qk))

+q((1 + q)/p2CP (ε)2 +O(qk))

= ((p+ q)2 + q)/p2CP (ε)2 +O(qk+1),

which concludes the induction step. Thus the variance
of the cost of the k-round protocol is

E
(2)
k − E2

k = (1 + q)/p2CP (ε)2

+O(qk)− (CP (ε)/p+O(qk))2

= CP (ε)2q/p2 +O(qk).

IV. OVERVIEW OF THE PQF ALGORITHM

In this section, we provide an overview of the stages
of our PQF algorithm. The algorithm returns a proba-
bilistic quantum circuit with fallback over the chosen ba-
sis that approximates a given rotation by angle θ about
the z-axis, denoted as V = Rz(θ), to precision ε. For a
multi-round PQF protocol with k rounds, the algorithm
sequentially generates the subcircuit for each round. Re-
call that each subsequent round of the protocol is condi-
tional on the failure of all previous rounds, and aims to

“correct” the cumulative undesired z-rotations and also
apply the target z-rotation.

We develop our PQF decomposition algorithm axial z-
rotations which then in return will allow to implement
arbitrary, non-axial rotations V via the Euler angle de-
composition of Eq (1).

We note however that as a matter of principle, a PQF
decomposition for a single-qubit unitary V might be syn-
thesizable directly without breaking V into axial rota-
tions. However, taking practical advantage of such syn-
thesis is currently an open problem.

Our algorithm takes a predefined number k of PQF
rounds as input, generates primary circuit for each of
the request k rounds and a unitary fallback circuit that
terminated the PQF protocol.

The value of k can be optimally adjusted at com-
pile time. Indeed, it follows from the analysis in Sec-
tion III that the mean expected improvement of a k+ 1-
round PQF circuit on a k-round circuit (measured in gate
count) scales down as O((1 − p)k), where p is the typi-
cal single round success probability. In the context of
this paper we are showing that the probability can be
boosted to the Ω(1 − 1/ log(1/ε)) level (consequently in
our numerical experiments even the improvement due to
the second round has been insignificant).

The compilation stages for each round are outlined in
Figure 3. In Stage 1, detailed in Section V, an initial
approximation of the target rotation phase factor eiθ is
obtained. Namely, we find an an algebraic number of the
form z∗/z, where z belongs to a set based on the chosen
gate basis, to approximate eiθ by finding an approximate
solution to an integer relation problem. We note that z
is defined up to an arbitrary real-valued factor. The ap-
proximation is modified if needed in Stage 2, by seeking
either a solvable norm equation in the case of Clifford+T
and Clifford+π/12 or a solvable two squares equation
in the case of Clifford+V , and high success probability.
Stage 2 is described in Section VI. A two-qubit unitary
corresponding to the (modified) rational is composed in
Stage 3 and finally synthesized into a PQF subcircuit over
the chosen basis in Stage 4. If an undesired measurement
outcome occurs in the current round, the undesired rota-
tion angle υ and the next target angle θ−υ are generated
and the latter is then used, recursively, to generate the
next round of the PQF protocol. The PQF algorithm
over Clifford+T and Clifford+π/12 is detailed in Sections
VIII, and in Sections VII for the case of Clifford+V .

V. STAGE 1: CYCLOTOMIC RATIONAL
APPROXIMATION

In this section, we review the most general stage of
our synthesis method. It requires very few modifications
when considering different basis sets.

Let ζ = e2πi/m be the m-th primitive root of unity
and consider the corresponding ring of cyclotomic inte-
gers Z[ζ]. It is well known (c.f., [18]) that the minimal
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Input: target angle θ, precision ε

Stage 1: Find initial approximation of eiθ

(integer relation problem)

z∗/z ∼ eiθ

Stage 2: Search for modifier r with solvable
norm (T ,π/12) or two squares (V ) equation

and high success probability

Modification (rz)∗/(rz) ∼ eiθ

Stage 3: Design PQF unitary for current round k

Two-qubit PQF matrix

Stage 4: Synthesize circuit for two-qubit PQF matrix

Output: P = P (θ, ε), undesired angle υ

Figure 3: Overview of compilation flow for one round of
the PQF circuit. If a number of rounds k strictly larger
than one is intended, Stages 1–4 need to be repeated for
modified target angles as described in the text.

polynomial of ζ over rationals is monic and has degree
d = φ(m) < m where φ is the Euler totient function. We
analyze the representation of an arbitrary phase factor
by a unimodal cyclotomic rational z∗/z, where z ∈ Z[ζ].

Let θ be a real angle. By direct complex expansion
|z∗/z − eiθ| = 2| Im(zeiθ/2)|/|z|. The phase factor eiθ is
representable exactly as z∗/z if and only if Im(zeiθ/2) =
0. It is approximately representable at precision ε if and
only if |2 Im(zeiθ/2)| < ε|z|. Now consider the standard
integer basis {1, ζ, . . . , ζd−1} in Z[ζ]. Representing z in
this basis results in z = a0 + a1ζ + . . .+ ad−1ζ

d−1, where
{a0, a1, . . . , ad−1} are ordinary integers.

Again, by direct complex expansion we observe that
Im(zeiθ/2) is a linear form with real coefficients in
{a0, a1, . . . , ad−1}. We expand this form as F (a, x(θ)) =
a0x0(θ) + a1x1(θ) + . . . + ad−1xd−1(θ), where xj(θ) =
sin(θ/2 + 2πj/m) and j = 0, . . . , d− 1 is the correspond-
ing real vector. It is easy to see that for θ in a general
position, the vector does not have zero components. It is
also helpful to observe that for |θ| < π/2 at least one xj
is well separated from zero (e.g., at least one xj(θ) has
to be greater than sin(2π/m)).

Representing the phase factor eiθ exactly as a cyclo-
tomic rational is equivalent to solving an integer rela-
tion with real coefficients, namely solving F (a, x(θ)) = 0
for a. Furthermore, when it is not solvable we con-
sider finding approximate integer relations, i.e., finding
{a0, a1, . . . , ad−1} that |F (a, x(θ))| < δ. It is well known
[19] that such approximate relations can be algorithmi-
cally found for arbitrarily small positive δ.

Lemma 2. For a fixed θ in a general position, |θ| < π/2,
and sufficiently small δ > 0, there exists an integer solu-
tion a of |F (a, x(θ))| < δ such that |aj | = O(δ−1/(d−1)),
j = 0, . . . , d− 1.

Proof. The proof follows from a more general theorem re-
garding the quality of multivariate Diophantine approxi-
mations (c.f., [20], Section II, Theorem 1C): For any real
numbers x1, ..., xn and 0 < ε < 1 there exist integers
q1, . . . , qn, p such that |q1x1 + · · · + qnxn − p| < ε and
max(|q1|, . . . , |qn|) < ε−1/n.

We apply this theorem to our case for n = d − 1.
As observed, at least one of the coefficients xj(θ) =
sin(θ/2+2πj/m) is in the interval (sin(2π/m), 1). We can
relabel the xj(θ) for convenience so that one of the coeffi-
cients belonging to the interval (sin(2π/m), 1) is labeled
x0(θ). Set xj = xj(θ)/x0(θ), j = 1, . . . d−1. By applying
Theorem 1C, we conclude that there exists an integer so-
lution a of |F (a, x(θ))|/|x0(θ)| < ε with |aj | < ε−1/(d−1),
j = 1, . . . , d− 1.

By the triangle inequality, |a0| ≤ |a1||x1| + . . . +
|ad−1||xd−1| + ε, where ε is negligibly small compared
to ε−1/(d−1) and where, by design, |xj | < 1/|x0(θ)|,
j = 1, . . . , d − 1. Thus |a0| < (d − 1)/|x0(θ)|ε−1/(d−1).
Setting ε to be smaller than δ/|x0(θ)| concludes the proof
of the lemma.

Corollary 3. For a fixed θ in a general position, |θ| <
π/2, and sufficiently small ε > 0, there exists a cyclo-
tomic rational approximation |z∗/z − eiθ| < ε, z ∈ Z[ζ]
with |z| in O(ε−1/d).

Proof. Per Lemma 2, a solution z to |z∗/z − eiθ| < ε
must exist. Setting δ = ε|z|/2 in the lemma, we infer the
existence of a solution z in O(|z|−1/(d−1)ε−1/(d−1)). This
implies |z|d/(d−1) in O(ε−1/(d−1)), or |z|d in O(ε−1), and
the corollary follows.

In order to find the solutions algorithmically, we cus-
tomize the PSLQ integer relation algorithm [19, 21].
PSLQ is an iterative algorithm to solve integer relations
of the form a.x = a1x1 + . . . + adxd, where |a.x| can
be made arbitrarily small after a large enough number
of iterations. Our customization terminates when the
equivalent of the |z∗/z − eiθ| < ε inequality is first satis-
fied. The performance proofs in [19, 21] can be modified
to show that |z| upon termination is in O(ε−1/d).

Our numerical experiments provide an estimate of the
asymptotics of |z| in cases m = 4, 8, 12 (which correspond
to the Clifford+V , Clifford+T , and Clifford+π/12 bases,
respectively). For example, when m = 8 (Clifford+T ) we
find |z| < κε−1/4, where κ = 3.05± 0.28.

The following observation will be necessary for compi-
lation Stage 2 in designing a matrix over the Clifford+T
and Clifford+π/12 bases. In that context not only the
size of z but also the size of its “Galois conjugate” z•

comes into play.
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Observation 4. In the context of Corollary 3, consider
z• which is obtained from z by formally replacing ω by
−ω. That is, z• = a0 + a1(−ω) + . . . + ad−1(−ω)d−1

when z = a0 + a1ω + . . . + ad−1ω
d−1. The z• is also in

O(ε−1/d).

Indeed the proof of Lemma 2 relies only on the bounds
for absolute values of the coefficients, and does not
change if only the signs of the coefficients are altered.
Thus z• is in O(|z|−1/(d−1)ε−1/(d−1)) and the observa-
tion follows.

Observation 5. In the context we can assume, without
loss of generality that log(|z|) > 1/(2 d) log(1/ε).

If this is not the case, pick the integer s =
dε−1/(2 d)/|z|e and replace z with s z.

VI. STAGE 2: SEARCH FOR A MODIFIER

In this section, we present the design of our algorithm
and supporting mathematical rigor required for applying
the algorithm to each gate basis.

Following the previous section, let ζ = e2πi/m. We
limit our analysis to values of m that are multiples of 4
such that the ring Z[ζ] contains i =

√
−1.

We introduce the unitarization base ν, where ν =
√

2
for m > 4 and ν =

√
5 for m = 4 (the latter will be

relevant for the V -basis). Let θ be the target angle of
rotation about the Z-axis and z∗/z, where z ∈ Z[ζ], be
an ε-approximation of the phase factor eiθ.

The synthesis of both purely unitary and
measurement-assisted decomposition circuits hinge
on the existence of a unitary matrix of the form

1

νL

[
z y
−y∗ z∗

]
, (3)

where y ∈ Z[ζ], and L ∈ Z. The unitary condition for this
matrix, |y|2 = ν2L − |z|2, is restrictive; the matrix need
not exist for an arbitrary z as z being part of a cyclotomic
rational approximation does not imply its existence.

For measurement-assisted circuit decomposition, an-
other constraint is also relevant. Assuming the uni-
tary matrix of the form (3) exists, we may introduce
p1 = |z|2/ν2L < 1. For the measurement-assisted circuits
to have sufficient quality we will need p1 to be greater
than 1−O(1/L), which we show below.

For m 6= 4, we introduce ρ = ζ+ζ∗ and the real subring
R = Z[ρ] ⊂ Z[ζ]. In the special case of m = 4, we set
R = Z (note that ρ = 0 in this special case and we would
be reluctant to argue that Z[0] = Z.). Any element r ∈ R
evaluates to a real number.

To address both of the above constraints in one de-
sign, we note that for any non-zero r ∈ R, we have
(rz)∗/(rz) = z∗/z. Thus replacing z with rz does not
change the cyclotomic approximation.

Lemma 6. (Meta-statement) In the above context, let
L1 = dlogν(|z|)e. There exists an algorithmically defined
subset Sz ⊂ R of cardinality Θ(L1) such that for any
r ∈ Sz

1. 0 < dlogν(|rz|)e − logν(|rz|) < O(1/L1), and

2. logν(|r|) is in O(log(L1)).

We currently do not have a proof of this lemma for
arbitrary cyclotomic ring.

Assuming Lemma 6 holds, for any r ∈ Sz let Lr =
dlogν(|rz|)e. Claim (1) of Lemma 6 directly implies that
pr = |rz|2/ν2Lr > 1 − O(1/L1) while claim (2) implies
that Lr is in L1 +O(log(L1)). There is also an algorith-
mically defined set of at least Θ(L1) values with these
properties.

Intuitively, in the subsequent designs for the proba-
bilistic measurement-assisted circuits pr > 1 − O(1/L1)
means there will be a high one-round success rate. The
asymptotics for Lr implies that no r from Sz will sub-
stantially increase the depth of the resulting circuit.

The existence of the matrix

1

νLr

[
rz y
−y∗ rz∗

]
, (4)

for some chosen r ∈ Sz, is equivalent to solving the equa-
tion

|y|2 = ν2Lr − |rz|2, (5)

for y ∈ Z[ζ]. Eq (5) is known as a norm equation over
the cyclotomic integers. Its solvability and solutions are
well understood [18].

Consider the absolute norm map N : Q(ρ) → Q. It is
a general fact that N(R) ⊂ Z. We use terminology and
facts from [18] in our below description. We first address
a particular case where p = N(ν2Lr − |rz|2) is a prime
integer. As per Theorem 2.13 [18], the norm equation in
Eq (5) is solvable if and only if p = 1 mod m. Intuitively
this means that solvable norm equations are not rare. Let
B be an arbitrarily large positive integer. It is well known
that the density of prime numbers in, say, the segment
[B/2, B] is in Ω(1/ln(B)). It is also well know that if
m << B then the density of such prime numbers p such
that p = 1 mod m in that segment is still in Ω(1/ln(B)).

Suppose we have identified a large enough subset Sz ⊂
R so that the set of integers {N(ν2Lr −|rz|2)|r ∈ Sz} in-
tersects with some segment of the form [B/2, B] and the
intersection has Θ(ln(B)) distinct integers, i.e., the num-
ber of distinct integers in the intersection is ln(B) times
some significant factor. Then with some high probability
there is an r ∈ Sz such that p = N(ν2Lr −|rz|2) is prime
and p = 1 mod m.

However, this is a minimalistic approach. If p =
N(ν2Lr − |rz|2) is not prime, and its prime factorization
is known, then the complete analysis of solvability of Eq
(5) can be algorithmically performed in polynomial time.
Therefore we can broaden the search for feasible values
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of r by looking at such values where N(ν2Lr − |rz|2) is
easy to factor (e.g., it is a smooth integer). We refer to
Eq (5) as easily solvable when N(ν2Lr − |rz|2) is easy to
factor and the equation has a solution.

Conjecture 7. (Meta-conjecture)
For any z ∈ Z[ζ] in a general position there exists a

certain subset Sz ⊂ R that satisfies the claims of Lemma
6, has cardinality in O(L1), and contains at least one r
for which the equation (5) is easily solvable.

Assuming this conjecture holds, we can manufacture
a unitary matrix of the form (4) in polynomial classical
runtime with the promise that its Lr is in logν(|z|) +
O(log(log(|z|)). We proceed by describing how to apply
the described framework in the context of each of the
three basis sets.

VII. PQF OVER CLIFFORD+V

Unitary decomposition of single-qubit rotations over
the so-called V -basis was described in Ref. [9]. While
RUS decomposition over Clifford+V has not yet been
shown, the PQF protocol allows generalization to the
V basis. We generalize PQF to Clifford+V in this sec-
tion, and show that it is remarkably simpler than in the
Clifford+T case.

Recall that the single-qubit V gate is given by V =
(I − 2iZ)/

√
5. The group of circuits generated by the

Clifford group and the V gate is universal for quantum
computation (ibid.). It has also been shown that an ar-
bitrary single-qubit unitary gate can be approximated to
precision ε by a single-qubit unitary Clifford+V circuit
with V -count bounded by 3 log5(1/ε) +O(log(log(1/ε)))
[10]. For approximation of axial rotations, the algorithm
is efficient. For arbitrary single-qubit targets, the same
V -count can be achieved using an exponential-time algo-
rithm (ibid.). that is practically feasible for a reasonable
range of precisions.

The guarantees for the unitary decomposition algo-
rithm are based on the following fact, which is the basis
for our efficient algorithm to approximate an arbitrary
axial rotation Rz(θ) with a PQF circuit over Clifford+V :

Lemma 8. A unitary matrix of the form

1√
5
L

[
z y
−y∗ z∗

]
, where y, z are Gaussian integers

and L ∈ Z, can be exactly and algorithmically decom-
posed into a Clifford+V circuit of V -count at most
L.

Following Lemma 8, we consider the case ζ = i (which
corresponds to m = 4). Here Z[i] is a quadratic extension
of Z so d = 2. By Corollary 3, any phase factor eiθ can
be approximated with a Gaussian rational z∗/z, z ∈ Z[i],
where |z| is in O(ε−1/2).

Observation 9. Without loss of generality we can as-
sume that log(|z|) > 1/4 log(1/ε).

If it is not the case, we pick the integer s = dε−1/4/|z|e
and replace z with s z.

A. Stage 2: Probability Modifier

We now prove Lemma 6 over Clifford+V . Let L1 =
dlog√5(|z|)e. We want to define a subset Sz ⊂ Z such
that ∀r ∈ Sz, dlog√5(|rz|)e − log√5(|rz|) < 1/L1. Let
λ = L1 − log√5(|z|). We select values of r such that
0 < log√5(|r|)−blog√5(|r|)c < λ. Under this assumption
dlog√5(|rz|)e−log√5(|rz|) = λ−(log√5(|r|)−blog√5(|r|)).

We define the desired Sz as a subset of positive integers
r satisfying the inequality

λ− 1/L1 < log√5(|r|)− blog√5(|r|) < λ.

It is necessary and sufficient that log√5(|r|) is in an inter-
val of the form (k+λ−1/L1, k+λ), where k ∈ Z or |r| is
in the interval We have Ik = (

√
5
k√

5
λ−1/L1

,
√

5
k√

5
λ
).

It follows that the number of integers contained in Ik
grows exponentially with k ≥ k0 = dlog√5(L1)e.

We define the desired Sz as the ordered sequence of all
integers in dk≥k0Ik. While Sz is an infinite sequence, any
of its initial subsequences of length O(L1) is contained in
dk0≤k≤O(log(L1))Ik. This concludes the proof.

Next we specialize Conjecture 7 for m = 4 and discuss
its implications. Let S′z be some initial subsequence of
length Θ(L1) in Sz and let S′z(easy) ⊂ S′z be the sub-
sequence of such r ∈ S′z for which the norm equation
|y|2 = 5Lr − |rz|2 is easily solvable for y ∈ Z[i].

Conjecture 10. The density of S′z(easy) in S′z is in
Ω(1/ log(L1)). It suffices to inspect O(L1) initial values
in Sz in order to find one for which the norm equation is
easily solvable.

Conjecture 10 implies that we need to test at most
O(L1) = O(log(|z|)) = O(log(1/ε)) norm equations for
easy solvability to find one that is easily solvable. It also
implies that the value of Lr corresponding to the solution
is in L1 + O(log(L1)) = log√5(|z|) + O(log(log(|z|))) =
log5(1/ε) +O(log(log(1/ε)))

B. Stages 3, 4: Design and Synthesis of PQF
Subircuits

We now have the unitary matrix W =

1√
5
Lr

[
rz y
−y∗ rz∗

]
, where Lr = dlog5(r2|z|2)e ≤

log5(|z|2) + O(log(log(|z|2))) and r2|z|2/5Lr >
1− 1/ log5(|z|2).

As observed in [9], V is exactly represented by a
unitary Clifford+V circuit with V -count at most Lr.
Therefore, the two-qubit PQF matrix U = CNOT(I ⊗
W )CNOT is exactly represented by a circuit with the
same V -count.

By direct computation, when U is applied to |ψ〉|0〉
and the second qubit is measured then either
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• on measurement outcome 0 the Λ(z∗/z) ∼ Λ(eiθ)
rotation gate is effectively applied to the primary
qubit, or

• on measurement outcome 1 the Λ(−y/y∗) rotation
gate is applied to the primary qubit.

Thus the round one fallback circuit must be a unitary
ε-approximation of the rotation gate Λ(−y∗/yeiθ). Fall-
back circuits at subsequent rounds have similar structure.

As per [10] any of the fallback circuits can be
implemented at V -count of at most 3 log5(1/ε) +
O(log(log(1/ε))). Following the guarantees derived for
Stage 1 of this algorithm, |z|2 is in O(1/ε) therefore the
V -count of the two-cubit circuit for U = CNOT(I ⊗
V )CNOT is bounded by log5(1/ε) +O(log(log(1/ε))).

The one round “failure” rate of the circuit, which is
the probability q of measuring 1, is less than 1/ log5(|z|2).
As per Observation 9, we can assume that log5(|z|2) >
1/2 log5(1/ε) and therefore q < 2/ log5(1/ε). Thus the
expected V -count of the one-round PQF protocol is
bounded by log5(1/ε)+O(log(log(1/ε)))+q (3 log5(1/ε)+
O(log(log(1/ε)))) < log5(1/ε) + O(log(log(1/ε))). Sim-
ilarly, the V -count of the two-round PQF protocol is
bounded by log5(1/ε) +O(log(log(1/ε))).

VIII. PQF OVER CLIFFORD+T AND
CLIFFORD+π/12

The Clifford+T basis is arguably the most popular
universal quantum basis [1]. It consists of the multi-
qubit Clifford group and the single-qubit T gate, where
T =

[
1 0
0 eiπ/4

]
. Alternatively, the basis can be viewed as

being generated by {T,H,CNOT}. We cost our synthe-
sized circuits by the number of T gates, which is moti-
vated by the high cost of fault-tolerant implementations
of the T gate (or other non-Clifford gate) [22–24].

The Clifford+π/12 basis analogously consists of the
multi-qubit Clifford group and the single-qubitK = π/12
gate, where K =

[
1 0
0 eiπ/6

]
. It is generated by the set

{K,H,CNOT}. The study of this set is motivated by
recent results on the universality of metaplectic anyons
[12]. While we present an algorithm to decompose into
this basis, an efficient fault-tolerant implementation of
the K = π/12 gate, for example by magic state distil-
lation, remains open for future research. In this analy-
sis, however, we assume, paralleling the Clifford+T ba-
sis, that the cost of executing a π/12 gate is significantly
higher than the cost of executing a Clifford gate. We
also assume that K, K−1, K2, and K−2 have the same
unit cost. Therefore the cost of a Clifford+π/12 circuit
is dominated by the number of K-monomials occurring
in the circuit.

In all other technical aspects the Clifford+T and
Clifford+π/12 systems are strikingly similar. For the
Clifford+T and Clifford+π/12 bases, the first stage of
the algorithm approximates the phase factor eiθ with a
unimodal cyclotomic rational, i.e., an algebraic number

of the form z∗/z, where z ∈ Z[ω], by finding an approxi-
mate solution of an integer relation problem. The second
stage performs the modification z 7→ (rz), where r ∈ Z[ρ]
using Lemma 12 developed below. The third and fourth
stages design and synthesize the PQF subcircuit. We re-
view the algorithm in the case of these two bases below.

A. Exactly Representable Unitaries

We denote ω = eiπ/4 and ω12 = eiπ/6. Both ω and
ω12 are algebraic integers of degree 4. We intentionally
omit the superscript 12 and use ω when the algebra of
these two algebraic integers is identical, and denote it
otherwise. We denote ρ = ω + ω∗ =

√
2 and ρ12 =

ω12 +ω∗12 =
√

3. Again we use ρ without subscript when
no distinction is necessary.

The fundamental unit υ = 1 + ρ of the Z[ρ] ring and
the fundamental unit υ12 = 2+ρ12 of the Z[ρ12] ring. We
use υ without subscript when distinction is unnecessary.

The algebraic number ring Z[ω], is a degree 4 extension
of Z. The Galois group of this extension is the direct
product Z2×Z2 generated by complex conjugation ∗ and
one other automorphism • that extends ω• = −ω. The
ring Z[ω] has an integer basis of four elements, with the
most obvious basis being {ω3, ω2, ω, 1} [13]. It consists
of all numbers of the form aω3 + bω2 + cω + d, where
a, b, c, d are arbitrary integers.

It was shown in [13] for the Clifford+T system that a
unitary operation V on n qubits is representable exactly
by a Clifford+T circuit if and only if it is of the form

V = 1/
√

2
k
M , where M is a matrix with elements from

Z[ω] and k is some non-negative integer. To satisfy the
unitary condition, we require MM† = 2k12n . Moreover,
it was shown that a matrix of this form can be repre-
sented as an asymptotically optimal Clifford+T circuit
using at most two ancilla qubits [6, 25], and no ancilla
qubits when either the target is a single-qubit unitary or

when det(1/
√

2
k
M) = 1 [25].

In Appendix C we extend this claim to single-qubit
unitaries over the Clifford+π/12 basis. We prove that
a V ∈ U(2) is representable exactly as a Clifford+π/12

circuit if it is of the form V = 1/
√

2
k
M , where M is a

2× 2 matrix over Z[ω12] such that MM† = 2k12

We note that the PQF and RUS protocols share that
when the phase factor eiθ is approximated by some

y/
√

2`, where y ∈ Z[ω], and by some z∗/z, where z ∈ Z[ω]
for the same precision, then z will in general have much
smaller bitsize than y for that precision.

B. Stage 2: Probability Modifier

Let z∗/z, z ∈ Z[ω] be a cyclotomic rational approxi-
mation of eiθ as explained in Section V. In Stage 2, we
include z in a unitary of the form (3), where in this con-

text ν =
√

2, y ∈ Z[ω], and L ∈ Z. We would like |z|2/2L
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to be reasonably large since this value equals the success
probability of the current round in the PQF protocol.
Unfortunately, the majority of z values do not allow this.
To create a unitary of the form (3), we seek a y that
satisfies the normalization condition (|y|2 + |z|2)/2L = 1,
or equivalently |y|2 = 2L − |z|2. It is easy to see that
|z|2 belongs to the real-valued ring Z[ρ] and thus so does
2L − |z|2.

Given an arbitrary ξ ∈ Z[ρ], the identity

|y|2 = ξ, (6)

considered as an equation for an unknown y ∈ Z[ω], is
called a norm equation in Z[ω]. Deciding whether a given
norm equation is solvable and finding a solution is in
general at least as hard as performing factorization of an
arbitrary integer. For our algorithm to be efficient, we
need to find norm equations that are easy to solve.

A necessary solvability condition to construct a matrix
of the form (3) with ν =

√
2 is given by |z|2 ≤ 2L and

|z•|2 ≤ 2L, where ()• : Z[ω] → Z[ω] extends the map
ω 7→ (−ω). We can arbitrarily replace z in z∗/z by rz,
where r ∈ Z[ρ], without changing the fraction.

Our strategy generalizes that of Ref. [3]. Consider a
fixed z ∈ Z[ω]. Introduce L1 = dlog2(|z|2)e. Note that
for z defined at Stage 1, L1 follows the asymptotics of
log2(1/ε)/2+c, where c is a constant. Thus for asymptot-
ically small ε, L1 is asymptotically large. For a randomly
chosen r ∈ Z[ρ], we set Lr = dlog2(|rz|2)e.

Further design and analysis of our algorithm is based
on the following:

Conjecture 11. In the above context, consider the set
S+(z) = {r ∈ Z[ρ] | 2Lr − |rz|2 ≥ 0, 2Lr − |(rz)•|2 ≥ 0}.
Let Ssolvable(z) ⊂ S+(z) be the subset of such r ∈ Z[ρ] for
which the norm equation |y|2 = 2Lr − |rz|2 is solvable in
Z[ω]. Then the average density of Ssolvable(z) in S+(z)
belongs to Ω(1/L1), when |z| → ∞ and L1 →∞.

This conjecture is a special case of Conjecture 7. The
motivation for conjectures of this type was discussed in
Section VI. In our numeric experiments for over 1000
random angles and 30 levels of precision we have not
encountered a single failure, suggesting the conjecture
did not hold.

Lemma 12. For sufficiently large L1, an r ∈ Z[ρ] can
be algorithmically found, in a probabilistically polynomial
number of steps, such that

1. Lr ≤ L1 + log2(|z•/z|) +O(log(L1)),

2. p(r) > |rz|2/2Lr > 1− 1/L1,

3. 2Lr − |r•z•|2 ≥ 0,

4. the norm equation |y|2 = 2Lr − |rz|2 is easily solv-
able in Z[ω].

Proof. As per Conjecture 11 it suffices to find a set of
values r that satisfy (1) – (3) in Lemma 12 of size O(L1).

Then there is at least one value r in a set of size O(L1)
for which the norm equation is easily solvable.

Before algorithmically constructing such a set, we note
that condition 3 is somewhat redundant. It is a neces-
sary condition for the norm equation to be solvable and
conveniently helps reduce the search space for r.

Let ζ = log2(2L1/|z|2) = L1 − log2(|z|2). We rewrite
conditions (1) and (2) in terms of R = blog2(|r|2)c and
f = log2(|r|2)−R. The first condition can be restated as
R is in log2(|z•/z|) + O(log(L1)). The second condition
means that 2−(ζ−f) > 1− 1/L1. We subsequently design
f to be smaller than, but close enough to, ζ. It follows
that (1− 1/L1)2ζ < 2f < 2ζ .

As per the definitions of ζ, f,R a slightly stronger
(asymptotically equivalent) condition on |r| is given by

(1− 1/(2L1))2(R+ζ)/2 < |r| < 2(R+ζ)/2.

We then rewrite condition 3 as |r•| ≤ 2L1/2/|z•| × 2R/2.
We are now ready to describe the construction of a suf-

ficient set of values r. This is one of the few places where
the distinction between Clifford+T and Clifford+π/12
must be made. Recall the fundamental unit υ = 1 + ρ
we have defined for Clifford+T and the fundamental unit
υ12 = 2 + ρ12 defined for Clifford+π/12.

Our construction for Clifford+T exploits Lemma 17
from [3]: given real numbers x0, x1, y0, y1 such that |(x1−
x0)(y1 − y0)| > υ2, one can algorithmically find an r ∈
Z[
√

2 = ρ] such that r ∈ (x0, x1) and r• ∈ (y0, y1).
The construction for Clifford+π/12 is based on a ver-

sion of the lemma developed in Appendix D: given real
numbers x0, x1, y0, y1 such that |(x1−x0)(y1−y0)| > υ212,

one can algorithmically find an r ∈ Z[
√

3 = ρ12] such that
r ∈ (x0, x1) and r• ∈ (y0, y1).

The two lemmas are identical except for the 12 sub-
script. We omit the subscript in the following narration
which is common for the two cases. We collectively refer
to the two lemmas as the “bullet lemmas”.

Set x0(R) = (1− 1/(2L1)) 2(R+ζ)/2, x1(R) = 2(R+ζ)/2,
y0(R) = −2L1/2/|z•|×2R/2, and y1 = +2L1/2/|z•|×2R/2.
Then |(x1(R)− x0(R))(y1(R)− y0(R))| = 2R|z/z•|1/L1.
If the latter value is greater than υ2 , or equivalently,
2R > υ2|z•/z|L1 ∈ O(L1) then one can algorithmically
find at least one r ∈ Z[ρ] that satisfies conditions 1 – 3.

Consider R0(z) = dlog2(υ2|z•/z|L1)e. Obviously
R0(z) is in log2(|z•/z|L1) +O(log(L1)) = log2(|z•/z|) +
O(log(L1)). We note that |(x1(R)− x0(R))| grows expo-
nentially with R ≥ R0.

Having defined Sz(R) as an ordered sequence of r ∈
Z[ρ] such that r ∈ (x0(R′), x1(R′)) for some R′ ∈ [R0, R],
we conclude that the cardinality of Sz(R) grows exponen-
tially with R ≥ R0. Indeed, when |(x1(R) − x0(R))| is
exponentially large, we can subdivide it into exponen-
tially large number of subsegments, each minimally sat-
isfying the condition of the appropriate bullet lemma,
and algorithmically find an element of the Z[ρ] in each
subsegment. Therefore, if an initial subsequence of
any Sz(R) has cardinality in O(L1), then that subse-
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Input: z ∈ Z[ω] . hyperparameters ρ, υ
1: procedure NORMALIZATION-1(z)
2: L1 ← dlog2(|z|2)e, ζ ← L1 − log2(|z|2), Y ← None
3: R0 ← dlog2(|z•|/|z|L1υ

2)e
4: xmin ← (1− 1/(2L1)2(R0+ζ)/2, xmax ← 2(R0+ζ)/2

5: ∆← xmax − xmin
6: while Y = None do
7: x0 ← xmin, x1 ← x0 + ∆
8: while Y = None and x1 ≤ xmax do
9: construct r ∈ Z[ρ], r ∈ (x0, x1) such that

10: |r•| ≤ 2(R0+ζ)/2

11: Lr ← dlog2(|rz|2)e
12: if |y|2 = 2Lr − |rz|2 is easily solvable then
13: Y ← {r, y}
14: end if
15: x0 ← x1, x1 ← x1 + ∆
16: end while
17: xmin ← 2xmin, xmax ← 2xmax
18: end while
19: end procedure
Output: Y . acceptable norm equation solution

Figure 4: Algorithm to find a probability modifier r.

quence is also contained in some Sz(R
′), where R′ is in

log2(|z•/z|) +O(log(L1)).
Per Conjecture 11 it would be sufficient to inspect

O(L1) initial elements of a large enough Sz(R) in or-
der to find r ∈ Sz(R) such that the norm equation
|y|2 = 2Lr − |rz|2 is solvable. By the above obser-
vation, such an r will be also in some Sz(R

′), where
R′ = log2(|z•/z|) +O(log(L1)), and the lemma follows.

Corollary 13. In the context of Lemma 12 one can ef-
ficiently find an r ∈ Z[ρ] such that

Lr ≤ log2(1/ε)/2 +O(log(log(1/ε))) + c,

where c is a constant.

Proof. We find an r ∈ Z[ρ] that satisfies the condi-
tions of Lemma 12. Recall that up to an additive frac-
tional part L1 = 2 log2(|z|). By condition 1, Lr ≤
log2(|z|) + log2(|z•|) + O(log(log(|z|)). As per Corollary
3 and Observation 4, both |z| and |z•| are in O(ε−1/4)
and our claim follows.

We now have an algorithm for Stage 2 that iterates
through a sufficient set of candidate values of r until
one yields a solvable norm equation. The pseudocode
is shown in Fig. 4.

C. Stage 3: PQF Unitary Design

When the algorithm to modify the probability suc-
ceeds for a given z, we can construct a single-qubit uni-
tary V of the form (3), where y, z ∈ Z[ω], L ∈ Z,

ν =
√

2, and the probability of success of the cur-
rent round is |z|2/2L > 1 − 1/L. For Clifford+T , the

unitary V can be decomposed exactly into an optimal
ancilla-free Clifford+T circuit using methods in [13]. For
Clifford+π/12, we decompose it using a similar technique
described in Appendix C.

The following theorem summarizes the theoretical up-
per bounds on the mean expected cost of a PQF circuit
over the Clifford+T and Clifford+π/12 bases. For com-
pleteness, we highlight that the same bound in fact ap-
plies to RUS circuits over the Clifford+T , resulting in
a small but definitive asymptotic improvement over the
bound given in Ref. [7].

Theorem 14. In the context of both PQF and RUS pro-
tocols where modifier sampling is based on Lemma 12

1. For the Clifford+T basis, if the T -cost of the fall-
back round of PQF is in O(log(1/ε)) then the over-
all expected T -cost of a one-round PQF protocol is

log2(1/ε) +O(log(log(1/ε))), (7)

2. The expected T -cost of an RUS protocol is also
given by Eq (7).

3. For the Clifford+π/12 basis, the overall expected
K-cost of a one-round PQF protocol is

1/2 log2(1/ε) +O(log(log(1/ε))), (8)

Proof. 1. For the PQF protocol over the Clifford+T
basis, the expected T -cost is 2Lr + CF (1 − p(r)),
where CF is the fallback cost. As per the above
and Observation 5, 1− p(r) < 2/ log2(1/ε) and by
Corollary 13, the claim follows.

2. For the RUS protocol with Lemma 12, the ex-
pected T -cost is 2Lr/p(r). As per condition 2
of the lemma, the expected cost is dominated by
2Lr(1+1/L1) = 2Lr(1+2/ log2(1/ε)) and the claim
follows from Corollary 13.

3. For the PQF protocol over the Clifford+π/12 basis,
the expected K-cost is bounded by Lr+2+CF (1−
p(r)), where CF is the fallback cost. As per the
above and Observation 5, 1 − p(r) < 2/ log2(1/ε)
and by Corollary 13 the claim follows.

D. Stage 4: Synthesis of PQF Subcircuit

From the unitary matrix V , we construct a two-qubit
unitary U given by

U = CNOT(I ⊗ V )CNOT = [ V 0
0 XVX ] .

We denote the primary input state for round k as |ψk〉.
The subcircuit U for round k acts on the state |ψk〉⊗ |0〉,
where the second qubit is an ancilla. We then measure
the second (ancilla) qubit.
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Figure 5: Precision ε versus mean expected T -count of
PQF circuits for the set of random angles.

When the measurement outcome is 0, the first qubit
is left in the state

[
1 0
0 z∗/z

]
|ψk〉 which is the desired ε-

approximation of Rz(θ).
When the measurement outcome is 1, the first qubit is

left in the state
[
1 0
0 −y/y∗

]
|ψk〉. Unless −y/y∗ is ε-close

to eiθ, in this case we must apply the rotation Rz(θ
′),

where θ′ = θ − arg(−y/y∗) in the next round.
The unitary U at round k has the same T -count (K-

count) as the T -count (K-count) of the optimal single-
qubit Clifford+T (Clifford+π/12) circuit for unitary V
since we invoke the optimal single-qubit deterministic de-
composition of V to obtain its circuit. The only other
gates involved are two CNOT gates. For Clifford+T , the
techniques in Refs. ?? can be used to optimally decom-
pose V . In Appendices C–D, we show how to optimally
decompose a single-qubit gate into the Clifford+π/12 ba-
sis. The T -count (K-count) of the two-qubit unitary at
any subsequent round is defined (asymptotically) by the
precision ε. The difference in cost between the rounds is
asymptotically bounded by an O(log(log(1/ε))) term.

IX. NUMERICAL RESULTS

We evaluate the performance of our algorithm on a set
of 1000 angles randomly drawn from the interval (0, π/2)
at 30 target precisions ε ∈ {10−11, . . . , 10−40}. In all
numerical experiments, expected cost statistics have been
collected for one-round PQF circuits. Adding the second
round to the compiled circuits only improves the mean
expected gate count by 3 gates on average. This is due
to the probability modification at Stage 2 of per-round
PQF compilation. Modification boosts the probability of
success to typical values above 0.97 and above 0.985 for
at least half of the cases.

Figure 5 plots the precision ε versus the mean (and
standard deviation) of the expected T -count across the
PQF circuits generated for the set of 1000 random angles.

The maximum likelihood estimate for the mean ex-
pected T -count is log2(1/ε) + 4 log2(log2(1/ε)) + 1.187.
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Figure 6: Precision ε versus mean expected K-count of
PQF circuits over Clifford+π/12 for the set of random
angles.
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Figure 6 plots the precision ε versus the mean (and
standard deviation) of the expected K-count for the
PQF Clifford+π/12 circuits generated for the set of
1000 random angles. The maximum likelihood esti-
mate for the mean expected K-count is 1/2 log2(1/ε) +
2 log2(log2(1/ε)) + 3.48.

Figure 7 plots the precision ε versus the mean (and
standard deviation) of the expected V -count for the PQF
Clifford+V circuits generated for the set of 1000 random
angles. The maximum likelihood estimate for the mean
expected V -count is log5(1/ε) + 0.95 log5(log5(1/ε)) +
7.26.

X. CONCLUSION AND FUTURE WORK

We have developed a method of synthesizing Proba-
bilistic Quantum Circuits with Fallback (PQF) which is
simpler and more general than the synthesis of Repeat-
Until-Success (RUS) circuits. We have demonstrated
that the method can be applied to the approximation
of single-qubit unitaries over at least three different uni-
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versal quantum bases. The mean expected cost of the
resulting probabilistic circuits has an asymptotic upper
bound with a leading term that is 3 times smaller than
the leading term of the corresponding optimal, purely
unitary, ancilla-free circuit over the same universal quan-
tum basis. In addition, our PQF protocol requires only
a small finite number of steps to achieve efficient approx-
imation of a unitary.

The design and cost analysis of PQF circuits is per-
formed based on conjectures that are remarkably similar
to the norm density conjectures presented in Ref. [3] and
Ref. [4]. Our numerical experiments, covering around
30, 000 synthesis instances for each of the three universal
quantum bases, have not produced a single instance that
would violate our underlying conjectures.

In contrast to the RUS protocol, the PQF protocol
is remarkably general, and promises generalization to

multi-qubit unitary decomposition and synthesisi. Fu-
ture work includes generalizing PQF to multi-qubit tar-
get unitaries, and to additional universal bases, most no-
tably to Clifford+π/16. For each basis considered, it is
important to also determine a fault-tolerant implemen-
tation of the non-Clifford gates employed. For example,
for Clifford+π/12, it will be important to construct ei-
ther distillation methods or circuit constructions for a
fault-tolerant π/12 gate. Recent methods have addressed
the distillation of non-Clifford states and Fourier states,
and provide a starting point for research [26, 27] on other
possible universal bases and their fault-tolerant construc-
tions. Consideration of generalization to qudit compu-
tation models is also an avenue for future exploration.
Finally, formal, rigorous proofs of the underlying conjec-
tures is another important direction.
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Appendix A: Information-Theoretic Bounds

A relatively simple analysis of the density with which
cyclotomic rationals are distributed imposes information-
theoretic limits on how much we can reduce the expected
T -count of our non-deterministic solutions compared to
the T -count of deterministic, unitary solutions. Note
that the analysis applies equally well to both PQF and
RUS methods.

Let us assume, temporarily, that for z ∈ Z[ω] and L =
dlog2(|z|2)e, the norm equation |y|2 = 2L−|z]2 is solvable.
By definition of L, |z|2 ≤ 2L. We know that the optimal
T -count of a single-qubit unitary circuit implementing a
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matrix of the form of Eq (3) is t = 2L or t = 2L− 2.
In either case we note that |z|2 = O(2t/2) and |z|4 =

O(2t). We also note that given an upper bound b on the
absolute value of cyclotomic integer, there are no more
than O(b4) cyclotomic integers under this bound. Thus
we conclude that there are no more thanO(2t) cyclotomic
integers z for which the matrix of the form of Eq (3) may
exist and be implemented at T -count t or less.

It follows that there are at most O(2t) unimodular cy-
clotomic rationals on the unit circumference for which
our RUS circuit can be built with design cost of T -count
= t or less. Therefore, there exists a constantK such that
for ε < K × 2−t there is an arc of the unit circumference
of length 2ε that does not contain any such cyclotomic
rational. If θ∗ is the angle in the center of such an arc,
then the rotation Rz(θ∗) cannot be implemented by any
of our circuits with design cost of T -count = t or less.

Conversely, ε ≥ K × 2−t is the necessary condition
for any axial rotation to be implementable by one of our
circuits with design cost of T -count = t or less. This
necessary condition is equivalent to

t ≥ log2(1/ε) + log2(K), (A1)

which is a specific lower bound on the design cost given
by the T -count of our solution.

The derivation of the above lower bound is specific to
our PQF and RUS designs. As follows from Corollary 14,
our existing PQF protocol for single-qubit decomposition
based on the PSLQ integer relation algorithm is within
O(log(log(1/ε))) from this bound. Deriving a uniform
lower bound under more general assumptions would be a
worthwhile problem for future research.

Appendix B: Details on the Norm Equation in Z[ω]

This section combines the claims for ω = e2πi/m for
m = 8 and m = 12.

We reintroduce ρ = ω+ω∗. Recall that the real-valued
ring Z[ρ] is a unique factorization ring. That is, any
of its elements can be factored into a product of prime
algebraic integers and at most one unit. The primary
category of right-hand-side values for which Eq (6) is
easily solvable would then be the set of algebraic integer
primes.

The equation is easily solvable for the following kinds
of prime right-hand sides (c.f. [18]):

1. ξ = a+ bρ, ξ > 0 and p = ξξ• is a positive rational
prime number with p = 1 mod m;

2. ξ is a rational prime number and ξ 6= −1 mod m.

We call an algebraic integer prime belonging to one of
these two classes a “good” prime.

For a composite ξ we consider a limited factorization of
the right-hand side to preserve efficiency. To this end, we
precompute a set Sprime ⊂ Z[ρ] of small prime elements
and consider factorizations of the form: ξ = ξa11 . . . , ξarr η,

where ξ1, . . . , ξr ∈ Sprime and η passes a primality test.
Eq (6) is efficiently solvable if η is a good prime and for
i = 1, . . . , r, ξi is a good prime or ai is even.

Example 15. For m = 8, |y|2 = ξ = 1270080 +

211680
√

2 is efficiently solvable since ξ = 2533572(2 +√
2)(5− 2

√
2).

Note p = (5− 2
√

2)(5− 2
√

2)• = 17 = 1 mod 8. The
only “bad” prime in the above factorization is 7 but it
appears as an even power.

We remark that the cyclotomic integer z coming
from the cyclotomic rational approximation of eiθ is not
unique. In fact, it is defined up to an arbitrary real-
valued factor r ∈ Z[ρ]. For any such r, (rz)∗/(rz) is
identical to z∗/z. However the norm equation |y|2 =
2L − |rz|2 can and will change quite dramatically.

When drawing r randomly from a subset of Z[ρ] one
might try and estimate the chance that the equation
|y|2 = 2L−|rz|2 turns out to be solvable for a random r.
This is an example of an open and likely very hard num-
ber theory problem. We will not attempt to solve it here
and will instead rely on a conjecture that the “lucky”
values of r are reasonably dense in Z[ρ].

Appendix C: Exactly Representable Single-Qubit
Circuits in Clifford+π/12

We use the notation ω = ω12 = ei π/6 in this section.
In this and subsequent sections we also use a shorthand

notation for single-qubit controlled phase gate. Given
φ ∈ C, |φ| = 1 is a phase factor, the controlled phase gate
Λ(φ) is simply

[
1 0
0 φ

]
.

In particular, the π/12 gate K = Λ(ω12).
The single-qubit Clifford+π/12 group is generated by

the Hadamard gateH and the π/12 gateK. We note that
ω3 = i and therefore the common phase gate S = K3 is in
the circuit group, as is, by closure, the entire single-qubit
Clifford group.

Any Clifford+π/12 circuit can be expressed as a prod-
uct of syllables of the form KkH, where |k| < 6, up
to a possible global phase factor. A slightly deeper
analysis reveals that we can rewrite a circuit to enforce
k = ±1,±2 in all interior syllables, but this is not very
important in this section. The important part is that the
KkH syllable is a Clifford gate for k ∈ {0,±3,±6,±9}
and has zero K-count.

We assume that the implementation cost of gates of the
form Kk, k /∈ {0,±3,±6,±9} is the same and that it is
significantly higher than the cost of a Clifford gate. This
implies that the K-cost of a circuit composed of KkH
syllables is upper-bounded by the number of syllables
with k /∈ {0,±3,±6,±9}.

Consider the ring of cyclotomic integers Z[ω]. Any ωk

is a cyclotomic integer and H = 1√
2

[ 1 1
1 -1 ], where ±1 are

in Z[ω] and 1√
2

is not in Z[ω]. Clearly a finite product of
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the KkH syllables evaluates to a unitary matrix of the
form

1
√

2
L

[
z −y∗ω`
y z∗ω`

]
, (C1)

y, z ∈ Z[ω], `, L ∈ Z.

Lemma 16. A Clifford+π/12 circuit that evaluates to a
unitary in the form (C1) with L = 0 has K-cost 0 or 1.

Proof. The unitarity of (C1) with L = 0 means |z|2 +
|y|2 = 1. Since y, z are algebraic integers, either |z| =
1, |y| = 0 or |z| = 0, |y| = 1. By standard algebraic units
argument, if x ∈ Z[ω] and |x| = 1 then, x = ωk, k ∈ Z.

In the case |z| = 1 and z = ωk, the unitary in the form
(C1) is ωkΛ(ω`−2k). As per the assumptions we have
adopted above, the π/12-cost of the latter is either 0 or
1.

The case of |z| = 0 is reduced to the case of |z| = 1 by
pre-multiplying the subject unitary times X = HZH =
HΛ(ω6)H. By our convention the latter has zero K-cost
and does not affect theK-cost of the resulting circuit.

Lemma 17. Consider a unitary 2-vector of the form
v = 1√

2
L (z, y)T , y, z ∈ Z[ω], L ∈ Z : |y|2 + |z|2 = 2L. A

Clifford+π/12 circuit c with K-cost at most L+ 1 can be
algorithmically found such that c v = (1, 0)T .

Proof. This rather technical lemma is inspired by the
“column lemma” from [25]. The proof is by induction
in L. The base of the induction is L = 0, and the claim
has been already established in the proof of Lemma 16.

Consider the subject vector with L > 0. The main step
is to algorithmically find a short circuit c with K-cost at
most 1 such that v′ = c v is or the form v′ = 1√

2
L′ (z

′, y′)T ,

where L′ < L. Then the desired circuit will be generally
of the form HΛ(ωk), except for one special case where
it will be a global phase. We generally attempt to find
k ∈ Z such that all the integer coefficients of the algebraic
integers z±ωky are even. If we have succeeded in finding
such a k then

HΛ(ωk)v =
1

√
2
L+1

(z + ωky, z − ωky)T

=
1

√
2
L−1 ((z + ωky)/2, (z + ωky)/2)T

and we have succeeded in reducing the denominator ex-
ponent.

In order to develop a method for finding the desired k,
consider the parity morphism

µ : Z[ω]→ Z2[ω]

µ : aω3 + bω2 + cω + d

7→ (amod2)ω3 + (bmod2)ω2 + (cmod2)ω + (dmod2).

All coefficients of z ± ωky are even if and only if 0 =
µ(z±ωky) = µ(z)⊕ωkµ(y) if and only if µ(z) = ωkµ(y),
which is going to be the desired property below.

Consider the action of the 12-element group {ωk} on
Z2[ω] by multiplication. Since ω6 = −1 and −1 = 1
mod 2 the subgroup {1,−1} acts trivially on Z2[ω] and
the action of the 6-element factor-group {ωk}/{1,−1} is
well-defined.

By direct computation we established that the the 16-
element set Z2[ω] is partitioned into 4 orbits of this ac-
tion. The orbit of zero O0 consists of just zero. The orbit
of 1 + ω3 = 1 + i , O3 consists of 3 elements and the or-
bits O1 and O2 of 1 and 1 + ω respectively consist of 6
elements each.

It is important to understand that the function N2 :
x 7→ µ(|x|2) is constant on each of the orbits. More
specifically, N2(O0) = N2(O3) = 0 , N(O1) = 1,
N(O2) = ω3. The final key remark is that the unitar-
ity of the vector v implies N2(z) ⊕N2(y) = N2(2L) = 0
and therefore N2(z) = N2(y).

We proceed by case distinction.
(0,0) Case of O0

If both µ(z) and µ(y) belong to O0 then all the integer
coefficients of y and z are already even and we do not
need to do any transformations in order to reduce the
vector.

(1,2) Cases of O1 and O2

If µ(z) belongs to either of the two orbits, then µ(y)
must belong to the same orbit (since we have estab-
lished N2(z) = N2(y)). Therefore there exists k such
that µ(z) = ωkµ(y) which is what we were looking for.

(3,3) Case of O3

If both µ(z) and µ(y) belong to O3, then again there
exists k such that µ(z) = ωkµ(y)

(3,0) This is the only remaining case.
If one and only one of the µ(z), µ(y) belongs O3 then

the other one must belong to O0 (since these are the
only two orbits with N2(orbit) = 0). Assume, w.l.o.g.
that µ(y) = 0.

This case needs to be treated differently from the gen-
eral context. First, we note that, since µ(z) ∈ O3 there
exists a k such that µ(ωkz) = 1+ω3 = 1+i. Next we note

that the global phase operator (1 + i)/
√

2I2 is in the the
Clifford group and that µ((1+ i)2) = µ(2ω3) = 0. There-
fore by multiplying the vector v times the global phase
ωk(1 + i)/

√
2I2 we obtain a vector, where all the integer

coefficients of both components are even. We then reduce

this latter vector to one of the form 1/
√

2
L−1

w.
This case concludes the induction step.

Corollary 18. Unitary of the form (C1) where y, z ∈
Z[ω], L, k ∈ Z can be represented exactly and algorithmi-
cally by a Clifford+π/12 circuit of π/12-count at most
L+ 2.

Proof. Consider a Clifford+π/12 circuit c of π/12-count
at most L+ 1 that reduces the fist column of the matrix
(C1) to (1, 0)T . Consider the unitary value of c† = c†I2.
Since c† maps (1, 0)T into the first column of (C1) it maps
(0, 1)T into a unitary vector that is Hilbert-orthogonal
to that first column. Thus c†(0, 1)T is proportional to
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1√
2
L (−y∗ω`, z∗ω`)T with a unit coefficient from Z[ω].

Therefore we can algorithmically find an integer k such
that the unitary (C1) is exactly equal to the value of
c†Λ(ωk). Since the π/12-count of the Λ(ωk) is at most 1
the corollary follows.

Appendix D: Approximation of Real Numbers by
Numbers from Z[

√
3]

This section is a direct extension of Section 5 in [3]

to the Z[
√

3] ring. Recall that the fundamental Galois

automorphism of that ring extends • :
√

3 7→ (−
√

3).
The following is an analog of Lemma 17 from [3]:

Lemma 19. Let [x0, x1] and [y0, y1] be closed intervals
of real numbers. Let δ = x1 − x0 and ∆ = y0 − y1,
and assume δ∆ ≥ (2 +

√
3)2. Then there exists at least

one α = a + b
√

3 ∈ Z[
√

3] such that α ∈ [x0, x1] and

α• = a − b
√

3 ∈ [y0, y1]. Moreover, there is an efficient
algorithm for computing such a and b.

The proof is almost identical to the proof of the lemma
for Z[

√
2] with the obvious replacements of

√
2 by

√
3 and

of the unit λ = 1 +
√

2 by the unit υ = 2 +
√

3.

Appendix E: Approximating Single-Qubit Circuits
in Clifford+π/12

This section is a direct extension of Section 6 in [3]
to the Z[ω = eipi/6] ring. We prove that an axial ro-
tation Λ(eiθ) can be algorithmically approximated to
any desired precision ε > 0 by a Clifford+π/12 cir-
cuit with π/12-count of at most 2 log√2(1/ε) +C, where

C = 3/2 + log√2(2 +
√

3).

Recall that
√

3 = 2ω−ω3 and i = ω3 and consider the
subring Z[

√
3][i] ⊂ Z[ω]. Let θ ∈ R and ε > 0 be fixed.

Definition 20. Consider some u = (a + b
√

3) + ((c +

d
√

3)i ∈ Z[
√

3][i]. Complex number u/
√

2
k
, k ∈ Z is

called a feasible candidate at round k for (θ, ε) if

1. |u•|2 ≤ 2k;

2. |u|2 ≤ 2k and Re(ueiθ/2) ≥ (1− ε2)
√

2
k
.

Theorem 21. Let ε > 0 and θ ∈ R be fixed and let
k ≥ C + log√2(1/ε), where C = 1/2 + log√2(2 +

√
3).

Then there exists a set of at least n = b2
√

2/εc feasible
candidates at round k for (θ, ε). Moreover there is an
efficient algorithm for generating a sequence of random
candidates from this set.

Proof. First note that k ≥ C + log√2(1/ε) implies 2k ≥
√

2(2 +
√

3)2/ε2. Define δ =
√

2
k
ε2 and ∆ =

√
2
k+1

.

and observe that δ∆ ≥ (2 +
√

3)2 so that the criterion of
Lemma 19 is satisfied for (δ,∆).

For convenience we assume w.l.o.g. that −π/2 ≤ θ ≤
π/2.

Using the same geometric argument as in proof of The-
orem 22 in [3] we observe that condition (2) of Defi-
nition 20 defines a meniscus shape Rε on the complex
plane. If we parameterize the plane with x+ yi, x, y ∈ R
we observe that there is a vertical segment [ymin, ymax]

such that ymax − ymin ≥
√

2ε and such that for any
y′ ∈ [ymin, ymax] the intersection of the horizontal line
{x+ y′i} with the meniscus Rε is a segment of length at
least ε2/2.

Introduce n = b2
√

2/εc We now partition the segment
[ymin, ymax] at points yj = j/n (ymax − ymin) + ymin,
j = 0, . . . , n. By design yj+1 − yj > ε2/2.

Consider closed subintervals Ij = [yj , yj + ε2/2],
j = 0, . . . , n − 1 that are non-overlapping subinter-
vals of the [ymin, ymax]. First we find βj ∈ Z[

√
3]

such that βj ∈ [
√

2
k
yj ,
√

2
k
(yj + ε2/2)] and β•j ∈

[−
√

2
k−1

,
√

2
k−1

]. This can be done algorithmically be-

cause |[−
√

2
k−1

,
√

2
k−1

]|
√

2
k
ε2/2 ≥ (2 +

√
3)2.

Let Hj = Rε ∩ {y = βj/
√

2
k}. As we have noted the

length of Hj is at least ε2/2. Now find αj ∈ Z[
√

3] such

that αj ∈
√

2
k
Hj and α•j ∈ [−

√
2
k−1

,
√

2
k−1

]. This can
be done algorithmically for the same reason as above.

Clearly (αj+βji)/
√

2
k

is a feasible candidate at round
k for (θ, ε) and it is distinct from any other such candi-

date (αj′ + βj′i)/
√

2
k
, j 6= j′. By randomly selecting an

integer 0 ≤ j < n without replacement, we now can algo-
rithmically generate a unique random feasible candidate
as claimed.

We now discuss a conjecture regarding solvability of
a norm equation that is needed for expanding a feasible

candidate z/
√

2
L
, z ∈ Z[ω] into a unitary matrix of the

form (C1). Such expansion exists if and only if the norm
equation |y|2 = ξ = 2L − |z|2 can be solved for y ∈ Z[ω].
In Section B we have defined the notion of easily solvable
norm equation and also built up sufficient intuition the
the effect that easily solvable norm equations are not un-
common. They are more common than the prime num-
bers with the additional property p = 1 mod 12 among
the integers. It is well known that in a segment of the
form [B/2, B] , where B is sufficiently large, the density
of such prime numbers is in Ω(1/ ln(B)).

Further steps in the single-qubit circuit synthesis rely
on the following conjecture (of the type that is now be-
coming common in circuit synthesis):

Conjecture 22. For small enough values of ε > 0 and
L in Ω(log(1/ε)) it suffices to inspect O(ln(2L)) = O(L)

feasible candidates z/
√

2
L

for (θ, ε) in order to find at
least one such candidate for which the norm equation
|y|2 = 2L − |z|2 is easily solvable over Z[ω].

Rigorous proof of this conjecture may be a hard
number-theory problem. At this time however we have
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ample numeric evidence for the conjecture for a range of
ε down to 10−100.

Assuming this conjecture we can claim the following:

Theorem 23. Let θ be a fixed angle. There exists a
synthesis algorithm with probabilistically polynomial clas-
sical runtime that solves the following problem: For a
small enough value of ε > 0 find a unitary ancilla-
free Clifford+π/12 circuit with π/12-count smaller than

2 log2(1/ε) +K (where K = d5/2 + 2 log2(2 +
√

3)e) that
represents the axial rotation Λ(eiθ) to absolute precision
ε.

Proof. Given (θ, ε), Theorem 21 algorithmically defines a

set of feasible candidates z/
√

2
L

or cardinality Ω(1/ε)).
For all these candidates L ≤ 2 log2(1/ε) + K − 2 and is
in O(log(1/ε)). The outer loop of the desired algorithm
randomly samples feasible candidates from the above set
without replacement. By Conjecture 22, with arbitrarily
high probability the algorithm finds a feasible candidate
with an easily solvable norm equation after O(L) trials.

Let z/
√

2
L

be such candidate and y ∈ Z[ω] be a so-
lution of the norm equation |y|2 = 2L − |z|2. Then the
unitary

1
√

2
L

[
z −y∗
y z∗

]
, (E1)

is an ε-approximation of the rotation Λ(eiθ). Per Corol-
lary 18, this unitary can be exactly represented by a
Clifford+π/12 circuit with π/12-count at most L + 2,
and the theorem follows.

Appendix F: Runtime Performance Evaluation

The PQF synthesis algorithm incurs significant com-
piler runtime cost at Stages 1 and 2 of each compilation
round. In this section we report on some empirical find-
ings regarding upper bounds on this compiler runtime for
the various universal gate sets considered in the paper.
Recall that in case of synthesis over V basis the phase fac-
tor approximation is done by a simple continued fraction
algorithm and its cost happens to be trivial compared to
Stage 2 costs. Furthermore, in case of Clifford+T and
Clifford+π/12 bases, we have used a Mathematica im-
plementation of PSLQ algorithm published in [21].

The main Theorem of [19] states that if exact integer
relations between the subject real values exist and M
is the minimum norm of such an integer relation then
the PSLQ algorithm terminates after a number of inte-
gration bounded by O(log(M)). Both the Theorem and
the proof can be modified to apply to our customization
of the algorithm that looks for approximate integer re-
lations, to state that if Mε is the minimum size of an
integer vector a such that |a x| < ε then the modified al-
gorithm terminates after a number of iterations bounded

by O(log(Mε)). Since in the case of both T and π/12
bases, Mε = O(ε−1/4), the bound on the number of iter-
ations to termination is linear in log(1/ε).

The Bertok implementation of the PSLQ algorithm
([21]) appears to be asymptotically optimal in this sense.
In our experiments using 1000 random target angles,
the number of PSLQ iterations scaled on average like
1.16 log2(1/ε) for the Clifford+T basis and scaled on av-
erage like 1.04 log2(1/ε) for the Clifford+π/12 basis. The
standard deviation on the number of iterations computed
across the test set is very moderate for both bases scaling
roughly like log2(log2(1/ε)).

The practical cost of the Stage 1 of the compilation in
fact becomes quadratic in log(1/ε) for ε < 10−15 when
measured in common arithmetic operations that are na-
tive on a classical computer, because the PSLQ algorithm
requires variable precision floating point arithmetic with
precision tightening as O(ε). Once the required precision
exceeds the available machine precision, software simu-
lation of variable mantissa arithmetic becomes necessary
causing one-time drop in speed and subsequent quadratic
trend in compilation cost.

The runtime of each Stage 2 compilation pass is
roughly proportional to the number of candidate modifi-
cation factors evaluated until an easy solution to a suit-
able norm equation is found. Each candidate factor is
generated by an appropriate enumerator, then the cor-
responding norm equation is tested for easy solvability.
The cost of generating a candidate is trivial compared to
the cost of analyzing the norm equation. The latter cost
is in principle similar to the cost of testing an integer for
smoothness; however in our prototype implementation
we simply relied on the Mathematica FactorInteger
function, time-constrained to one quarter of a second.
The cost of analyzing the factors has been trivial com-
pared to the cost of the factorization.

The runtime at Stage 2 of our prototype compilation
round can be upper-bounded by k/4 seconds, where k is
the number of the candidate factors needed for termina-
tion. While k should be expected to scale likeO(log(1/ε))
with precision and does so scale in a sense, we have been
finding that the k and hence the runtime required at
Stage 2 is a strongly stochastic variable. While said run-
time has been practically acceptable in all cases, outlying
cases might require an order of magnitude more candi-
dates to terminate than the typical cases.

The details are as follows:
1. For the V basis the mean expected value of k scaled

like 1.2 + 0.36 log5(1/ε), while maximum number of can-
didates scaled like 8.8 + 4 log5(1/ε).

2. Somewhat surprisingly at compilation stage 2 over
either Clifford+T basis or Clifford+π/12 basis k shows
very little correlation with the target precision (insignif-
icant correlation coefficient) with mean expectation of k
around 2.2 for the Clifford+T basis and around 2.1 for
the Clifford+π/12 basis. The expected maximum k also
appears uncorrelated and stands at 23 for the Clifford+T
basis, 22 for the Clifford+π/12 basis.
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Thus, while k had been in single digits for the ma-
jority of (θ, ε) pairs it occasionally turned up quite high
in outlying cases. (Notwithstanding, even the outlying
cases were classically manageable and finished in seconds
due to throttling of integer factorization.) A conceptual
explanation of the apparent stochastic behavior remains
to be found. It might be related to the apparent fractal
structure of the set of solvable norm equations.

To summarize, we find that the runtime expectation

of all three flavors of the algorithm is linear in log(1/ε)
at coarse precisions, and becomes quadratic in log(1/ε)
at finer precisions. Runtime can occasionally spike for
outlying (θ, ε) pairs due to fluctuations in the required
number of modifier candidates, while still being in sec-
onds when run on a common desktop computer.

We believe the runtime performance can be further
optimized by reimplementing the algorithm in a fully-
compiled language.


