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ABSTRACT

This paper addresses the problem of designing wearable de-
vices suited for continuous mobile vision. Given power bud-
gets, it is infeasible either to stream all video off board for
analysis, or to perform all analysis on board. A compro-
mise is to off-load only “interesting” frames for further anal-
ysis. We identify windows containing people and parts of
their bodies as being interesting. We show that using a care-
ful combination of emerging thermal sensors and ultra-low-
power coarse stereo enabled by modern low-power FPGAs,
it is possible to detect the presence of these “key” body parts
at well within wearable power budgets. We combine our
(hardware) binary presence detector with a mobile CPU run-
ning a classifier to identify which body part is detected. Us-
ing this combination, we show how to detect faces, hands (of
the video wearer) and bodies of those in the field of view at
under 30mW; running on just the phone draws over 1W.

1. INTRODUCTION

We consider the design of a continuous mobile vision
system based on a wearable device such as Google Glass.
The potential benefits of a such a system have been
discussed extensively recently [14, 9, 4, 29, 19]. In a
nutshell, the variety and detail provided by visual anal-
ysis of the wearer’s surroundings enables a much larger
set of applications than, for instance, those enabled by
inertial sensors in popular step-counter-style wearables
available today. Given recent progress in visual recogni-
tion algorithms, a primary bottleneck to realizing such
devices is power consumption. Vision algorithms are
computationally demanding, and video streams have
heavyweight communications requirements. Reconcil-
ing the high resulting demands on energy with the mod-
est battery capacity of wearable devices is challenging.
In this paper, we examine techniques for attacking both
computational and communication bottlenecks for an
important subset of visual recognition tasks (those in-
volving people and their parts) by re-designing the tra-
ditional camera pipeline.

Figure 1 illustrates the setting we address. A wire-
less wearable camera, positioned on the wearer’s lapel
(or perhaps head) shares the wearer’s field of view. The

Figure 1: Our wearable camera usage (above) and the
key body parts we target (below): the wearer’s hands,
their conversational partners’ faces and the bodies of
those around them.

camera continually observes its wearer’s activities and
their surroundings. Often, of greatest interest are ques-
tions about what the user, their social partners and
those around them are doing. Much work over the past
decade [30] has shown that the objects manipulated by
a person and the nature of manipulation are a key to
understanding the tasks they are performing. On the
other hand, analyzing the faces of social partners with
a view to identifying them, recognizing their affect and
tracking their facial cues are key to decoding social in-
teraction [37, 28]. Finally, a large body of work [18; 33]
exists on tracking whole-body kinematics as a measure
of coarse human activity. Accordingly, we designate the
wearer’s hands, their conversation partners’ faces and
the bodies of those around them as “key” body parts.
Sensing and compressing the large, high-resolution
high-speed streams of image frames required for ana-
lyzing entities of interest in the wearable’s field of view
requires handling a large volume of data. The imager,
codec and transmission components required to handle
this data exceed the power budget of a typical wearable.
Recent pure-offloading-based architectures suited to the
relatively large batteries of phones are therefore not ade-
quate for wearables. One solution is to detect and trans-
mit, for further analysis, a small subset of “interesting”
windows from the video stream. Traditionally, detec-
tion requires a dense windowed scan of the entire frame
at several resolutions: a VGA frame can easily contain



tens of millions of windows to be checked. In some
cases (e.g., face detection), the best algorithms are ex-
tremely efficient, executing a few machine instructions
on most windows [6]. In others (e.g., whole-body detec-
tion), processing most windows may require hundreds of
thousands of instructions. In either case, software im-
plementations of detection algorithms exceed wearable
power budgets. Hardware implementations promise ad-
equate efficiency but are available only for front-on face
detection; efficient but general detection circuits are still
well in the future.

In this paper, we present the design, implementa-
tion and evaluation of a system for detecting key body
parts at wearable power budgets. Intuitively, we ex-
ploit the fact that the temperature of human skin is of-
ten distinct from the background (our system degrades
gracefully if this assumption is violated). Further, the
hands of the camera wearer, the faces of their conver-
sation partners and the bodies of people around them
tend to be at distinct distances and positions relative
to the camera. We show how to exploit low-power, low-
resolution imaging channels complementary to the tra-
ditional RGB video pipeline to this end. In particu-
lar, we show that a carefully designed combination of
spatially coarse thermal imaging and focused, coarse-
resolution depth imaging optimized for ultra-low-power
processing on an FPGA can dramatically reduce both
the number of high-resolution RGB frames to be read
from the imager, and the number of windows to be
checked in each frame. The end result is the first fully
realized detection system we know of that, in common
use cases of wearable cameras, can detect over 90% of
key body parts using tens of mW of power.

2. MOTIVATION AND BACKGROUND

Figure 2 illustrates the structure and key performance
characteristics of a wearable camera pipeline comprised
of state-of-the art components. A wearable camera must
have relatively wide field of view to cover the “front”
of its wearers. When combined with the desire to re-
solve, e.g., faces at 5bm, an imager with 4k pixels per
side is quite plausible. For such an imager running at
15 frames/second or higher, today’s imager, compres-
sion chips and wireless transmitters would together eas-
ily require several hundred mW to off-load compressed
video off-camera for analysis. However, assuming the
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Figure 2: Wearable camera pipeline.
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Figure 3: Power consumed for detecting key body parts
on a Galaxy Nexus phone.
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device needs to run continuously for 10 hours (a “whole
day” for its wearers), size and weight constraints on the
battery yield a power budget well under 100mW. This
“full ofload” approach not only breaks the power budget
of the wearable device, it places the load of detecting
objects of interest on the devices offloaded to, typically
the wearer’s mobile phone; alternately, the phone could
further offload the video to the cloud, requiring its radio
to stay always on, an infeasible approach given trends
in wide-area wireless communication power.

We propose to push the detection of (some) interest-
ing entities into the camera pipeline. Given that most
pixels detected by a wearable are uninteresting (they
contain no faces, hands, or bodies being monitored),
this clearly has the potential to reduce significantly both
the amount of data streamed and the amount of data to
be analyzed. Doing detection on-camera poses several
challenges, which we investigate in this section.

2.1 Detection in Software and Its Limits

Perhaps the simplest approach to incorporating detec-
tors on the camera is to use a microcontroller to run
detection algorithms in the camera. To evaluate this ap-
proach, we measured the overhead of wearer-hand, face
and person detection on a Galaxy Nexus phone with a
750x480 imager running the corresponding OpenCV-
based detectors [26]. We target detection at 1Hz. We
use data from 14 people moving between 20 and 2 feet
from the phone, or moving the hand from 6 inches to 2
feet as a wearer’s hand would.

The pink and black lines of Figure 3a show the cumu-
lative distribution of average power consumption while
processing a single frame, for face detection, over all
frames of data collected; sub-figures (b) and (c) examine



wearer-hand and body detection. The pink line repre-
sents power consumption when no body part was in the
frame: the detector must still examine and reject ever
sub-window within the frame. The black “baseline” rep-
resents the case when the relevant body part was within
the frame. Power draw is somewhat higher, since the
detector tends to expend more cycles on windows when
body parts are found. Note that each detector uses over
1W of power for most frames: naively running detectors
in software is prohibitive.

The dotted orange line explores the hypothetical best
case where an “oracle” is able to tell the detector where
in each frame to look. To generate this line, we mark
rectangles around body parts in our data by hand. We
run detectors only within these rectangles. As the or-
ange lines show, if body parts tend to occupy relatively
small fractions of the frame, oracles can reduce net
power consumption by orders of magnitude. Faces of
conversation partners only take up a relatively small
fraction of the frame even when the partners are close
by, so that oracles yield high gains (Figure(a)), gaining
over 125x in efficiency at the 90th percentile. Wearers’
hands, on the other hand, can dominate much of the
field of view, thus not gaining much (b). Peoples’ bod-
ies dominate the frame even when they are only a few
feet away, so serious gains in body detection efficiency
are limited to a fraction of the frames (c) (e.g., the 5th
percentile).

A fundamental reason that window-based detectors
are power hungry is that they search at several (rou-
tinely, a dozen or more) scales within their search win-
dow. Thus, if the above oracle could provide the scale
at which to search, search could be faster. For instance,
if the oracle knew the distance to a pixel, and given the
typical size of a face, it could provide the detector with
a very tight guess of the window sizes to consider. The
blue line in Figure 3 shows the effect of of knowing scale
during detection. To obtain this curve, we re-scaled ev-
ery oracle window to the smallest window-size explored
by the detection algorithm and ran detection on this
window. The impact is dramatic: we now detect all
three key parts at roughly 1mW at the 90th percentile.
The gains are not at the expense of accuracy: detection
after re-scaling found every previously detected face.

To summarize, if an “oracle” system were able to in-
dicate roughly where a software-based detector should
look, and at what scale, even software-based detectors
suffice for on-camera detection at low power. Our work
can be considered an effort to realize such an oracle, at
least for the case of key body parts, and at substantially
under the 70mW we target for the total power budget
for the wearable device. To cut to the chase, Figure 18
summarizes our success in this direction.

2.2 Far Infrared (FIR) Thermal Imaging
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Figure 4: Temperature of key body parts measured with
a FIR imager.

Far infrared (FIR), or thermal, imagers [7] report tem-
perature, rather than traditional light intensity, at every
pixel in the field of view. Figure 4d shows FIR views
at multiple resolutions for the hand-holding-a-cup from
Figure 1. For instance, given that human facial skin
preserves a surface temperature of 30-35C, and ambient
temperatures are often substantial outside this range
(e.g., temperature controlled buildings are kept in the
20-23C range worldwide), thermal imaging is a promis-
ing candidate for finding people in the field of view.
Traditionally, FIR imagers have cost hundreds to thou-
sands of dollars, consumed substantial power, and been
optimized to high-cost high-resolutin settings. However,
the past few years have seen the advent of MEMS-
thermopile-based technologies developed for the auto-
mobile industry, yielding 25mW, low-resolution parts at
the 50-dollar price point. We examine this technology
from the point of view of on-camera detection below.

We now describe some simple experiments aimed at
understanding the intricacies of detecting key body parts
with FIR. Figure 4 shows how FIR-measured tempera-
tures of key body parts varies with distance from imager
and with possibly relevant auxiliary properties such as
clothing and skin color. We generated these numbers by
having three people with different skin colors (Northern
European, East Asian and South Asian) pose at vary-
ing distances from the imager (for face and body data),
and move their hands at varying distances in front of
the imager to simulate a camera wearer (for hand data).
In each case, we report the temperature of the hottest
pixel overlapping the body part.

Two related points are most relevant to our setting.
First, when parts are close to the imager, bare skin tem-



peratures are close to 30C; temperatures are sometimes
higher, but very rarely lower in steady state. Cloth-
ing results in a significant, but not catastrophic drop in
reported temperature. In temperature controlled build-
ings, commonly set to 20-23C, key parts are robustly
separated by temperature thresholding. At higher tem-
peratures, bare skin remains separable perhaps up to
27C, clothed body parts only up to 24C if a jacket is
worn. Skin color exhibits notable trends, but none with
direct relevance to thresholdability.

Second, as distance from imager increases, the ob-
served temperature of faces drop rapidly, but hands and
bodies remain relatively flat. The explanation lies in
the fact that each FIR pixel has a 15° field of view, and
therefore subtends increasingly larger areas at increas-
ing distances from the imager. The reported tempera-
ture is the average of body part and background tem-
perature, weighted by the fraction of the field of view
subtended by the part. For instance at 20ft, each pixel
aggregates temperature measurements from a 1.8 x 1.8ft
square: even if a face of temperature t; occupied a
1x 1ft square, the reported temperature would be §tb +

t4 , where t; is background temperature. Note, for in-
stance how as resolution decreases (i.e. the angle sub-
tended by pixels increases), the pixels on the edges oof
the hand in Figure 4d become cooler

Finally, since wearers’ hands are close, they almost al-
ways completely subtend the field of view of at least one
pixel. Similarly, since torsos are large, unless they are
relatively far away, they too usually include such a “sub-
tended” pixel. Since such a pixel is not “weighted down”
by the background temperature, its reported tempera-
ture will not change with distance and will tend to be
maximal among its neighbors. Figure 4, which shows
the variation of mazimum temperature of pixels in each
body part will thus show a relatively flat line.

One implication of this averaging effect over the field
of view is that FIR imagers with narrower per-pixel
field of view will be more robust for temperature based
thresholding of relatively distant objects.

2.3 Stereo-Based Depth Imaging

Once a potential object of interest is identified by the
FIR imager, we use a depth sensor to determine if that
object is located at a distance of interest. While dis-
tance sensors such as proximity sensors and laser range
finders can measure distance along a particular direc-
tion object, we need a sensor that can produce a depth
map such that we can determine the depth of any given
object in the scene.

Two most widely used vision-based depth map esti-
mation techniques are stereo vision and auto focus. Of
these two, auto focus requires a image sensor with a
dynamic focusing mechanism as well as a large image
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projected coordinates of an object on the left and right
image planes.
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Figure 6: Searching the corresponding object Y5 on the
right image using correlation coefficients.

aperture. Because of these limitations, we use stereo
vision-based depth sensing.

Depth estimation from stereo vision is based on the
relative shifting of the image captured on two image sen-
sors that are placed some distance D apart. As shown
in Figure 5, if a point source located at a distance L
from the image sensors are projected at coordinates Y;
and Yé of the two image sensors, then L can calculated
from: L = }f) xL_ Where L' is the height of the image

sensor lens from the plain containing the image sensors.
The relative shift, §Y =Y, — Ya, is called the disparity
of the image of the point source.

Conventional stereo vision based depth estimation
techniques first compute the disparity map of the whole
image by searching for corresponding pixels on the two
images captured by the image sensors (Figure 6). A
widely cited technique in computer vision literature for
finding corresponding pixels computes cross correlation
of the blocks of pixels from the two image sensors [24].

Figure 7 shows the power consumption of comput-
ing the disparity map of 140 human face images on an
ARM Cortex M-4 microcontroller (STM32F417IGH6)
at a frequency of 1 image/second. While the exact
power consumption varies with the size of the face, the
averaged power consumed is 78mW, which much higher
than our target power budget for continuous sensing.
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Figure 7: Power consumption of searching Y> by com-
puting correlation coefficients.

Apart from the power consumption overhead, com-
puting the cross correlation requires the two images to
be read in to some local storage medium. This will
require additional memory overhead on a wearable de-
vice that aims to capture and process only the relevant
regions of the image.

While there exists a large body of work in vision
community on how to optimize the disparity map cal-
culation using techniques such as dynamic program-
ming and localized correlations, we observe that we
have a much restricted requirements on the disparity
map which enable us to use much simpler and energy
efficient techniques to estimate the target distance.

First, we are only interested in well defined regions
of the image selected based on the FIR sensor readings.
Hence, we only need to find correspondence for pixels or
a subset of pixels in these regions. Second, we are only
interested in coarse grain depth estimation to differen-
tiate among objects within arms length, people within
personal and group-wide interaction distances, and far
away objects. Such coarse grain estimates can easily
tolerate 10% - 20% error in distance estimation. In sec-
tion 3 we describe the design of an efficient depth esti-
mation solution that take advantage of these restricted
requirements.

3. DESIGN

In this section, we introduce the key components of

our low-power real-time key body part detection pipeline.

3.1 System Overview

Figure 8 shows the architecture of the body part de-
tection pipeline. The first stage is a FIR sensor that
uses the measured temperature of the scene to identify
image frames with key human body parts, as well as the
location of the body parts within the image frame. The
location information is then sent to the second stage
which consists of a coarse-resolution depth sensor that
estimates the distance to these identified regions.

If the region temperature and distance to the region
matches one of the criteria for detecting a body part
such as detecting the hand to identify the object the
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Figure 8: Architecture of the low-power key human
body part detection pipeline.

Table 1: Comparison of Melexis and FLIR, infrared sen-
SOTS.

Power (mW) | Resolution
Melexis (MLX90620) 23.4 16x4
FLIR (LEPTON) 150 80%60

user is holding, the image pixels within the region of
interest are captured for post processing such as feeding
to a remote object recognizer to identify the particular
object.

The use of low-power low-resolution FIR sensor and
the low-power coarse-resolution depth sensor enables an
end-to-end key human body part detector with a power
profile suitable for continuous operation on a battery
powered wearable device.

3.2 Far Infrared Sensing

While our initial observations showed that a FIR sen-
sor can differentiate between human body parts and the
background fairly well, one key design criteria is the
resolution of the FIR sensor. For example, as Table 1
shows, a state of the art LEPTON FIR sensor with
80 x 60 resolution from FLIR consumes 150mW, which
is too high for continuous sensing on a wearable device.

A low-resolution image sensor is attractive due to the
relatively low power consumption. However such a sen-
sor has two draw backs. First, it cannot accurately
detect the edges of objects due the mixing of regions
of different temperatures in a single pixel. Second, for
relatively small objects at far away distances, the ob-
ject ad a portion of the surrounding region maps in to a
single pixel, reducing the measured temperature of the
object, making it difficult to detect the object based on
its temperature.

While a high resolution FIR sensor is better at iden-
tifying the objects of interest and their boundary accu-
rately, these benefits come at a higher power consump-
tion.

We found the MLX90620 FLIR sensor from Melexis
with 16 x 4 resolution is the right balance between the
resolution and power consumption since it has enough
resolution to detect human parts at 12 feet from the
user while consuming only ~ 23 mW.

From Figures 4a 4b 4c, we observe the measured tem-
perature of human body parts depends on multiple fac-
tors such as the skin color and the distance of the person
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from the sensor. Hence, we need to select a temperature
threshold for separating human body features from the
back ground.

As shown in Figure 9, selecting this threshold is a
tradeoff between the false positives and false negatives
in FIR-based detection.

A high threshold results in close to zero false pos-
itives, while causing high false negatives for far away
objects whose measured temperature is lower. A low
threshold results in a large number of false positives,
while the false negatives become smaller.

While this threshold should be selected based on the
specific application needs, we selected 23.7°C as the
threshold since this minimizes the sum of false positives
and false negatives.

3.3 Depth Sensing

Once the Far Infrared sensor detects potential re-
gions containing objects of interest based on the tem-
perature profile, depth sensing module is triggered for
coarse-resolution distance measurement. This section
describes design of our low-power depth sensing mod-
ule.

3.3.1 Hardware Architecture

The main design goals of the depth sensing module
are to minimize the processing and storage overhead
while providing coarse-granularity depth information of
specific regions of the image.

To minimize the processing overhead, the depth sens-
ing module only operates on the regions of interest that
are identified by the FIR sensor. To further reduce com-
putational complexity, we use the bit-wise XOR opera-
tion of pixel values as a measure of similarity between
them (smaller results corresponds to high similarity).

After capturing an image, a typical image sensor out-
puts the pixels of the image row-by-row as a serial bit
stream. To minimize storage requirements, instead of
reading the two images from the image sensors to some
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Figure 10: Micro hardware architecture for low-power
depth sensing.

storage medium, our depth sensor directly operates on
the two pixel streams coming from the image sensors.

Here we use the key observation that finding the cor-
respondence between two rows of spatially separated
pixels in the two image sensors translates to finding the
correspondence between the two pixel streams delayed
with respect to each other.

Figure 10 shows the hardware architecture of the of
depth sensor design. This is composed of three HW
building blocks: delay, XOR, and accumulator.

Delay: Delay modules are used to delay the pixel
stream coming from the left image sensor because the
right picture is a delayed version of the left image due
to spatial disparity. The delayed pixels from the left
image are XORed with the pixels from right image to
compute disparity.

In our design, delays are implemented with D-flip-
flops, that temporarily store the pixels. For example, if
each pixel is represented by an 8-bit value, each delay
module is an 8-bit D-flip-flop.

XOR: We use bit-wise XOR to compare the differ-
ence between two pixels instead of computing the cor-
relation coefficients to reduce power consumption. One
potential drawback using XOR is the lower accuracy.
However, our evaluations show that XOR is accurate
enough for coarse-resolution depth sensing for human
detection.

Accumulator: Accumulator aggregates the results
of the bit-wise XOR operation and outputs the similar-
ity of the two image blocks. Our design contain multiple
XOR-Accumulator blocks that are connected to multi-
ple tap points of the delayed pixel stream of the left
image sensor.

Each of these XOR-~Accumulator blocks measures the
similarity of pixels delayed by a number of pixels cor-
responding to the length of the delay line up to that
block. Hence, these multiple accumulators correspond
to different distance estimates of the target object.



For example, in our implementation we use 4 accumu-
lators that correspond to {4, 8, 12, co} feet. Once the
image blocks pass through all the accumulators, the ac-
cumulator values are compared and the object distance
is associated with the accumulator holding the smallest
sum (bit-wise XOR of two identical pixels is zero).

Hardware complexity: Our hardware depth sens-
ing architecture with its data-flow style processing on
multiple simple arithmetic blocks is particularly suit-
able for direct implementation on an FPGA. We can
directly compute the FPGA resource requirements as
follows.

Given N delays and M accumulators, the number of
D flip-flops (single bit storage elements) needed for im-
plementing this logic is (8N +24M) because each delay
element is an 8-bit register which buffers an 8-bit pixel
and a 24-bit register is needed for each accumulator to
prevent overflow.

For example, in section 4.3, we show that our design
for detecting if an object of interest is at X feet, where
X € {4,8,12, 00}, can easily fit inside a tiny FPGA or
CPLD such as Igloo Nano which only consumes several
mW [23]. In contrary, traditional depth sensing, such
as Capella [1], needs to be operated on a powerful CPU
and consumes several Watts, orders of magnitude higher
than our micro hardware architecture.

4. IMPLEMENTATION

We implemented our low-power key body part detec-
tor design described in section 3. While, the current
prototype measures 8.7cm by 11.5cm, we believe that
this can be shrunk to fit a small wearable device.

4.1 Hardware Platform

Figure 11 shows our hardware prototype. This pro-
totype is implemented as two modules: an image sensor
daughter board and a processor mother board.

The image sensor daughter board is equipped with
three Aptina image sensors (MT9V034). As shown in
Figure 11a, this enables us to evaluate the accuracy of
depth sensing under image sensor separations of 3cm,
6cm, and 9cm.

The motherboard contains FIR sensor (MLX90620)
for measuring the scene heat map. The motherboard
also contains a low-power FPGA (Igloo Nano AGLN250)
and a ARM Cortex M-4 microcontroller (STM32F417IGH6).
The low power depth sensing module is implemented in
the FPGA while microcontroller coordinates and man-
ages various sensing subsystems.

The microcontroller can also capture and store full
images from the image sensors for offline analysis and
system debugging.

4.2 Processing Pipelines

8.7cm

12.7cm 11.6cm

(a) Imager daughter board (b) Processor mother board

Figure 11: Prototype of our hardware platform.

Figure 12 shows how different processing pipelines are
mapped to various processing elements on the mother-
board. The mother board runs three processing pipelines:
FIR and image processing pipelines on the MCU and
the depth sensing pipeline on the FPGA.

FIR sensor pipeline: The FIR sensor pipe line is
more involved than simply reading the temperature val-
ues directly from the sensor. The Melexis MLX90620
FIR sensor does not directly output the object temper-
ature. Instead, it compares the amount of radiation
sensed against the temperature of the sensor die and
returns this relative value.

To determine the object temperature, these readings
need to be compensated according to the die temper-
ature. This compensation needs to be done for each
pixel because each pixel has different compensation co-
efficients. Each pixel compensation involves significant
amount of floating points calculations with some coeffi-
cients of magnitude 1078,

We managed to reduce duration of this processing
pipeline to 3.68ms for a 16x4 pixel IR sensor when the
STM32F417IGH6 micro controller runs at 168MHz. To
achieve this, we precompute most of the compensation
coefficients and store them in RAM. With these opti-
mizations, the MCU only needs to be on for 4% of the
time even when the FIR sensor is operated at 10Hz.

FPGA depth sensing pipeline: Figure 12 shows
the hardware architecture of depth sensing implemented
on an FPGA. The implementation includes three com-
ponents. First, a window control module is implemented
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Figure 12: Architecture of our hardware platform.
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for interfacing Aptina image sensors. The window con-
trol only pass pixels in a specific region where depth
needs to be estimated to the following modules.

Next, delays modules, which are composed by D-flip-
flops, are used for achieving synchronization between
left and right images. Delay module uses 8-bit D-flip-
flops since each pixel is represented as an 8-bit value.
Last, accumulators with XOR and summation logic are
used for comparing similarity of blocks on left and right
images. Depth is estimated based on the content of the
accumulator at the end of the image.

MCU image processing pipeline: The image pro-
cessing pipeline built on an MCU is used to capture
and store raw images for system debugging and evalua-
tion. DCMI interface, which is a standard image sensor
interface, is used in combination with processor DMA
module to capture and transfer images directly to MCU
memory.

Once a complete image is captured into the RAM,
it is written into a SD card with a FatFS file system.
Because SDIO is used for interfacing the SD card, the
images can be written in a short time. We also im-
plemented correlation-based depth computation on the
MCU for comparing with our low-power FPGA imple-
mentation.

4.3 Handling Manufacturing Errors

One challenge in using stereo image sensors for depth
sensing is handling manufacture errors. These errors are
introduced by stereo image sensor mis-alignment, lens
mounts that deviates from the center of image sensors,
and other factors. Figure 13a and Figure 13b show two
types of errors: horizontal and vertical manufacture er-
rors. The observed object position Y* deviates from its
ideal position Y in horizontal and vertical directions.

4.3.1 Horizontal manufacturing errors

Horizontal manufacturing errors shown in Figure 13a
are introduced by the horizontal lens deviation from the
center of an image sensor plane. Figure 14 shows the
theoretical and empirical curves of our hardware plat-
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Figure 14: Theoretical, empirical, and modeled curves
for depth estimation using coordinates offset Y5 — Y7.

form where stereo image sensor lens are separated by
6cm and 9cm. The theoretical curves are calculated us-
ing L = YQD _L;/I with parameters calibrated. For both
6cm and 9cm lens separation, a significant gap between
the theoretical and empirical curves is observed. The
6cm lens separation has slightly larger gap than the
9cm case because smaller lens separation is more sen-
sitive to manufacturing errors. This is a result of the
smaller pixel offset range (2~57) under 6¢cm separation
compared to the larger range (1~102) of 9cm lens sep-
aration. We come up a model to compensate these hor-
izontal manufacturing errors.

The model shown in equation 1 is used for capturing
the horizontal manufacturing errors, where parameter
b deals with errors introduced by lens mount that hor-
izontally deviates from the center of an image sensor,
and parameter ¢ deals with the rest of errors within the
vision system.

a
Yo-Yi—b S

By calibrating parameters a, b, and ¢ as shown in
equation 2, both modeled 6cm and 9cm curves fit the
empirical curves well as shown in Figure 14, and there-
fore can be used for practical and accurate depth esti-
mation.

D =

160.1026

D= —0.5894 2

Yo — Y; — 8.5671 @)
298.7770

D —0.7962 (3)

" Y, — Y, - 5.7169
4.3.2  Vertical manufacturing errors

Another manufacturing error is the vertical error shown
in Figure 13b which is usually introduced by vertical
lens deviation from the center of an image sensor plane.
This error is not a significant issue for conventional
stereo image systems because left and right images are
stored in RAM and post-processed, where these vertical
errors can be compensated in software. However, ver-
tical manufacture errors are detrimental to our depth
estimation solution.



As shown in Figure 13b, the targeted block Y™* will
be outputted much later than it is expected because of
the vertical offset. While this error can be compensated
by adding extra delay elements, the power consumption
and HW complexity of the solution increases dramat-
ically due to the large number of storage elements re-
quired.

Instead, we use the windowing capability of the im-
age sensor to define the vertical boundary of the image
windows to compensate the vertical manufacturing er-
rors. The built-in windowing capability of the image
sensor can horizontally or vertically trim the captured
image and outputs only a window of the image. This
capability allows us to compensate the vertical manu-
facture errors at the image sensor itself without extra
hardware resources.

For example, when the vertical error of the right im-
age sensor is X rows, which implies that the targeted
object will be outputted X rows earlier than expected,
we instruct the left image sensor to skip its first X rows
and starts its output from the X+1 row. As a result,
the images of the left and right image sensors become
vertically aligned.

4.4 Mapping between FIR and depth sensors

One particular problem that we need to address is
the mapping between FIR and depth sensors. Once the
FIR sensor detects the presence of “hot” objects, depth
sensor will be triggered to measure the distance to that
object. To enable this pipeline, we need to map the
object observed by the FIR sensor to the filed of view
of the depth sensor. Establishing the mapping is non-
trivial due to two reasons. First, mapping needs to be
done for sensors with different resolution. The resolu-
tion of a FIR sensor is 16x4 pixels while each imager
of the depth sensor has 752x480 pixels. Second, map-
ping needs to be done for sensors with different angle
of view. The horizontal and vertical angle of view of a
FIR sensor is 20° and 5° while depth sensor has 26° and
18°.

The mapping between FIR and depth sensors is built
following two principles. First, depth is computed only
for pixels that are horizontally and vertically covered by
both FIR and depth sensors. As a result, some pixels
of the depth sensor are not included in the mapping
because of the narrow field of view of the FIR sensor.
Second, a single FIR pixel is mapped to 35x32 pixels of
the depth sensor. Such linear transformation is feasible
because both FIR and depth sensors use linear optical
systems for imaging.

S. EVALUATION

We evaluate three aspects of our system. How accurate
are FIR and depth sensing, both separately and jointly?
How much power does our system consume? When cou-

pled with a software body-part detector to confirm parts
detected by our front-end, how much power does the
system save compared to the pure software approach?
In the terminology of Section 2.1, how well does our
system serve as an oracle?

5.1 Accuracy of the Hardware Detector

5.1.1 Accuracy of FIR sensing

To evaluate the accuracy with which the FIR sensor de-
tects key body parts, we tested it in a static and a mo-
bile configuration at home and in a university (“school”)
setting. The settings were empty except for at most a
single experimental subject. In the static home case we
placed the sensor overlooking the living room; in the
static university case we placed it facing a corridor. In
the mobile case, we moved around with the sensor as
with a wearable, traversing the same living room and
corridor. We collected footage for 10 minutes in each
configuration, sampling at 8Hz. To test detection ac-
curacy, we had one subject behave “naturally” in each
setting, while the experimenter stayed behind the cam-
era (and moved it, in the mobile case). The footage was
labeled by hand as to whether a face, wearer-hand or
body was showing.

We define the recall of our system with respect to a
part as the fraction of frames labeled as containing the
part where the system correctly detects a part (note
FIR-thresholding does not report which part). We de-
fine the false positive with respect to a part as the frac-
tion of all the frames where the FIR detector claims a
part is visible where that part was not labeled as visible.

Table 2 shows the results. Perhaps unsurprising, re-
call rates are quite high, since the background temper-
ature in these indoor settings is at the conventional 20°
level. Encouragingly, however, false positives are rela-
tively low as well. They are higher in the mobile case
than fixed case, because when walking around, more
lighting fixtures, computer monitors and heating vents
come into the field of view. They are also somewhat
higher in faces than for hands and significantly higher
for bodies. This is because (Figure 4) while wearer-
hands stay close to the imager and maintain a relatively
high temperature, faces tend to report lower tempera-
tures further away due to the background-averaging ef-
fect reported in Section 2.2 and bodies, being covered
clothes report even lower temperatures. The lower the
reported temperature of a body part, the more objects
in the surroundings it may be confused with. It is worth
noting that even a relatively high false positive rate does
not cause incorrect detection of body parts (since later
stages of our system will verify the pixels flagged), but
will “only” diminish the power saved by our system.

5.1.2  Accuracy of depth sensing



Table 2: Accuracy of detecting key body parts using FIR.

Detecting human faces

Detecting human hands

Detecting human bodies

Static sensor | Mobile sensor Static sensor | Mobile sensor | Static sensor | Mobile sensor

Recall | FP Recall FP Recall | FP Recall | FP Recall | FP Recall FP
School | 91.8% | 2.4% | 99.7% | 13.9% | 83.9% | 0.9% | 99.6% | 6.4% | 98.8% | 36% | 99.8% | 58.7%
Home | 96.8% | 0.2% | 94.1% | 6.3% | 95.2% | 0.2% | 92.9% | 6.2% | 99.6% | 1.1% | 98.9% | 22.3%

Fine Grained Depth Estimation: We wish to mea-
sure how accurately we can estimate depth, and the
effect of lens separation and distance measure (correla-
tion versus XOR, (Section 3.3.1)) on this accuracy. To
this end, we had 14 persons each stand at distances
of 2,4,6...20ft from the imager, and for each configu-
ration, compared the system-estimated depth with the
ground truth. We estimate depth using both 3- and 6-
cm lens separation (recall that our board has both sep-
arations built in), and using both correlation and XOR-
based matching. Figure 15 shows accuracy in both (a)
relative (depth error=-ground truth distance) and (b)
absolute terms.

Accuracy of estimation is quite good, given the rel-
atively coarse needs for finding key body parts: e.g.,
for 80% of data points, the error of depth estimation
is smaller than 20% and 2 feet. Large errors occur
for points a the 2- and 4-ft ranges, as per the lim-
itations of stereo. Further, 9cm lens separation has
higher accuracy than the 6cm lens separation: as ex-
pected, higher depth resolution is obtained with larger
lens separation. Finally, for both 9cm and 6¢m lens, our
XOR-based matching is less accurate than the conven-
tional correlation-coeflicient-based approach. However,
the degradation in accuracy is less than 5%, while the
gains in reduced power consumption are considerable,
as shown later.

Coarse Grained Depth Estimation: We use the
14-person dataset just discussed to estimate coarse dis-
tance, rather than fine distance. We group the distances
into bins as shown in the first column of Table 3. The
bins are intended to represent distances corresponding
to “touched objects”, “conversation partners” , “people
possibly performing relevant actions” and “everything
else”. We classify the dataset into one of these four
categories by running the micro hardware architecture.
Recall is the fraction of true instances of the class cor-
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Figure 15: Accuracy of fine-grained depth estimation.
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Table 3: Accuracy of coarse depth estimation.
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9cm lens 6cm lens
Depth (ft) | Recall | FP | Recall | FP
(2,4) 93% | 0% | 83% 0%
(6,8,10) 33% | 0% | 88% 2%
(12,14,16) 91% | 5% | 83% 4%
(18, 20, o) | 100% | 5% | 91% | 10%

rectly inferred. The false positive fraction (FP) is the
fraction of claimed instances of a class that were incor-
rect. As the table indicates, our depth sensor excels at
coarse estimation, with both 6- and 9-cm baselines.

Impact of Correcting Manufacturing Errors: As
mentioned in section 4.3, manufacturing errors can be
divided into horizontal and vertical errors. We address
these by using imager hardware windowing and a cor-
rection model. Figure 16 illustrates the impact of error
correction on the 14-person dataset above. When errors
are corrected, only 10% of depth estimates have errors
above 2ft absolute, or 20% relative to ground truth dis-
tance. Uncorrected, over 70% of estimates have errors
above 10ft absolute/60% relative. Correction is there-
fore essential. It is worth noting here that our error
correction has low power overhead: neither the hard-
ware windowing nor the horizontal correction model re-
quires additional computation, since they require just a
one-time configuration.

5.2 Power Draw of the Hardware Detector

5.2.1 Power draw for platform components

Table 4 shows the static and active current consumption
of each component in our hardware platform. The static
current draw of the whole hardware platform is 4mA,
which is measured when the IR sensor is not initial-
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Figure 16: Impact of correcting manufacture errors.



Table 4: Component-wise power consumption. X indi-
cates that the corresponding state does not exist.

Power (mA) Component active | asleep
Static Current Draw X 4
16x4 IR sensor 9 X
752x480 Stereo Imagers 73 117
MCU 55 0.002
FPGA 2.58 0.01

ized, stereo imagers are not mounted, the MCU stays
in STANDBY mode and the FPGA clock is disabled.
The TR sensor consumes 9mA after initialization and
unfortunately, cannot be turned into sleep mode due to
its lack of duty cycling mechanism. The stereo imagers,
which are used for depth estimation, consume 11mA in
STANDBY mode and 73mA in active mode. The MCU
consumes 55mA and 2.3mA for the FPGA, which follow
the corresponding data sheet specification.

Table 5 shows the timing of tasks executed on the
hardware platform. Some tasks need to be done only
once, such as stereo imager initialization and SD card
initialization. Other tasks, such as FIR and depth sens-
ing, need to be done frequently. FIR sensing takes
3.68ms and depth estimation, including exposure and
sensing, takes 16ms. Although operating the MicroSD
is time-consuming, it is designed for debugging and not
used in runtime system.

5.2.2  Power draw for estimating depth

The power consumption of depth sensing depends on
the physical distance of targeted objects because closer
objects occupy more pixels. Figure 17 compares the dis-
tribution of average power drawn for processing frames
comprising our 14-person dataset when our FPGA-based
architecture is used (red line labeled “Micro Arch”) to
using a low-power microcontroller (“MCU”). Critically,
even when frames are filled with body pixels (e.g. at
100% of the CDF), power draw tops off at 5.1mW (me-
dian 3.1mW). Thus, although this evaluation was on
detecting bodies, we expect wearer-hands, which often
dominate the field of view, to draw acceptable power.
Our efforts in adapting our algorithms to the low-
power FPGA seem worthwhile. Power consumed by
the FPGA-based architecture (the black line in Fig-
ure 17) is roughly 18x lower than when an MCU (the
STM32F417IGH6) is used. There are three reasons for

Table 5: Timing of tasks executed on the platform.

Time (ms)
64 pixels FIR sensing 3.68
depth sensing 15
Stereo imager initialization 1.2

Stereo imager exposure 1
MicroSD Card initialization 2400
MicroSD Card logging 125
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Figure 18: Power consumed for detecting key body
parts using our system (compare Figure 3).

this reduction. First, interfacing the imager with an
FPGA avoids the software driven DCMI interface on
an MCU, and is thus significantly cheaper. Second, the
FPGA processes pixel streams in real time and as a
natural result, avoids pixel storage overhead, such as
SRAM. Third, some key operations, such as XOR, are
simply cheaper on an FPGA.

5.3 Overall System Evaluation

In Section 2.1, we pointed out that the overall goal of
our system is to realize an oracle that indicates where
and at what scale in the imager frame a software parts-
detector should search for key body parts. Figure 3
(cyan line) pointed out that such an oracle, if it ran
at zero power, could then detect body parts at ImW in
software. We now examine to what extent our FIR/depth-
based architecture achieves this goal. Similar to Sec-
tion 2.1, we collected footage of subjects from 3 to
15 feet away in a corridor, and a hand moving from
6 inches to 2 feet. We then used our system to de-
tect parts, bound their pixel windows and scales, and
executed OpenCV-based body-part detectors on these



windows on a Galaxy Nexus. We added the measured
energy consumed on our detector to that of detecting
parts within those windows on the phone and divided
by total execution time to get average power draw.

The cyan lines on Figures 18a-c illustrate the perfor-
mance of our oracle. The entire system runs at roughly
24mW when no body part is detected (this corresponds
to running the 9mA FIR sensor at 2.6V), and roughly
28mW when a body part is detected (an additional mW
for the on-phone calculation and 3mW to run the depth
unit). Given our 70mW budget, we believe these
numbers provide compelling evidence that an
architecture cascading FIR and depth sensing
via today’s low-power off-the-shelf components
(such as our FPGA) could enable key body part
detection on wearable devices, at least in areas
where background temperature is outside the 30-35C
range, and in temperature controlled buildings.

6. RELATED WORK

Body parts detector: There is an extensive body
of work on algorithms for identifying key human body
parts, including faces [36, 31, 27], torsos [38, 22], and
hands [15, 16]. These algorithms have been used in var-
ious applications, including human computer interfaces
[39], smart rooms [43], and intelligent robots [40]. Our
work does not target specific algorithmic improvements.
Instead, we investigate how multiple sensing modalities
can be used as pre-filters to limit the invocation of ex-
pensive algorithms.

Low-power imagers: Ultra low-power imagers, such
as [13, 5], consume less than 1mA of current when ac-
tive. In addition, various mechanisms have been pro-
posed by [17, 21, 12] for reducing the power consump-
tion of imagers. Therefore, imagers will not likely be
the bottleneck for achieving low power depth estima-
tion. Instead, reducing the processing overhead is going
to be the key to achieving low power depth estimation.

Low-power depth sensing: Computer vision com-
munity has investigated accurate disparity map compu-
tation using stereo web cameras [35], reducing the com-
putational overhead of disparity map calculation [11],
3D image construction based on disparity map [20], etc.
These approaches focus on improving computer vision
algorithms while our focus is to improve the hardware
architectures. We see these as complementary efforts.

Some previous work use FPGAs for efficient depth
computation. [34] presents a hardware architecture for
computing depth map which avoids modifications of
depth algorithms. [32] designed an optimized hardware
architecture for computing depth map in 1D. [25, 3] dis-
cuss low cost FPGA implementation of specific depth
algorithms. These approaches focus on computing the
complete disparity map while our focus is on estimating
the depth of specific objects within the scene.
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[41, 42, 35] propose several algorithms for stereo vi-
sion calibration when manufacture defects are present.
These algorithms are computationally expensive to run
continuously on a battery power device. We use a sim-
plified correction model for achieving low power con-
sumption at the cost of small degradation of depth es-
timation performance.

Stereo imager platform: Stereo camera hardware
platforms have been on the market for a long time. [2]
is a commercial stereo camera that supports captur-
ing of two images simultaneous at different sensitivity,
magnification, and color tonality. Unfortunately, this
camera is not a programmable device which prevents
its use in low-level investigations. [1] is a stereo camera
development board that allows low-level firmware con-
figuration of imagers. However, detailed power bench-
marking is hard on this platform because of its deep
coupling between OS and stereo image processing, and
additional on board hardware components (Ethernet,
USB, HDMI). In contrast, our hardware platform al-
lows detailed power benchmarking of individual hard-
ware modules.

Far Infrared sensing: [8] uses FarIR sensors to de-
termine the occupancy of zones within a building. [10]
exploits low power 8x8 FarIR sensor array to moni-
tor human activities in home and office environments.
While both these work provide valuable insight into us-
ing FarIR for human detection, none of them investigate
the possibility of combining depth sensor for detecting
objects of interest.

7. CONCLUSION

In this paper, we present a low-power human body
part detector that exploits Far Infrared (FIR) and depth
sensors to gate the traditional vision pipeline. We make
two main contributions. First, we design and imple-
ment a low-power hardware architecture which is able
to obtain depth at low power. Second, we show that
the combination of FIR and depth sensors serves as a
means to detect (parts of) people their in the field of
view. When combined with software classifiers that can
identify the body parts, our system can identify “key”
body parts at identical accuracy to the pure software so-
lution but at much lower power. We believe our paper
only scratches the surface of developing gating circuitry
for vision, and fully expect both more general and lower
power gating systems to emerge in the near future.
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