SMALL-FOOTPRINT HIGH-PERFORMANCE DEEP NEURAL NETWORK-BASED SPEECH
RECOGNITION USING SPLIT-VQ

Yongqgiang Wang, Jinyu Li and Yifan Gong

Microsoft Corporation, One Microsoft Way, Redmond, WA 98052
{erw, jinyli, ygong } @microsoft.com

ABSTRACT

Due to a large number of parameters in deep neural networks
(DNNgs), it is challenging to design a small-footprint DNN-based
speech recognition system while maintaining a high recognition
performance. Even with a singular value matrix decomposition
(SVD) method and scalar quantization, the DNN model is still too
large to be deployed on many mobile devices. Common practices
like reducing the number of hidden nodes often result in significant
accuracy loss. In this work, we propose to split each row vector of
weight matrices into sub-vectors, and quantize them into a set of
codewords using the split vector quantization (split-VQ) algorithm.
The codebook can be fine-tuned using back-propagation when an
aggressive quantization is performed. Experimental results demon-
strate that the proposed method can further reduce the model size by
75% to 80% and save 10% to 50% computation on top of an already
very compact SVD-DNN without a noticeable performance degra-
dation. This results in a DNN with a 3.2 MB footprint giving similar
recognition performance as what a 59.1 MB DNN can achieve.

Index Terms— DNN, on device speech recognition, model
compression, split-VQ

1. INTRODUCTION

Context-dependent deep-neural-network hidden Markov acoustic
models (CD-DNN-HMMs) have been demonstrated to outperform
context-dependent Gaussian-mixture-model HMMs (CD-GMM-
HMMs) on a variety of speech recognition tasks by many research
groups [1, 2, 3, 4, 5]. In the CD-DNN-HMM, a DNN is used to pre-
dict posterior probabilities of clustered triphone states, or senones,
given a window of input features. These posterior probabilities are
then converted to state-level conditional likelihoods, which can be
used in decoding. To ensure a high recognition performance, it is
essential to keep a deep and wide neural network structure: e.g., a
typical neural network for large vocabulary recognition tasks usu-
ally consists of more than 6000 senones and 5-7 hidden layers, each
with about 2000 nodes. This leads to more than 30 million model
parameters, which makes it challenging to design a small footprint
DNN-based acoustic model. Deploying DNN-based acoustic mod-
els on footprint-limited devices while maintaining the high recog-
nition accuracies thus becomes an interesting research problem and
has attracted many researchers’ attention, e.g., [6, 7, 8, 9].

Recent works on designing small-footprint DNN-based acoustic
models can be roughly classified into three approaches. The first one
focuses on node pruning. A straightforward method to perform node
pruning is to train a less wide neural network with a small number of
senones. However, this inevitably results in worse word error rates
(WERs). For example, it is reported in [6] that by reducing 2560
hidden nodes and 8000 senones in a full-size DNN to 512 hidden

nodes and 2000 senones in a small-size DNN, there is a 22% relative
WER increase; in [10], it is shown that simply reducing the number
of senones from 6000 to 1000 incurs a 13% relative WER increase.
To recover the accuracy loss due to the reduction of the number of
hidden nodes, [10] proposed to train the small-size DNN by mini-
mizing the Kullback-Leibler divergence between the full-size DNN
and the samll-size DNN on both transcribed and un-transcribed data.
Though this method is effective to improve the recognition accuracy,
there is still an accuracy gap between the small-size DNN and full-
size DNN. Inspired by early works on node pruning (e.g., [11]), a
pruning algorithm is proposed in [12], in which hidden nodes in a
well-trained full-size DNN are pruned according to some node im-
portance function. After node pruning, the neural networks are re-
trained to recover the accuracy loss. It is reported in [12] that this
method is able to reduce 2/3 model size without noticeable accuracy
loss.

The second approach focuses on weight matrix pruning or re-
shaping. Instead of reducing the number of nodes, this approach
aims to exploit the sparseness of weight matrices. For example, in
[13] weight coefficients that are less than some thresholds are pruned
(set as 0), which results in sparse weight matrices. It is reported that
by retraining the sparse weight matrices, up to 85% of the model pa-
rameters can be pruned without scarifying recognition performance.
In [14], it is proposed to prune the weight coefficients based on the
second-order information. Another method in this category exploits
the sparseness of singular values of the weight matrices. In [15], it
is shown that most of the singular values of the weight matrix for
the top layer are near zero, and thus can be pruned. This results in
a low-rank matrix representation, which can significantly reduce the
number of parameters. This method was further extended in [16]
to reshape all the weight matrices using singular value decomposi-
tion (SVD). After re-training the reshaped neutral networks, the high
recognition performance can be retained while the model footprint
and computational complexity are dramatically reduced.

The third approach uses the quantization technique to reduce
the footprint. Most recent works in this category focuses on scalar
quantization. For example, in [6, 17], each weight coefficient is
quantized into an 8-bit representation. In [8], a contraction map-
ping is used to shrink the dynamic range of weight coefficients to
a predefined range. The mapped weight coefficients are then quan-
tized. It is reported that a 4-bit quantization incurs 2% absolute (or
10% relative) WER increase, compared with the baseline system [8].
Though the scalar quantization technique can be useful to reduce the
model size, the vector quantization technique is usually more pow-
erful. The split-VQ technique [18] has been successfully applied to
many problems in speech processing and handwriting recognition.
This technique was further extended to the subspace distribution
clustering method in [19, 20, 21], which is widely used to reduce
the size of GMM-HMM acoustic models. Inspired by the past suc-

cess of the split-VQ technique, we propose to apply it to quantize
similar sub-vectors in the weight matrices of neural network into a
set of codewords. The codewords can be fine-tuned to recover the
accuracy loss when an aggressive quantization is performed. Exper-
imental results demonstrate that this method can further reduce the
model size by 75% to 80% and save 10% to 50% computation on top
of an already very compact SVD-DNN with negligible performance
degradation.

The next section briefly reviews the DNN model and the SVD-
based method to reduce the model parameters. The split-VQ algo-
rithm is introduced in section 3 to compress the weight matrices in
DNN. Experimental results are presented in section 4 with some dis-
ucssions in section 5. The paper is concluded in section 6.

2. DEEP NEURAL NETWORK

A deep neural network is a feed-forward perception with many hid-
den layers. Given an input feature vector x, a L-layer network pre-

dicts posterior distributions of senones, p = [p1,...,ps| by the
following feed-forward process:
29 =, M
2D —gAWz0 10y wi=0,...,L-1 ()
(DT (L)
L — _exp(as (L')ZT) Vs=1,....,8 (3
> explay’ zH)

where p, is the posterior probability of the s-th senone given x; S
is the number of senones; z() is input of the I-th layer; a7 is the
s-th row vector of the matrix A!); o () is an element-wise sigmoid
function. The predicted posterior probability, ps, can be converted

to scaled conditional likelihood of senone s given @ using
qs gs
where g, is the prior probability of the s-th senone.
The weight matrices A®’s and the bias vectors b’s of the
DNN can be estimated by minimizing the following cross entropy-
based loss function:

T
LX) == logp(si|a:) ®)
t=1

p(zls

where Xy = (1,...,@7) is a set of training feature vectors; s; is
the senone label of a;. The optimization is usually done by back-
propagation using stochastic gradient descent. For example, given a
mini-batch of training feature vectors, X™P, and the corresponding
labels, the weight matrix A is updated using
! 1 OL(X™P)

A<><—A“+sW 6)

in which ¢ is a learning rate.

2.1. SVD-based footprint reduction

The SVD-based decomposition [16] is a widely used method to re-
duce the number of parameters in DNN. Instead of using a N-by-M
matrix A" to connect the I-th and (I + 1)-th layers, a product of
two small matrices, Ag) e RV*® and Ag) € RF*M i used to
approximate A® je.,

AV~ ADAY ™
where R is the number of retained singular values. The number of el-
ements in the original A is N x M, while the number of elements
in the two small matrices is (N + M)R. Since R < min(N, M),
this can significantly reduce the number of model parameters. After

the SVD decomposition, it is also possible to use back-propagation

to fine-tune Ag) and A&y to recover the accuracy loss when a very
small R is used.

3. SPLIT-VQ BASED LOW-FOOTPRINT DNN

Usually, the SVD method can reduce the footprint by about 75%
without recognition performance degradation[16]. For a typical
large vocabulary DNN which may have more than 30 million pa-
rameters, the SVD-DNN is still to large to be deployed on many
mobile devices. The majority of the footprint is still spent on repre-
senting the matrices. In this section, we propose to use the split-VQ
method to compress the matrices.
_ Considering a N-by-R matrix A, we want to approximate it by
A, such that the following error function is minimized:
e=|lA—Alx @®)
where ||A||r is the Forbenius norm of matrix A. Due to the use
sigmoid function in neural network, the value of each input node of
a hidden layer is restricted in the [0, 1] range. Therefore, there are
many sub-vectors in the weight matrix following similar patterns.
We observed that this is also true for the SVD-decomposed matrices.
Compared with quantizing each element in the weight matrix indi-
vidually, vector quantization of these sub-vectors will be more effec-
tive. For this purpose, we split each row vector of the matrix into J
d-dimension streams, i.e.,

T T T
aj g ai 2 aij g
asz as o as g
A= . . .) 9)
T T T
ayi Qanp2 ay. .y

in which az’ j € R is the sub-vector which can be located as the j-
th stream in the m-th row vector and Jd = R. Each of these N x J
sub-vectors is approximated by one of K centroids, or codewords.
Here K is the size of codebook, which controls the trade-off between
approximation errors and model footprint. Given this structure of A,
the cost function becomes:

N J
e=> Y llan; — mimpl* (10)
n=1j=1
in which k(n,j) € {1,..., K} is the index of the nearest code-
word for the sub-vector a,;j, my is the k-th codeword. The opti-
mal codebook can be found using the LBG algorithm [22], which
is summarized in algorithm 1. Using this sub-vector quantization
scheme, we only need d X K numbers to represent the codebook
and log, K X % bits to represent the indices. Compared with us-
ing N X R numbers to represent the matrix, the proposed split-VQ
significantly reduces the model size. It is worthwhile to point out
that different from the method in [19], all the streams are sharing the
same codebook. This is because we observe that similar sub-vector
patterns can happen anywhere in the weight matrix; therefore using
the same codebook across streams will be more effective.

Note that it is possible to split the column vectors as well. How-
ever, splitting the row vectors has an advantage to save the com-
putation. For example, given an input z = [zI7 RN z}}T € RE,
Az e RV is computed by

Z}]:1 m-llc—(l,j) =i
Az = : (11

J T
Zj:l My (N,j) " %i

Algorithm 1: Find optimal codebook using LBG algorithm.

Input: a set of sub-vectors {a,; } and the desired codebook
size K;

Output: m, ..., mg and the address book {k(n, j)}.
Procedure:

step 1. Let ¢ = 2; initialise two codewords 1m; and m2 by
m1 =mo+ V3, Mm2=mo— V3o
where my is the mean vectors of all the sub-vectors ;
320 is the corresponding diagonal covariance matrix;
the square root operation is performed element-wisely;

step 2. For each a, j, find its nearest codeword by

| 2

i
k(n, j) = argmin [mi — an,;

step 3. Update each codeword by
my = 72("’”61“ an.j
Z(n,j)ek 1

Here, (n, j) € k means that my, is the nearest codeword
of an,j;

step 4. Repeat step 2 to step 3 multiple times ;

step 5. If ¢ < K then split the codeword m, by
Moky1 = me — VEp, Mox = my + V3
and ¢ < 2¢ ; goto step 2.
Here, m, and 3, are the mean vector and diagonal
covariance matrix of the sub-vectors associated
with the k-th codewords respectively .

For a stream j, if k(n, j) = k(n', j), the inner product of 14, ;)
and z; can be cached and re-used when computing the n’-th element
of Az. This will save an considerable amount of computation when
the codebook size is relatively small.

The error function in Eq. (8) is not directly related with the word
accuracy of the compressed DNN. When an aggressive quantization
is used, a significant WER increase will be observed. In this case, the
codebook can be fine-tuned to minimize the cross entropy-based loss
function in Eq. (6). The gradient of the loss function with respect to
the codeword m, can be obtained using the chain rule:

OL(X™) OL(X™) Ovec(A)
"~ Ovec(A)

oLx™
-y (X™)

oan
(n,j)€k ™d

omy, omy

12)

where vec is an operation to vectorize the matrix A; (n,j) € k
means My, is an,;’s nearest codeword. It is observed that code-
words may have different numbers of sub-vectors associated with,
which may result in significantly differences in the magnitude of the
gradients. This can be harmful to the convergence of stochastic gra-
dient update. To compensate this effect, an adaptive learning rate is
used in this work: a codeword m, is updated in a mini-batch using

€ DL(X™P)
M 1 Z Do (13)
(n,j)€k ?

where Ny, is the number of sub-vectors associated with 1.

4. EXPERIMENTS

The proposed method is evaluated using a Microsoft internal Win-
dows Phone short message dictation task. A 29-dimension log-filter
bank feature with the first and second order derivatives was used.
This feature vector was appended with previous and next 5 frames to
form a 11-frame input window. As such, the input feature dimension
is 957. A decision-tree with 5976 senones was built using a CD-
GMM-HMM system. The DNN was then built using these 5976
senones as the targets. A total of 620 hours of US-English data,
which was extracted from Windows Phone online data, was used as
the training set. Evaluation was performed to dictate about 2300
utterances of short messages, about 3 hours’ audio data. All the
floating-point numbers were scalar quantized to 16-bit. No other
quantization operation was performed on the bias vectors and the
senone prior probabilities.

In the first set of experiments, we first built a full-size DNN with
5 hidden layers. Each of the 5 hidden layers has 2048 hidden nodes.
This full-size DNN thus has about 31 million parameters, which re-
quires a 59.1 MB footprint. The SVD method was performed to
reduce the footprint of the full-size¢ DNN. An aggressive singular
value pruning was performed: only 40% energy of the matrices '
are retained. The matrix for the input layer was not decomposed.
The number of retained singular values of the four 2048-by-2048
matrices are 232, 224, 192 and 208 respectively, while the 2048-by-
5976 matrix in the top layer was replaced by a 2048-by-344 matrix
and a 344-by-5976 matrix. The accuracy loss due to the aggressive
singular value pruning can be recovered after retraining the decom-
posed small matrices. Table 1 summarizes the recognition perfor-
mance (in WER%) and the footprint of the full-size DNN and the
SVD-DNN. Though the SVD-DNN reduces the footprint by 73%,
its 15.7 MB footprint is still too large to be used on many mobile
devices. The following experiments thus focus on reducing the foot-
print of this SVD-DNN.

[Models [[WER (%) | footprint (MB) |
full-size 15.7 59.1
SVD 15.6 15.7

Table 1. Recognition WER (in %) of a full-size DNN and a SVD-
DNN .

Since the top matrix (344-by-5976) is the most expensive one
to store after SVD reshaping, in the second set of experiments, we
focus on compressing this matrix. All the other matrices were kept
intact in the second set of experiments. The row vectors of the top
matrix were divided into 2,4 or 8-dimension streams, and various
sizes of codebooks were obtained using the LBG algorithm. Results
are summarized in Table 2. It is observed that when the row vectors
are divided into 2-dimension sub-vectors, these sub-vectors can
be replaced by 512 codewords without accuracy loss. Gradually
reducing the number of codewords to 256 and 128 incurs 2.5% and
7.6% relative WER increases respectively, with the quantization
rate ranges from 25% to 21.9%. The vector quantization becomes
more effective when the dimension of sub-vectors is increased. For
example, when 4-dimension sub-vectors are used, a 16.5% WER
(5.7% relatively worse) can be achieved while the top matrix is com-
pressed to 14.2% to 15.8% of its original size; using §-dimension
sub-vectors can reduce the size of the top matrix to 9.4% to 11.0%
at an expense of 8-10% relative WER increase.

The energy of a matrix is defined as the sum of squared singular values
of the matrix.

To bridge the accuracy gap between the compressed DNNs and
the baseline SVD-DNN, we further fine-tuned the 8-dimension code-
books for the top matrix to minimize the cross entropy between
targets and the posterior distribution predicted by the compressed
DNNs. Since our compressed DNNs are only slightly worse than
the SVD-DNN, we used a large mini-batch size (1024) with a small
learning rate (0.002), and only 1 sweep of the training data was per-
formed. After this quick “fine-tuning”, we were able to achieve
the similar recognition accuracy as the baseline SVD-DNN while
reducing the size of the top matrix by 89% to 90.6%. Fine-tuning 2-
dimension and 4-dimension codebook also gave us the same recog-
nition performance as the baseline system.

quan. setup WER (%) quan. rate (%)
dim [booksize || quan. +finetune

128 16.8 - 21.9

2 256 16.0 - 25.0
512 15.6 - 28.2

4 512 16.5 - 14.2
1024 16.5 - 15.8

3 20438 17.2 15.9 9.4
4096 16.8 15.5 11.0

Table 2. WERs and quantization rates when the top matrix (344-by-
5976) was compressed using split-VQ. Quantization rate is defined
as the ratio of the size of the quantized top matrix to the original size
of the top matrix.

Given the promising results in Table 2, we sought to compress
all the layers so that a small-size DNN can be obtained. Taking
the fine-tuned DNN presented in line 7, Table 2 (WER 15.5%) as
the seed model, we quantized the matrix for the input layers using
4096 3-dimension codewords. This conservative setup was designed
to avoid loss of useful acoustic information due to the input matrix
compression. No accuracy loss was observed when only the input
matrix was compressed using this setup. We then simultaneously
quantize all the remaining matrices using different setups in Table 3.
In this initial investigation, each matrix has its own codebook; the
quantization configuration has not been fully optimized to minimize
the quantization rate, which is defined as the ratio of the size of the
compressed DNNs to the size of SVD-DNN. Results are summarized
in Table 3. Since the quantization errors tend to accumulate through
the bottom to the top, a relatively large quantization rate is needed
to keep the increases of WERs acceptable. It is shown that we can
reduce the footprint by 75% to 80% while only incurs 3% to 8%
WER increases before fine-tuning. With a quantization rate as low as
17.2%, the WER jumped from 15.6% to 66.7%. However, after fine-
tuning all the codebooks, the WER was reduced to 16.1%, which is
only 3% relatively worse than the SVD-DNN. Using the codebook
fine-tuning, we are able to achieve similar recognition accuracies as
the SVD-DNN or the full-size DNN using only 25% to 20% foot-
print of the SVD-DNN. The footprints of compressed DNNs range
from 3.9 MB to 2.7 MB, while the full-size DNN consumes a 59.1
MB footprint. Note that all the DNNs in our experiments were 16-
bit quantized. Given the samll footprints, the split-VQ compressed
DNNs are relatively easy to be deployed on many mobile devices.

As discussed in section 3, quantizing sub-vectors of row vectors
has the potential to save computations. We also calculated how many
inner vector products can be cached and re-used. With the hidden
layer quantization setups in Table 3, it is found that about 10% to
50% of the computations can be saved. This indicates that there is a

hidden layers quan. WER (%) footprint (MB)

dim [booksize quan. +finetune | /quan. rate (%)
2 256 16.3 15.8 3.4 (21.6%)
2 1024 16.0 15.7 3.9 (24.8%)
4 4096 16.9 15.8 3.2(20.3%)
8 8192 66.7 16.1 2.7 (17.2%)

Table 3. Footprints (in MB) and WERs (in %) of DNN compression
with various hidden layer quantization setups. The top matrix was
quantized using 4096 8-dimension codewords, while the matrix for
the input layer was quantized using 4096 3-dimension codewords.
Quantization rate is defined as the ratio of the size of the compressed
DNN:ss to the size of SVD-DNN.

good chance to speed up the neural network computation as well.

5. DISCUSSIONS

Though the initial experimental results are promising, there are still
some limitations in our proposed method. For example, when a top
layer is aggressively quantized and the network is subsequently fine-
tuned, it is likely that the optimal weight matrices of the bottom
layers will change significantly. Simultaneously quantizing many
hidden layers and then fine-tuning all the codebooks is clearly sub-
optimal. An alternative way is to quantize and fine-tune one layer
at a time. Another limitation of our method is the use of Forbe-
nius norm as the error function. A better way is to consider the
distribution of each layer’s input and minimize the expected errors
of the output. Though the proposed quantized matrix structure can
potentially save a portion of computation, the nearby weight coeffi-
cients are no longer stored in an adjacent order. This may reduce the
cache hit rate and thus slow down the computation. An efficient run-
time implementation on mobile devices is needed to realize poten-
tial to speed up the neural network computation under the proposed
weight matrix quantization scheme.

On the other hand, our proposed method is complementary to
many existing techniques. For example, we have already combined
it with the SVD method in the experiments; it is also straightforward
to combine our method with the node pruning method to achieve
even smaller footprints. Tying similar sub-vectors across the weight
matrix can potentially improve the network generalization; therefore
larger weight matrices can be used to further improve the recognition
accuracy, which is an interesting direction that we will explore in the
future work.

6. SUMMARY

In this paper, we have described an approach to designing small-
footprint, high recognition performance DNN-based speech recog-
nition systems using the split-VQ technique. In this approach, the
weight matrices in DNNs are divided into sub-vectors, which are
quantized into a set of codewords. Codewords can be fine-tuned us-
ing back-propagation to recover the accuracy loss due to aggressive
quantizations. Experimental results demonstrates that our proposed
method can reduce the footprint by 75% to 80% on top of an already
very compact SVD-DNN. Combined with the SVD method, we are
able to obtain a 3.2 MB DNN with similar recognition performance
as what a 59.1 MB full-size DNN can achieve.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

(13]

[14]

[15]

[16]

(17]

7. REFERENCES

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-R. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, N. Nguyen, T. Sainath, and
B. Kingsbury, “Deep neural networks for acoustic modeling in
speech recognition: the shared views of four research groups,”
IEEE Signal Processing Magazine, 2012.

N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “Appli-
cation of pretrained deep neural networks to large vocabulary
speech recognition,” in Proceedings of Interspeech, 2012.

F. Seide, G. Li, and D. Yu, “Conversational speech transcrip-
tion using context-dependent deep neural networks,” in Pro-
ceedings of Interspeech, 2011, pp. 437-440.

G.E.Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent
pre-trained deep neural networks for large-vocabulary speech
recognition,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 20, no. 1, pp. 30-42, 2012.

L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer,
G. Zweig, X. He, J. Williams, et al., “Recent advances in deep
learning for speech research at Microsoft,” in Proceedings of
ICASSP, 2013, pp. 8604-8608.

X. Lei, A. Senior, A. Gruenstein, and J. Sorensen, “Accurate
and compact large vocabulary speech recognition on mobile
devices,” in Proceedings of Interspeech, 2013, pp. 662—665.

G. Chen, C. Parada, and G. Heiglod, “Small-footprint key-
word spotting using deep neural networks,” in Proceedings of
ICASSP, 2014.

R. Takeda, N. Kanda, and N. Nukaga, “Boundary contraction
training for acoustic models based on discrete deep neural net-
works,” in Proceedings of Interspeech, 2014.

E. Variani, X. Lei, E. McDermott, I. Moreno, and J. Gonzalez-
Dominguez, “Deep neural networks for small footprint text-
dependent speaker verification,” in Proceedings of ICASSP,
2014, pp. 4052-4056.

J. Li, R. Zhao, J.-T. Huang, and Y. Gong, “Learning small-size
DNN with output-distribution-based criteria,” in Proceedings
of Interspeech, 2014.

R. Reed, “Pruning algorithms: a survey,” IEEE Transactions
on Neural Networks, vol. 4, no. 5, pp. 740-747, 1993.

T. He, Y. Fan, Y. Qian, T. Tan, and K. Yu, “Reshaping deep
neural network for fast decoding by node-pruning,” in Pro-
ceedings of ICASSP, 2014, pp. 245-249.

D. Yu, F. Seide, G. Li, and L. Deng, “Exploiting sparseness in
deep neural networks for large vocabulary speech recognition,”
in Proceedings of ICASSP, 2012, pp. 4409—4412.

C. Liu, Z. Zhang, and D. Wang, “Pruning deep neural net-
works by optimal brain damage,” in Proceedings of Inter-
speech, 2014.

T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and
B. Ramabhadran, “Low-rank matrix factorization for deep neu-
ral network training with high-dimensional output targets,” in
Proceedings of ICASSP, 2013, pp. 6655-6659.

J. Xue, J. Li, and Y. Gong, “Restructuring of deep neural net-
work acoustic models with singular value decomposition,” in
Proceedings of Interspeech, 2013, pp. 2365-2369.

V. Vanhoucke, A. Senior, and M. Mao, “Improving the speed
of neural networks on CPUs,” in Proc. Deep Learning and
Unsupervised Feature Learning, NIPS Workshop, 2011.

[18]

[19]

(20]

(21]

[22]

A. Gersho and R. M. Gray,
compression, Springer, 1992.

Vector quantization and signal

E. Bocchieri and B.-W. Mak, “Subspace distribution cluster-
ing hidden Markov model,” IEEE Transactions on Speech and
Audio Processing, vol. 9, no. 3, pp. 264-275, 2001.

B.-W. Mak and E. Bocchieri, “Direct training of subspace
distribution clustering hidden Markov model,” IEEE Transac-
tions on Speech and Audio Processing, vol. 9, no. 4, pp. 378—
387, 2001.

T. Long and L. Jin, “Building compact MQDF classifier for
large character set recognition by subspace distribution shar-
ing,” Pattern Recognition, vol. 41, no. 9, pp. 29162925, 2008.

Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector
quantizer design,” IEEE Transactions on Communication, vol.
28, no. 1, pp. 84-95, 1980.

