
Challenges with Applying
Vulnerability Prediction Models

Patrick Morrison1 Kim Herzig2 Brendan Murphy2 Laurie Williams1

1Department of Computer Science, North Carolina State University, Raleigh, NC, USA
2Microsoft Research, Cambridge, UK

pjmorris@ncsu.edu kimh@microsoft.com bmurphy@microsoft.com lawilli3@ncsu.edu

 Abstract

While Microsoft product teams have adopted defect prediction
models, they have not adopted vulnerability prediction models
(VPMs). Seeking to understand this discrepancy, we replicated a
VPM for two releases of the Windows Operating System, varying
model granularity and statistical learners. We reproduced binary-
level prediction precision (~0.75) and recall (~0.2). However,
binaries often exceed 1 million lines of code, too large to
practically inspect, and engineers expressed preference for source
file level predictions. Our source file level models yield precision
below 0.5 and recall below 0.2. We suggest that VPMs must be
refined to achieve actionable performance, possibly through
security-specific metrics.

Keywords: Vulnerabilities, Prediction, Metrics, Complexity,
Churn, Coverage, Dependencies.

1. Introduction
Software security vulnerabilities are a constant threat to software
companies and their customers. In recent years, the list of severe
security vulnerabilities and their wide impact on large numbers of
customers brought software security more and more into the
public and media focus. Security holes such as the Secure
Sockets Library (SSL)1 issues affected thousands of businesses
and end customers and led to severe damages.

During the development of a software program, any code
change can potentially inject security vulnerabilities or alter the
attack surface to expose legacy code that contain security
vulnerabilities. Development teams use a number of different
techniques to verify if code contains security vulnerabilities, such
as fuzzing, static code verifiers, and code reviews. The Microsoft
security team has developed the Security Development Lifecycle
(SDL) [2] to help its developers build more secure software
through the systematic use of these techniques. But for large
software products, indiscriminately using reviews to catch
security defects can be impractical. For the 70+ million lines of
code in the Windows code base, a compete security review could
take between 35 and 350 person-years2. The application of
vulnerability detection and removal techniques must be prioritized
to the most suspicious areas of the product.

The Microsoft Windows development teams follow the SDL
process and apply a variety of techniques to improve the security
of the product. Within the Windows development team, a group of
security experts select code areas for complicated and deep-
reaching security reviews. To support the selection process,
researchers proposed defect prediction models (DPMs) to reduce
the search space by exploiting properties of code and processes
that are predictive of defects in general, including security

1http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0092
2 Dowd et al. [37] suggest that good security reviewers can cover

between 100 and 1000 lines per hour.

vulnerabilities. Basili et al. [3] suggest that prediction models
support planning, scheduling and decision-making during
software development by enabling allocation of resources to
modules more likely to be defect-prone. Following long-standing
work in defect prediction model (DPM)-building for software
(e.g. [3,4,5]) a number of vulnerability prediction models (VPMs)
have been built and tested (e.g. [1,6,7,8,9]). In general,
vulnerabilities are a subset of defects, though they occur (or are
discovered) much less frequently than general faults. For
example, Shin and Williams [7] reports that 21% of files in
Mozilla Firefox have defects, while 3% of files have
vulnerabilities. Consequently, VPMs have to deal with highly
unbalanced datasets. Although discovered security vulnerabilities
are rare, they can cause significant problems for software users
and providers, and so they call for priority attention by software
development teams.

While DPMs have been integrated into development team
workflows within Microsoft, VPMs have not. Discussions with
the Windows security development team raised concerns
regarding the usefulness of proposed VPMs specifically:

• VPMs built for coarse levels of granularity (code binaries) may
be precise, but predicting entities containing hundreds of
source files simply confirms prior knowledge without
identifying code areas suitable for intense code inspection.

• In general, low fine granular models (source files) could be
actionable, but give predictions of low accuracy.

With this study, we explore these two issues in the
construction of VPMs. The goal of this research is to investigate
whether vulnerability prediction models are accurate and
actionable enough to provide helpful recommendations when
allocating engineering resources. We measure how ‘actionable’ a
VPM is in terms of recall (true prediction rate), precision
(positive prediction rate), and the inspection effort required to
perform security reviews on code areas suggested by the VPM.

Prior research and feedback from the Windows security
development team suggests a number of open issues in the
construction of effective VPMs:

• Choice of granularity – Model granularity, the selection of a
unit to collect data on and make predictions for, forces a
tradeoff between classification performance and the
actionability of the prediction results. Representative DPM and
VPM entity granularities include binary [1], source file [7],
class [10], and function/method [11]. Binary-level predictions
tend to add little new knowledge, as developers are often aware
of which binaries are prone to security defects. Due to the size
of the binaries, they may contain hundreds of source files, no
specific action can be taken based on this information. File-
level prediction model operates at the level of typical
development tools, a step closer to the source code. Line- and
even instruction-level granularity would be desirable;

method/function-level is the highest granularity of which we
are aware [11].

• Statistical learner choice – Menzies et al. [12] suggest “the
choice of learning method is far more important than which set
of the available data is used for learning.” We build VPMs
using a range of statistical learners, and compare performance
results.

• Classification performance – While each team will have its
own goals for performance, Shin et al. [7] and others [8,13]
have suggested that precision and recall values of 0.7 are
reasonable for prediction models. Reported performance for
individual DPMs ranges both above and below this threshold.
Existing VPMs have sometimes shown lower performance than
DPMs.

Instead of building a new VPM based on new metric
collections, we replicate an existing VPM [1], confirm previously
reported results, but further investigate how actionable its
proposed recommendations are. Our investigations are guided by
the following research questions:

RQ1 Can we replicate VPMs proposed by Zimmermann
et al. [1] achieving comparable prediction accuracy on binary
level for two newer version of Windows?

RQ2 How does granularity affect classification
performance?

RQ3 How does the choice of statistical learner affect
classification performance?

RQ4 Are VPMs predicting vulnerable Windows binaries
actionable with respect to security inspection effort?

To answer these research questions, we collected code
measurements and pre- and post-release security defect counts for
Windows 7 and Windows 8 on two levels of granularity: file-level
and binary-level. We then used these metric collections to train
and evaluate VPM classification models classifying code entities
that contained at least one post-release vulnerability.

Our contributions include:

• A comparison between the replicated and the original
classification models trained and evaluated on previous
releases of Windows.

• A comparison of two different granularities on classification
performance.

• A comparison of classification performance for a variety of
typical statistical learning methods.

• An assessment of inspection effort for VPMs predicting
vulnerable code binaries instead of source code files.
This paper is organized as follows: Section 2 describes related

work, Section 3 describes the methodology used to build the
VPMs. In Section 4 we report experimental results before
discussing these results in more detail in Section 5. We close with
a discussion about limitations and threats to validity (Section 6),
and final conclusions and future work (Section 7).

2. Related Work
The design and implementation of VPMs has been rooted in the
broader category of DPMs.

2.1 Defect Prediction Models (DPM)
DPMs are models or recommendation models predicting the

existence or likelihood of code defects in code entities. The
number of related work on DPMs is large. For the sake of brevity,
we only refer to the most relevant related studies in this section.
The first studies on predicting defects using code metrics emerged

in the 1990s. In 1996, Basili et al. [3] applied object-oriented
metrics to predict fault-proneness in eight systems, finding
statistically significant relationships for some metrics tested.
Nagappan et al. [5] found improved defect density prediction
performance by normalizing change metrics to file size.
Zimmerman et al. [9] used code dependencies to predict the
presence of defects. Hall et al. [14] performed a systematic
literature review on defect prediction in software engineering,
finding that model-building methodology had an impact on
prediction performance, and advising on good practice for
reporting prediction projects and their results. Other studies used
change-related metrics [15], developer related metrics [16],
organizational metrics [17], process metrics [18], or change
dependency metrics [9,19,20] to build defect prediction models,
on various software systems and levels of granularity.

2.2 Vulnerability Prediction Models (VPM)
Zimmermann et al. [1] report that ‘Vulnerabilities are not as
simple to predict as defects’ based upon the analysis of two VPMs
for Windows. However, Shin and Williams report “the fault
prediction model and the vulnerability prediction model provided
similar prediction performance” [7] for a VPM that performs
comparably with a DPM when trained and evaluated on Mozilla’s
Firefox. Their results suggest that VPMs can be approximated by
DPMs. In general, VPMs follows lessons learned from defect
prediction modeling, with several adaptations made to account for
the relative rarity of vulnerabilities compared to defects.

Similar to DPMs, the range and variety of proposed VPMs
over time is wide. Neuhaus [8] applies historical data on imports
and functions used by vulnerability-prone components.
Hovsepyan et al. [21] applied text analysis achieving high
precision and recall values. Other studies use code complexity,
code churn, and other static alerts to predict attack-prone or
vulnerable components [6,22,23]. Smith and Williams [22],
evaluated the use of database access references (‘SQL hotspots’)
as a vulnerability predictor, finding a positive correlation between
database access points in source code and both vulnerabilities and
code churn. Doyle and Walden [23] studied the evolution of
vulnerability density over time in PHP applications, observing a
trend of decreasing vulnerability density over time.

In this paper, we replicate the study of Zimmermann et al. [1]
who studied typical metrics for complexity, churn, code coverage,
organization as well as dependency metrics and evaluated their
correlations with post-release vulnerabilities in Windows Vista
binaries. They found that each set of metrics had strengths and
weaknesses in terms of recall and precision performance for
vulnerability prediction, but performance improvement was
needed for binary-level prediction to be practical. Our results will
confirm their findings for newer releases of Windows. However,
we will also investigate how models using the same metrics but
on finer levels of granularity (source file level) perform.

The models described to this point have focused on either the
binary/executable file level, or on the source file level. Giger et al.
[24] built VPMs at method/function-level granularity, the highest
granularity prediction model reported in the literature at present.

2.3 The Impact of Machine Learners
Menzies et al. [25] highlight that how a model is built is as
important, or perhaps more important, than the specific metrics
used. Early work in DPMs for software engineering often used
either linear regression or logistic regression to model defect or
vulnerability proneness. In recent years, the software engineering
community has begun applying machine learning techniques that
take advantage of structure in the data beyond the linear

combinations modeled by regression. These modeling techniques,
among many others, include Decision Trees and Naïve Bayes
[13], Support Vector Machines [1], clustering algorithms and
Random Forests [26]. Comparing different machine learners on
the same dataset can yield significant different results. Weyuker et
al. [27] compared the effectiveness of several modelling methods
for fault prediction and showed that different modelling methods
can lead to different prediction accuracies, depending on the
dataset. As discussed above, vulnerabilities are rare and thus,
VPMs have to deal with highly imbalanced datasets. To
investigate the impact of different modelling methods on
Windows VPMs, we apply several of these modelling techniques
in our experiments to assess whether algorithm choice makes a
difference in terms of classification performance. We also include
decision tree models, which are believed to work well on
unbalanced training sets.

3. Reseearch Methodology
In principal, we replicated earlier VPMs for Windows proposed
by Zimmermann at al. [1]. While the original study targeted
Windows Vista, the experiments described in this paper were
conducted on datasets collected for Window 7 and Windows 8,
products of significant size. Choosing the same product as the
original study, although different releases, enable a comparison
with the original study, giving insight in to how vulnerability
prediction metrics in a codebase change over time.

Both Windows releases contain thousands of binaries,
hundreds of thousands of source files, and well over 70 million
lines of code. Windows 7 development began June 1, 2006, and
the ‘Release to Manufacturing’ (RTM) build was produced on
July 14, 2009. Windows 8 development began June 14, 2009, and
the RTM build was produced on July 25, 2012.

To capture the code metrics and pre- and post- vulnerabilities
this research study relied on the CODEMINE process [28].
Microsoft developed CODEMINE to allow the company to
monitor the development attributes of its products both during
development and following product release. The CODEMINE
process provides a central repository of development and
vulnerability metrics which were used within this research study.

3.1 Code Metrics
VPMs presented in this study are based on 29 metrics broadly
classified into 5 categories:

• Churn metrics [5]. Six metrics to verify the theory that change
is more likely to introduce error than its absence. Churn
measures are relative to a time period; the period for all
presented calculations is between the start and RTM date of the
project.

• Complexity metrics [3]. One metric to verify the theory that
more complicated code is more likely to exhibit errors.

• Dependency metrics [9] Seven metrics to verify the theory that
the degree to which a piece of code is depended upon, or
depends upon other code, influences its impact on software
vulnerabilities.

• Legacy metrics. Eight metrics to characterize a metric of
particular interest to Microsoft. The importance of security in
the development of software at Microsoft began receiving
increased attention after the Bill Gates’ 2002 Trustworthy
Computing Memo [29], with significant investments made in
security training, tools, and process [2]. Code written after
these processes were put in place has had a higher, more
process-driven, level of attention to security applied in its
design, construction and testing. These metrics verify the

theory that code written before the security reset may be more
likely to contain vulnerabilities.

• Size metrics. Seven metrics to verify the theory that larger
source files are more difficult to mentally manage, and,
therefore, are more prone to defects and vulnerabilities.

• Pre-Release vulnerabilities. For VPMs predicting post-release
vulnerabilities, we used pre-release vulnerabilities to model
usual suspects. More details on collecting pre-release
vulnerabilities is given in Section 3.2.

Most of the discussed measures have been used for predicting
defects in prior research both within and outside Microsoft (e.g.
[1,6,9,22]). Table 3, in the appendix, identifies all metric used in
the study and provides a description of the metric. Where noted,
average, maximum and total values were taken for several of the
metrics. Depending on the metric, data was available at either the
source file level or at the function level. In cases where function
level data was present, amounts were aggregated up to the file
level via averages, totals and maximums. Binary-level data was
obtained by aggregating source-file level data up to the binary in
which each source file is used. This study uses additional metrics
that were not available at the time of the original study by
Zimmermann at al. [1]. The table identifies which metrics are
common between the two studies and which are unique to this
study.

All size, churn, complexity, and dependency metrics were
measured as of each releases’ RTM date.

3.2 Pre- and Post-Release Vulnerabilities
As dependent variables, we used the number of pre- and post-
release security vulnerabilities detected and fixed within the
corresponding source files and code binaries respectively. A post-
release vulnerability is a security issue detected and corrected
after releasing the corresponding software product to the public.
Pre-release vulnerabilities are issues that are identified and fixed
during software development. Pre-release vulnerabilities of
product version N may also be post-release vulnerabilities for
product version N-1. We credit pre-release security changes to
security practices outlined in the Security Development Lifecycle
(SDL) [2] as applied during Windows development. Post-release
security changes can be considered as ‘escapes’ from the SDL.
Escapes may be worthy of investigation for SDL application in
future releases.

To identify post-release vulnerability fixes, we counted the
number of code changes applied in Windows service pack
branches marked as security fix. These branches serve as sink of
defect fixes that will eventually be shipped to customers as part of
a service pack or hot-fix. No feature development is permitted on
these branches. Pre-release vulnerabilities were identified by bug
reports marked as security vulnerabilities which resulted in
changed source files and binaries. We were confident in the
accuracy of this security characterization as all bug reports that
were labeled as security defects have been triaged by the security
team.

In our data set, vulnerable source files represent
approximately 0.003% of all source files.

3.3 Prediction Models
For both levels of granularity, binaries and source files, we build
classification models that separate code entities that had at least
one vulnerability from code entities that had no vulnerabilities. To
train individual VPMs, we used the metric data described in
Section 10 as independent variables and the number of pre- or
post-release vulnerabilities as dependent variables. For

classification models predicting post-release vulnerabilities, we
use the number of pre-release vulnerabilities as additional
independent variable. For each Windows release and level of
granularity, we split the overall data collection into two subsets.
One subset containing 2/3 of the data points is used for training,
the other for testing purposes. To split the data, we used stratified
sampling—the ratio of code entities associated with
vulnerabilities from the original dataset is preserved for both
subsets. We repeatedly sampled the original dataset 100 times
(100-cross-fold-validation). In total, we generated 800
independent training and testing sets: two Windows releases, two
levels of granularity, and 100-cross folds each (similar to
[1,9,26]).

We conducted the experiments using the R statistical software
[30] (version 3.10). Instead of using the original feature vectors
provided by the raw metric values, we applied R’s prcomp [31]
procedure to our data to produce principal components. Principal
Component Analysis (PCA) [32] reduces redundancy in our
matrix of metrics and observations by maximizing the variance of
linearly independent variables. Deciding how many of these
variables to use in model building typically takes one of two
forms; either a limit on the number of terms in the model is set, or
some total amount of variance to be accounted for by the model is
set. We selected principal components that accounted for 95% of
variance.

In pursuit of high prediction performance, we used Max
Kuhn’s R package caret [33] to build VPMs based on the
components selected by PCA and on a set of series of machine
learning techniques [34,35]:

• Logistic Regression (LR) - Generalized linear model
using a logistic function.

• Naïve Bayes (NB) - Applying Bayes’ theorem, this is a
simple probabilistic classifier assuming strong independence of
the independent variables.

• Recursive Partitioning (RP) - A variant of decision
trees, this model can be represented as a binomial tree and it is
often used for classification tasks.

• Support Vector Machine (SVM) - This model classifies
data by determining a separator that distinguishes the predicted
classes with the largest margin. We used the radial kernel for
our experiments.

• Tree Bagging (TB) - Another variant of decision trees,
this model uses bootstrapping to stabilize the decision trees.

• Random forest (RF) - A variant of decision trees, this
model can be represented as a binomial tree and popularly used
for classification tasks.

Each model is optimized by the caret package [33] optimizing
various tune parameters (please see caret manual for more
details). “The performance of held-out samples is calculated and
the mean and standard deviations is summarized for each
combination. The parameter combination with the optimal

resampling statistic is chosen as the final model and the entire
training set is used to fit a final model” [33]. The level of
performed optimization can be set using the tuneLength
parameter, which is set to five for all experiments in this paper.

3.4 Inspection Effort
We define ‘inspection effort’ to be the number of person-hours
required to perform security review on the positives (correct or
incorrect) identified by the VPM. Following previous practice,
e.g. [36,28], we assume that inspection effort is proportional to
code size, that all vulnerabilities correctly or incorrectly identified
by the VPM must be security reviewed. Dowd [37] suggests that
one hour of security review can cover between 100 and 1000
lines. Summing the lines of code present in the positives
predicted, and dividing the sum by the inspection rate yields the
inspection effort in person-hours for a set of VPM predictions. For
constant recall and precision values, lower effort values are more
actionable. To illustrate the difficulties with present VPMs, we
assume an average inspection rate of 500 lines per person-hour.

4. Results
In this section, we present results collected during our
investigations.

We report on a series of experiments in prediction for
Windows post-release vulnerabilities. Table 1 reports mean recall
and precision for the 100-fold validations run for each
combination of release (Windows 7, Windows 8), granularity
(binary, file), and Model (LR, NB, RF, RP, SVM, TB). The
highest precision and highest recall for each release and
granularity are shown in bold.

To align our replicated models with original proposed model
by Zimmermann et al. [1] and other related work, we compare our
models precision and recall values to closely related work. Table
2 summarizes results for the VPMs built in this paper, together
with results for VPMs built in referenced works
[1,6,7,8,21,23,38]. The list of referenced VPMs in the table is
based on reporting in the referenced paper of the table data on
granularity, size and recall and precision performance. The
‘Source’ column indicates the source of the VPM. ‘Granularity’
indicates the unit used to train and predict against. ‘N’ indicates
the number of entities used in the experiments. ‘% Vulnerable’
reports the percentage of vulnerable files in the data used to train
the VPMs. ‘Recall’ and ‘Precision’ report performance ranges for
each measure.

Table 1: Vulnerability Prediction Model Performance

Windows 7 Windows 8

Precision Recall Precision Recall
Binary level

LR 0.5 0.12 0.32 0.09
NB 0.3 0.42 0.11 0.4
RF 0.76 0.27 0.69 0.07
RP 0.51 0.22 0.23 0.07
SVM 0.51 0.13 0.64 0.04
TB 0.69 0.13 0.45 0.1

File level
LR 0.01 0 0 0
NB 0.07 0.14 0.01 0.01
RF 0.47 0.02 0 0
RP 0.21 0.04 0 0
SVM 0.38 0.02 0 0
TB 0.36 0.03 0 0

5. Discussion
In this section, we consider how our results address the research
questions, and what the results imply for future work on VPMs.

5.1 RQ1 Can We Replicate VPMs Proposed for
Windows with Comparable Accuracy?

Table 2 holds the answer for this first research question.
Comparing our replicated models trained and evaluated on
Windows 7 and Windows 8 with the original study [1] conducted
on Windows Vista, we can compare the first two lines in Table 2.
Comparing the best models (highest values) for both studies, we
see that our replicated models reported slightly better recall and
precision values than original models: recall increased from 0.40
to 0.42 while precision increased from 0.67 to 0.76. Zimmermann
et al. [1] used logistic regression as statistical learner. Comparing
the original recall and precision values to our equivalent LR
learner, we see from Table 1 that for both Windows releases the
reported recall—0.12 for Windows 7 and 0.09 for Windows 8—is
lower than in the original study (0.20-0.40). For precision, we see
that LR in this study reported similar values--0.50 for Windows 7
and 0.32 for Windows 8—than the original model (0.40-0.67).
Overall, results reported for Windows 7 and Windows 8 were
comparable with the results reported by Zimmerman et al. [1]—
considering usual fluctuations and differences between product
releases.

Compared to other studies (see Table 2), recall values for
Windows 7 and Windows 8 appear to be below average,
especially recall values. We suspect that this is due to the fact that
only very few binaries and source files were reported vulnerable.
We discuss this issue in more detail in the next section.

Menzies et al. [25] observe that even low precision models
can be useful, if the value of the item being recalled is high. This
situation applies for many VPMs reported in earlier, related
studies. However, considering Windows recall values for both
levels of granularity (recall between 0.00-0.14 for files), we doubt
that moderate precision values will be useful.

5.2 RQ2 How Does Granularity Affect Classification
Performance?

Comparing VPMs for binary level (first line in Table 2) to
VPMs on source file level (third line in Table 2), we see a
significant drop in precision and recall. Comparing the best source
file VPM learner (RF) to results of the same VPM learner on
binary level, we see for Windows 7 a drop in precision from 0.76
to 0.46 and a drop in recall from 0.27 to 0.02. Even worse for
Windows 8 where the highest recall and precision rounds up to
0.01 for Naïve Bayes. Models based on other statistical learners
reported recall and precision below 0.01. This trend is true for file

level VPMS for both releases. Source file VPMs report significant
lower accuracy measures when compared to binary-level VPMs.

Comparing our source file VPMs to other studies (lines four
to ten in Table 2) shows that Windows file VPMs report
exceptionally low accuracy measures. Comparing the number of
source files and the relative number of vulnerable source files for
Windows and binary level and related source file studies, we see a
significant difference. Please note that binaries can contain
hundreds of source files and thus accumulate for more
vulnerabilities, when compared to source files only. Compared to
binary level, the number of entities (column ‘N’ in Table 2) is two
orders of magnitude higher while the relative number of
vulnerable entities drops by one order or magnitude. Compared to
other study subjects, Windows contains one magnitude more
source files and also one magnitudes fewer vulnerabilities.

We conclude that for Windows and our statistical learners,
file-level granularity decreases recall and precision performance
compared with binary-level granularity, therefore we can
replicate prior studies. We also conclude that Windows source file
VPMs have to deal with a relative number of vulnerable source
files that is a magnitude lower than reported in related studies.

5.3 RQ3 Does The Choice of Statistical Learner Affect
Classification Performance?

We built classification models using six separate statistical
learning methods. The main rational behind using multiple models
was to check for inconsistencies and performance differences
rather than trying to build the best prediction model. By
construction, some statistical learners, such as decision trees, are
known to be a more adequate technique than decision trees with
imbalanced data [39].

Recall and precision performance results for different learners
and different levels of granularity are listed in Table 1. For both
levels of granularity, precision and recall values reported by
different statistical learners differ significantly. As expected,
decision trees (RF) report best precision values for both releases
and levels of granularity, except Windows 8 file level. Similar,
Naïve Bayes (NB) report best recall measurements. Compared to
the baseline performances of logistic regression (LR) reported by
Zimmermann et al. [1], Random Forests (RF) and Recursive
Partitioning (RP) and Support Vector Machines (SVM) report
better precision values for binary level. Naïve Bayes (NB)
models reported better recall values.

Taking recall and precision together (for non-zero data
points), there is a 3:1 performance difference when comparing the
best performing learner against the worst performing learner for a
given release and granularity. Model selection should be
approached with caution. Several alternatives, notably Naïve

Table 2: Vulnerability Prediction Model Comparison

Source Granularity N % Vulnerable Recall Precision
current paper binary 1000's 9.5 0.04-0.42 0.11-0.76
Zimmermann et al. [5] binary 1000's "very low" 0.20-0.40 0.40-0.67
current paper source file 100000's 0.33 0.00-0.14 0.00-0.47
Shin [7] source file 11051 3.0 0.52-1.00 0.21-0.90
Chowdhury et al. [26] source file 11139 7.0 0.29-0.74 Not reported
Shin [7] source file 11051 3.0 0.52-1.00 0.21-0.90
Hovsepyan [18] source file 2888 Not reported 0.88 0.85
Smith and Williams [21] soure file 2213 26.0 0.32 0.43
Gegick [6] component 25 0.5 Not reported Not reported
Neuhaus et al. [9] component 10452 4.05 0.35-0.55 0.55-0.80

Bayes (NB) and Random Forests (RF), should be tried, and the
choice should likely be revisited over time.

We conclude that statistical learner choice can alter
performance. Naïve Bayes and Random Forests perform best for
our dataset which contains relatively few vulnerability-prone files
(highly imbalanced dataset).

5.4 RQ4 Are VPMs Predicting Windows Binaries
Actionable With Respect To Security Inspection Effort?

From a practitioner’s point of view, VPMs must be considered
as development tool recommending additional quality assurance
efforts for predicted code entities. At Microsoft, security teams
have developed the Security Development Lifecycle (SDL) [2]
guiding developers to build more secure software. Among others,
one key aspect of the SDL is to conduct deep reaching security
code reviews to spot security issues or bad coding practices. For
Window development teams, code entities predicted to contain
vulnerable source code will be promoted for additional code
reviews. The effort to conduct these reviews is proportional to the
size of the predicted code entity. VPMs predicting binaries, which
may contain hundreds of source files, would trigger code review
of significant more effort than source file VPMs would do.

To validate the feasibility of code reviews triggered by binary
VPMs, we follow the approach by Dowd [37] who suggests that
one hour of security review can cover between 100 and 1000
lines. Microsoft Windows 8.1 is made up of over 6000 binaries
with the average binaries made up of hundreds of files and
millions lines of code. If we assume that is it is possible to
perform a security review on 500 lines per hour (average number
reported by Dowd [37]), it will take 100’s of work days (8 hour
working day) to review a single predicted binary. Even if we
assume security reviews of 10k lines of code per hour, it would
still take more than a week to review a single binary. Even in an
unrealistic scenario of 10k lines of code per hour and a perfect
VPM precision of 1.0, using binary VPMs is infeasible—it simply
takes too long to review an entire binary. Please keep in mind that
binaries change daily and that VPMs usually predict more than
one binary to be vulnerable.

Predicting source files instead of binaries, decreases review
effort significantly, although the model would predict more files
that are potentially vulnerable than binaries. Some Windows code
files can still contain thousands of lines of code, but the average
file size is in the hundreds of lines. Assuming an average review
speed of 500 lines per hour, reviewing a single predicted source
files takes about an hour. Even if we assume a lower bound of 100
lines of code per hour as suggested by by Dowd [37], reviewing a
single file would take less than a day. Compared to binary
prediction a feasible and actionable scenario.

We conclude that VPMs at binary level are not actionable.
Reviewing only one predicted binary takes 100’s of working days.
Reviews at file level can be completed within a day per file.

5.5 Other Observations
Here, we make several observations based on what we have

observed over the course of the project.
In reviewing the defect and vulnerability prediction literature,

and in discussions with the Windows security team prior to the
beginning of the project, several themes about expectations of
metric relationships to vulnerability prediction emerged, notably:

• Complexity: The more complex a file is, the more likely it is
to exhibit vulnerabilities.

• Churn: The more a file changes, the more likely it is to
exhibit vulnerabilities.

• Age: The older the code in a file, the more likely it is to
exhibit vulnerabilities.

• Process: Code written with attention to security is less likely
to exhibit vulnerabilities.

We take each of these notions, and compare them to the empirical
evidence we collected.

• Complexity did not appear directly as a factor in our
investigations. Correlations found for Windows 7 and
Windows 8 for our direct complexity measures were
negative, and complexity measures did not dominate the high
variance principal components. We find this result
surprising, as it seems intuitive that complexity in code is
more likely to yield defects and vulnerabilities, and we
would expect to see an effect. Among alternative hypotheses
are the notions that attackers will target the easiest means of
compromising a system, thus favoring simpler (but
vulnerable) targets within the code, or that some other
attribute of code (e.g. churn, see below) offers an easier
target.

• Churn appears as a factor in vulnerability prediction. All but
one of the correlations was positive, and several churn
measures were selected by PCA for both projects.

• Age appears as a factor in vulnerability prediction. The
Legacy measures had positive correlations. Legacy LOC
Percent was selected by PCA for Windows 7, but not for
Windows 8. One interpretation of this is that enough of the
legacy code issues were addressed during Windows 7 that
the legacy code was less of a factor for Windows 8.

• Process can be indirectly implicated as a factor. We ran a
correlation analysis between vulnerabilities found pre-release
in Windows 8 (which we credit to the SDL), and those found
post-release. There was a 0.41 correlation, suggesting a
relationship between the two pools of vulnerabilities, from
which we infer that the SDL is, at least in part, catching the
kinds of vulnerabilities that are found post-release.

5.6 Why Did We Fail To Build An Adequate VPM,
And What Can We Do About It?

By selecting a wide range of metrics, multiple statistical
learners, and by following accepted practice for building
prediction models, we intended to obtain VPMs that performed
well enough for use by development teams. We did not achieve
that goal. While using prediction models to identify potentially
vulnerable binaries might have acceptable precision values,
reviewing a single entity would require hundreds of days to
complete. On the other hand, reviews for source files seem to be
feasible, however, source file VPMs are not precise enough to be
trusted.

Nevertheless, we believe the results presented in this paper
can help scope appropriate next steps.

With less than 1% vulnerable files in over 100,000 files,
Windows contributes a unique dataset to the VPM literature.
Further investigation of how the number of entities and rarity of
vulnerable entities affects performance, seems warranted.
Distinct from dataset size, and unsurprisingly, higher granularity
reduces prediction performance.

Even though related work reported VPMs on source file level
with higher precision and recall values, the number of source files
falsely predicted to be vulnerable must be put in perspective.
False positive rates around 0.5 would still not be good enough to
trigger real action. Assuming each security review triggered by a

false prediction to be a waste of time would introduce
considerable cost and delays to the Windows development
process.

The variance in statistical learner performance within
experimental unit (release, granularity) and between granularities,
suggests that learner choice is heavily influenced by
characteristics of the data.

6. LIMITATIONS AND THREATS TO VALIDITY
Our study concerned two versions of Windows, and reported
results from a previous version of Windows. We cannot say
whether these results generalize outside of the Windows
codebase, Microsoft development processes, or the application of
the SDL. Even within the relatively constrained environment of
collecting data on two releases of Windows, many context
variables influence our measurements and any conclusions drawn
from them. Within the development process, people, process and
tools changed over the years during which each release was
developed. Between releases, different features were focused on,
presumably featuring varying levels of size, complexity and
subject matter. Over time, different areas of the code received
differing amounts of use by the general population, and differing
amounts of attention by attackers. The development team may
close attack vectors, or attackers may choose alternative attack
vectors.

For a variety of technical reasons, we were unable to access
metric data for about 5% of the binaries and their constituent
source files, however no files were intentionally excluded from
the analysis. While the model-building and predictions were
based on post-release vulnerabilities reported within a year after
release for Windows 7 and Windows 8, the Windows 7 metric
correlation data was collected over a similar timeframe as the
Windows Vista data at the time of its reporting, about three years
after each releases’ RTM date; Windows 8 has approximately one
year’s worth of Windows 8 vulnerability reporting. All of these
factors influence the measurements, correlations and models
developed here in ways that we may not have properly controlled
for.

7. CONCLUSIONS AND FUTURE WORK
The objective of the work was to understand why Microsoft
product groups did not use VPM’s as part of their development
process, in spite of the fact that they did use DPM’s. To validate
our approach we replicated a previous study of generating VPM’s
to identify vulnerabilities in Microsoft code. As part of our study
we collected metrics down to the source file level for two releases
of Windows, built VPMs for each release, two granularities of
prediction unit, and six statistical learners. We trained each VPM
on metric data collected from Windows code and process
databases, and used it to predict post-release vulnerabilities. The
results of our studies were comparable to prior studies in
predicting vulnerabilities at the binary level they were inaccurate
at the source file level.

The paper explores the practicalities of using the results of the
VPM models at the binary level and highlights how impractical
the data is for developers to take action. Alternatively the paper
shows that predictions at the source level are actionable but the
model is inaccurate. This explains why VPM models are not used
within Microsoft. The study also confirms prior research that the
choice of the statistical leaner does affect classification
performance.

Performance enhancements can be made through further
experimentation combining of metrics and learning methods, but

there does appear to be an upper limit to what is possible via these
avenues. We conjecture that security domain knowledge must be
added to VPMs before acceptable performance will be achieved.
8. ACKNOWLEDGMENTS
Patrick Morrison was an intern at Microsoft Research, Cambridge,
UK, when this work was performed. The Tools for Software
Engineers team provided significant support, especially Jacek
Czerwonka, Michaela Greiler, and John Smyth. We thank the
Realsearch group at North Carolina State University for their
valuable input to this paper. Funding for Patrick Morrison for part
of the writing of this paper was provided by the National Security
Agency.

9. REFERENCES
[1] Zimmermann, T., Nagappan, N., and Williams, L. Searching

for a Needle in a Haystack: Predicting Security
Vulnerabilities for Windows Vista. In Software Testing,
Verification and Validation (ICST), 2010 Third International
Conference on (2010), 421--428.

[2] Howard, M. and Lipner, S. The Security Development
Lifecycle. Microsoft Press, 2006.

[3] Basili, V.R., Briand, L.C., and Melo, W.L. A validation of
object-oriented design metrics as quality indicators. Software
Engineering, IEEE Transactions on, 22 (1996), 751--761.

[4] Emam, K.E., Melo, W., and Machado, J.C. The prediction of
faulty classes using object-oriented design metrics. J. Syst.
Softw., 56 (feb 2001), 63–75.

[5] Nagappan, N. and Ball, T. Use of relative code churn
measures to predict system defect density. In Software
Engineering, 2005. ICSE 2005. Proceedings. 27th
International Conference on (2005), 284--292.

[6] Gegick, M., Williams, L., Osborne, J., and Vouk, M.
Prioritizing software security fortification throughcode-level
metrics. In Proceedings of the 4th ACM workshop on Quality
of protection (2008), ACM, 31–38.

[7] Shin, Y. and Williams, L. Can traditional fault prediction
models be used for vulnerability prediction? Empirical
Software Engineering, 18 (2013), 25--59.

[8] Neuhaus, S., Zimmermann, T., Holler, C., and Zeller, A.
Predicting vulnerable software components. In Proceedings
of the 14th ACM conference on Computer and
communications security (2007), ACM, 529–540.

[9] Zimmermann, T. and Nagappan, N. Predicting defects using
network analysis on dependency graphs. In Proceedings of
the 30th international conference on Software engineering
(2008), ACM, 531--540.

[10] Arisholm, E. and Briand, L.C. Predicting Fault-prone
Components in a Java Legacy System. In Proceedings of the
2006 ACM/IEEE International Symposium on Empirical
Software Engineering (2006), ACM, 8–17.

[11] Mende, T. and Koschke, R. Revisiting the Evaluation of
Defect Prediction Models. In Proceedings of the 5th
International Conference on Predictor Models in Software
Engineering (2009), ACM, 7:1–7:10.

[12] Menzies, T., Greenwald, J., and Frank, A. Data Mining Static
Code Attributes to Learn Defect Predictors. IEEE

Transactions on Software Engineering, 33 (2007), 2--13.

[13] D'Ambros, M., Lanza, M., and Robbes, R. Evaluating defect
prediction approaches: a benchmark and an extensive
comparison. Empirical Softw. Engg., 17 (aug 2012), 531–
577.

[14] Hall, T., Beecham, S., Bowes, D., Gray, D., and Counsell, S.
A Systematic Literature Review on Fault Prediction
Performance in Software Engineering. Software Engineering,
IEEE Transactions on, 38 (2012), 1276--1304.

[15] Moser, R., Pedrycz, W., and Succi, G. A comparative
analysis of the efficiency of change metrics and static code
attributes for defect prediction. In Proceedings of the 30th
international conference on Software engineering (2008),
ACM, 181--190.

[16] Pinzger, M., Nagappan, N., and Murphy, B. Can developer-
module networks predict failures? In Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of
software engineering (2008), ACM, 2--12.

[17] Nagappan, N., Murphy, B., and Basili, V. The Influence of
Organizational Structure on Software Quality: An Empirical
Case Study. In Proceedings of the 30th International
Conference on Software Engineering (2008), ACM, 521--
530.

[18] Hassan, A.E. Predicting faults using the complexity of code
changes. In Proceedings of the 31st International Conference
on Software Engineering (2009), IEEE Computer Society,
78--88.

[19] Herzig, K. and Zeller, A. Mining cause-effect-chains from
version histories. In Software Reliability Engineering
(ISSRE), 2011 IEEE 22nd International Symposium on
(2011), 60--69.

[20] Herzig, K., Just, S., Rau, A., and Zeller, A. Predicting
Defects Using Change Genealogies. In Proceedings of the
2013 IEEE 24nd International Symposium on Software
Reliability Engineering (2013), IEEE Computer Society.

[21] Hovsepyan, A., Scandariato, R., Joosen, W., and Walden, J.
Software Vulnerability Prediction Using Text Analysis
Techniques. In Proceedings of the 4th International
Workshop on Security Measurements and Metrics (2012),
ACM, 7–10.

[22] Shin, Y., Meneely, A., Williams, L., and Osborne, J.A.
Evaluating Complexity, Code Churn, and Developer Activity
Metrics as Indicators of Software Vulnerabilities. Software
Engineering, IEEE Transactions on, 37 (2011), 772--787.

[23] Chowdhury, I. and Zulkernine, M. Using complexity,
coupling, and cohesion metrics as early indicators of
vulnerabilities. Journal of Systems Architecture, 57 (2011),
294--313.

[24] Giger, E., D'Ambros, M., Pinzger, M., and Gall, H.C.
Method-level bug prediction. In Empirical Software
Engineering and Measurement (ESEM), 2012 ACM-IEEE
International Symposium on (2012), 171--180.

[25] Menzies, T., Dekhtyar, A., Distefano, J., and Greenwald, J.
Problems with Precision: A Response to Comments on Data
Mining Static Code Attributes to Learn Defect Predictors.

Software Engineering, IEEE Transactions on, 33 (2007),
637--640.

[26] Premraj, R. and Herzig, K. Network Versus Code Metrics to
Predict Defects: A Replication Study. In Proceedings of the
2011 International Symposium on Empirical Software
Engineering and Measurement (2011), IEEE Computer
Society, 215–224.

[27] Weyuker, E., Ostrand, T., and Bell, R. Comparing the
effectiveness of several modeling methods for fault
prediction. Empirical Software Engineering, 15, 277-295.

[28] Czerwonka, J., Nagappan, N., Schulte, W., and Murphy, B.
CODEMINE: Building a Software Development Data
Analytics Platform at Microsoft. Software, IEEE, 30, 4
(2013), 64--71.

[29] Four Grand Challenges in Trustworthy Computing. , 2003.

[30] Team, R.D.C. R: A Language and Environment for
Statistical Computing. , 2010. R Foundation for Statistical
Computing.

[31] Venables, W.N. and Ripley, B.D. Modern Applied Statistics
with S. Fourth Edition. Springer, 2002.

[32] Pearson, K. LIII. On lines and planes of closest fit to systems
of points in space. Philosophical Magazine Series 6, 2
(1901), 559-572.

[33] Kuhn, M. caret: Classification and Regression Training. ,
2011.

[34] Witten, I.H. and Frank, E. Data mining: practical machine
learning tools and techniques with Java implementations.
SIGMOD Rec., 31 (mar 2002), 76--77.

[35] Friedman, J., Hastie, T., and Tibshirani, R. The Elements of
Statistical Learning. Springer Publishing Company,
Incorporated, 2009.

[36] Nagappan, N., Ball, T., and Zeller, A. Mining Metrics to
Predict Component Failures. In Proceedings of the 28th
International Conference on Software Engineering (2006),
ACM, 452--461.

[37] Dowd, M., McDonald, J., and Schuh, J. The Art of Software
Security Assessment: Identifying and Preventing Software
Vulnerabilities. Addison-Wesley Professional, 2006.

[38] Smith, B. and Williams, L. Using SQL Hotspots in a
Prioritization Heuristic for Detecting All Types of Web
Application Vulnerabilities. In Software Testing, Verification
and Validation (ICST), 2011 IEEE Fourth International
Conference on (March 2011), 220-229.

[39] Chawla, N.V. C4. 5 and imbalanced data sets: investigating
the effect of sampling method, probabilistic estimate, and
decision tree structure. In Proceedings of the ICML (2003).

[40] Beautiful Evidence. 2006.

10. APPENDIX

Table 3: Metrics Definitions

Metric [Haystack	
] Category Definition

Added	
 LOC Churn Lines	
 of	
 code	
 added	
 during	
 the	
 development	
 cycle.	

ChurnedLOC Total	
 Churn Churn Lines	
 of	
 code	
 added,	
 deleted	
 or	
 altered	
 during	
 the	
 development	

cycle.	

DeletedLOC Churn Lines	
 of	
 code	
 deleted	
 during	
 the	
 development	
 cycle.	

Editors Number	
 of	

Engineers

Churn Count	
 of	
 unique	
 users	
 who	
 have	
 made	
 changes	
 to	
 each	
 file

NumberOfEdits Edit	

Frequency

Churn Count	
 of	
 distinct	
 commits	
 made	
 to	
 each	
 file

RelativeChurn Churn Relative	
 code	
 measure,	
 ratio	
 of	
 Churned	
 LOC	
 to	
 LOC	
 Project	
 End

Complexity	
 (Avg,	
 Sum,	
 Max) Cyclomatic	

Complexity

Complexity McCabe	
 complexity	
 measure,	
 number	
 of	
 linearly-­‐independent	

paths	

through	
 each	
 function,	
 rolled	
 up	
 to	
 source-­‐file	
 level

Arcs	
 (Avg,	
 Sum,	
 Max) Dependency Number	
 of	
 transfer	
 of	
 control	
 points	
 between	
 basic	
 blocks	

defined	
 in	
 the	
 file

FanIn	
 (Avg,	
 Sum,	
 Max) Fan-­‐In Dependency Number	
 of	
 calls	
 to	
 functions	
 within	
 each	
 source	
 file

FanOut	
 (Avg,	
 Sum,	
 Max) Fan-­‐Out Dependency Number	
 of	
 calls	
 by	
 functions	
 within	
 each	
 source	
 file	
 to	
 other	

functions

FanOutExternal	
 	

(Avg,	
 Sum,	
 Max)

 Dependency Number	
 of	
 calls	
 by	
 functions	
 within	
 each	
 source	
 file	
 to	
 other	

functions	
 outside	
 the	
 source	
 file

Incoming	
 Cross	
 Binary Dependency Number	
 of	
 calls	
 from	
 outside	
 a	
 source	
 file's	
 binary	
 to	
 functions	

within	
 the	
 source	
 file

Incoming	
 Dependencies	
 	

(Avg,	
 Sum,	
 Max)

Incoming	

Direct

Dependency Number	
 of	
 function	
 call,	
 import,	
 export,	
 RPC,	
 COM	
 and	
 Registry	

access	
 dependencies	
 on	
 the	
 source	
 file

Outgoing	
 Dependencies	
 	

(Avg,	
 Sum,	
 Max)

Outgoing	

Direct

Dependency Number	
 of	
 function	
 call,	
 import,	
 export,	
 RPC,	
 COM	
 and	
 Registry	

access	
 dependencies	
 by	
 the	
 source	
 file	

AddedLOCSinceReset Legacy Lines	
 of	
 code	
 added	
 since	
 the	
 security	
 reset	
 date

AgeinWeeks Legacy Number	
 of	
 weeks	
 since	
 recorded	
 file	
 creation	
 date	
 of	
 source	
 file

ChurnedLOCSinceReset Legacy Lines	
 of	
 code	
 added,	
 deleted	
 or	
 altered	
 between	
 the	
 security	

reset	
 date	
 and	
 RTM

ChurnSinceReset Legacy Lines	
 of	
 code	
 deleted	
 or	
 altered	
 between	
 the	
 security	
 reset	
 date	

and	
 RTM.	

DeletedLOCSinceReset Legacy Lines	
 of	
 code	
 deleted	
 between	
 the	
 security	
 reset	
 date	
 and	
 RTM	

LegacyLOCPct Legacy Relative	
 code	
 measure,	
 percentage	
 of	
 LOC	
 written	
 prior	
 to	
 reset

LOC	
 Pre-­‐Reset Legacy Total	
 lines	
 of	
 code	
 in	
 the	
 file	
 on	
 the	
 security	
 reset	
 date

NumberOfEditsSinceReset Legacy Count	
 of	
 distinct	
 commits	
 made	
 to	
 each	
 file	
 since	
 the	
 reset

Arguments	
 (Avg,	
 Sum,	
 Max) Size Number	
 of	
 function	
 arguments	
 defined	
 within	
 the	
 file

Blocks	
 (Avg,	
 Sum,	
 Max) Size Number	
 of	
 basic	
 blocks	
 contained	
 within	
 the	
 file	
 (a	
 block	
 is	
 a	

single,	
 contiguous	
 set	
 of	
 instructions	
 with	
 one	
 entry,	
 one	
 exit	

and	
 no	
 branches)

Functions Size Number	
 of	
 functions	
 defined	
 within	
 the	
 file

LOC	
 Project	
 End LOC Size Total	
 lines	
 of	
 code	
 in	
 the	
 file	
 at	
 Release-­‐To-­‐Manufacturing	
 (RTM)

LOC	
 Project	
 Start Size Total	
 lines	
 of	
 code	
 in	
 the	
 file	
 at	
 the	
 start	
 of	
 the	
 development	

cycle

Locals	
 (Avg,	
 Sum,	
 Max) Size Number	
 of	
 local	
 variables	
 defined	
 within	
 the	
 file

Paths	
 (Avg,	
 Sum,	
 Max) Size Number	
 of	
 paths	

VulnCount_PreRelase 	
 Defects	
 Number	
 of	
 vulnerabilities	
 fixed	
 prior	
 software	
 release

VulnCount_SecurityReview	
 	
 Defects	
 Number	
 of	
 security	
 related	
 changes	
 prior	
 software	
 release

