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   Abstract 

While Microsoft product teams have adopted defect prediction 
models, they have not adopted vulnerability prediction models 
(VPMs). Seeking to understand this discrepancy, we replicated a 
VPM for two releases of the Windows Operating System, varying 
model granularity and statistical learners. We reproduced binary-
level prediction precision (~0.75) and recall (~0.2). However, 
binaries often exceed 1 million lines of code, too large to 
practically inspect, and engineers expressed preference for source 
file level predictions. Our source file level models yield precision 
below 0.5 and recall below 0.2. We suggest that VPMs must be 
refined to achieve actionable performance, possibly through 
security-specific metrics.  

Keywords: Vulnerabilities, Prediction, Metrics, Complexity, 
Churn, Coverage, Dependencies. 

1. Introduction 
Software security vulnerabilities are a constant threat to software 
companies and their customers. In recent years, the list of severe 
security vulnerabilities and their wide impact on large numbers of 
customers brought software security more and more into the 
public and media focus.  Security holes such as the Secure 
Sockets Library (SSL)1 issues affected thousands of businesses 
and end customers and led to severe damages.  

During the development of a software program, any code 
change can potentially inject security vulnerabilities or alter the 
attack surface to expose legacy code that contain security 
vulnerabilities. Development teams use a number of different 
techniques to verify if code contains security vulnerabilities, such 
as fuzzing, static code verifiers, and code reviews. The Microsoft 
security team has developed the Security Development Lifecycle 
(SDL) [2] to help its developers build more secure software 
through the systematic use of these techniques.  But for large 
software products, indiscriminately using reviews to catch 
security defects can be impractical. For the 70+ million lines of 
code in the Windows code base, a compete security review could 
take between 35 and 350 person-years2.  The application of 
vulnerability detection and removal techniques must be prioritized 
to the most suspicious areas of the product. 

The Microsoft Windows development teams follow the SDL 
process and apply a variety of techniques to improve the security 
of the product. Within the Windows development team, a group of 
security experts select code areas for complicated and deep-
reaching security reviews. To support the selection process, 
researchers proposed defect prediction models (DPMs) to reduce 
the search space by exploiting properties of code and processes 
that are predictive of defects in general, including security 
                                                                    
1http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0092 
2 Dowd et al. [37] suggest that good security reviewers can cover 

between 100 and 1000 lines per hour. 

vulnerabilities. Basili et al. [3] suggest that prediction models 
support planning, scheduling and decision-making during 
software development by enabling allocation of resources to 
modules more likely to be defect-prone. Following long-standing 
work in defect prediction model (DPM)-building for software 
(e.g. [3,4,5]) a number of vulnerability prediction models (VPMs) 
have been built and tested (e.g. [1,6,7,8,9]). In general, 
vulnerabilities are a subset of defects, though they occur (or are 
discovered) much less frequently than general faults.  For 
example, Shin and Williams [7] reports that 21% of files in 
Mozilla Firefox have defects, while 3% of files have 
vulnerabilities. Consequently, VPMs have to deal with highly 
unbalanced datasets. Although discovered security vulnerabilities 
are rare, they can cause significant problems for software users 
and providers, and so they call for priority attention by software 
development teams. 

While DPMs have been integrated into development team 
workflows within Microsoft, VPMs have not. Discussions with 
the Windows security development team raised concerns 
regarding the usefulness of proposed VPMs specifically: 

• VPMs built for coarse levels of granularity (code binaries) may 
be precise, but predicting entities containing hundreds of 
source files simply confirms prior knowledge without 
identifying code areas suitable for intense code inspection. 

• In general, low fine granular models (source files) could be 
actionable, but give predictions of low accuracy. 

With this study, we explore these two issues in the 
construction of VPMs. The goal of this research is to investigate 
whether vulnerability prediction models are accurate and 
actionable enough to provide helpful recommendations when 
allocating engineering resources. We measure how ‘actionable’ a 
VPM is in terms of recall (true prediction rate), precision 
(positive prediction rate), and the inspection effort required to 
perform security reviews on code areas suggested by the VPM.  

Prior research and feedback from the Windows security 
development team suggests a number of open issues in the 
construction of effective VPMs: 

• Choice of granularity – Model granularity, the selection of a 
unit to collect data on and make predictions for, forces a 
tradeoff between classification performance and the 
actionability of the prediction results. Representative DPM and 
VPM entity granularities include binary [1], source file [7], 
class [10], and function/method [11]. Binary-level predictions 
tend to add little new knowledge, as developers are often aware 
of which binaries are prone to security defects. Due to the size 
of the binaries, they may contain hundreds of source files, no 
specific action can be taken based on this information. File-
level prediction model operates at the level of typical 
development tools, a step closer to the source code. Line- and 
even instruction-level granularity would be desirable; 



method/function-level is the highest granularity of which we 
are aware [11]. 

• Statistical learner choice – Menzies et al. [12] suggest “the 
choice of learning method is far more important than which set 
of the available data is used for learning.” We build VPMs 
using a range of statistical learners, and compare performance 
results. 

• Classification performance – While each team will have its 
own goals for performance, Shin et al. [7] and others [8,13] 
have suggested that precision and recall values of 0.7 are 
reasonable for prediction models. Reported performance for 
individual DPMs ranges both above and below this threshold. 
Existing VPMs have sometimes shown lower performance than 
DPMs.  

Instead of building a new VPM based on new metric 
collections, we replicate an existing VPM [1], confirm previously 
reported results, but further investigate how actionable its 
proposed recommendations are. Our investigations are guided by 
the following research questions: 

RQ1 Can we replicate VPMs proposed by Zimmermann 
et al. [1] achieving comparable prediction accuracy on binary 
level for two newer version of Windows? 

RQ2 How does granularity affect classification 
performance? 

RQ3 How does the choice of statistical learner affect 
classification performance? 

RQ4 Are VPMs predicting vulnerable Windows binaries 
actionable with respect to security inspection effort? 

To answer these research questions, we collected code 
measurements and pre- and post-release security defect counts for 
Windows 7 and Windows 8 on two levels of granularity: file-level 
and binary-level. We then used these metric collections to train 
and evaluate VPM classification models classifying code entities 
that contained at least one post-release vulnerability.  

Our contributions include: 

• A comparison between the replicated and the original 
classification models trained and evaluated on previous 
releases of Windows. 

• A comparison of two different granularities on classification 
performance. 

• A comparison of classification performance for a variety of 
typical statistical learning methods. 

• An assessment of inspection effort for VPMs predicting 
vulnerable code binaries instead of source code files. 
This paper is organized as follows: Section 2 describes related 

work, Section 3 describes the methodology used to build the 
VPMs. In Section 4 we report experimental results before 
discussing these results in more detail in Section 5. We close with 
a discussion about limitations and threats to validity (Section 6), 
and final conclusions and future work (Section 7). 

2. Related Work 
The design and implementation of VPMs has been rooted in the 
broader category of DPMs.  

2.1 Defect Prediction Models (DPM) 
DPMs are models or recommendation models predicting the 

existence or likelihood of code defects in code entities. The 
number of related work on DPMs is large. For the sake of brevity, 
we only refer to the most relevant related studies in this section. 
The first studies on predicting defects using code metrics emerged 

in the 1990s. In 1996, Basili et al. [3] applied object-oriented 
metrics to predict fault-proneness in eight systems, finding 
statistically significant relationships for some metrics tested. 
Nagappan et al. [5] found improved defect density prediction 
performance by normalizing change metrics to file size. 
Zimmerman et al. [9] used code dependencies to predict the 
presence of defects. Hall et al. [14] performed a systematic 
literature review on defect prediction in software engineering, 
finding that model-building methodology had an impact on 
prediction performance, and advising on good practice for 
reporting prediction projects and their results. Other studies used 
change-related metrics [15], developer related metrics [16], 
organizational metrics [17], process metrics [18], or change 
dependency metrics [9,19,20] to build defect prediction models, 
on various software systems and levels of granularity. 

2.2 Vulnerability Prediction Models (VPM) 
Zimmermann et al. [1] report that ‘Vulnerabilities are not as 
simple to predict as defects’ based upon the analysis of two VPMs 
for Windows. However, Shin and Williams report “the fault 
prediction model and the vulnerability prediction model provided 
similar prediction performance” [7] for a VPM that performs 
comparably with a DPM when trained and evaluated on Mozilla’s 
Firefox. Their results suggest that VPMs can be approximated by 
DPMs. In general, VPMs follows lessons learned from defect 
prediction modeling, with several adaptations made to account for 
the relative rarity of vulnerabilities compared to defects.  

Similar to DPMs, the range and variety of proposed VPMs 
over time is wide. Neuhaus [8] applies historical data on imports 
and functions used by vulnerability-prone components. 
Hovsepyan et al. [21] applied text analysis achieving high 
precision and recall values. Other studies use code complexity, 
code churn, and other static alerts to predict attack-prone or 
vulnerable components [6,22,23]. Smith and Williams [22], 
evaluated the use of database access references (‘SQL hotspots’) 
as a vulnerability predictor, finding a positive correlation between 
database access points in source code and both vulnerabilities and 
code churn. Doyle and Walden [23] studied the evolution of 
vulnerability density over time in PHP applications, observing a 
trend of decreasing vulnerability density over time.  

In this paper, we replicate the study of Zimmermann et al. [1] 
who studied typical metrics for complexity, churn, code coverage, 
organization as well as dependency metrics and evaluated their 
correlations with post-release vulnerabilities in Windows Vista 
binaries. They found that each set of metrics had strengths and 
weaknesses in terms of recall and precision performance for 
vulnerability prediction, but performance improvement was 
needed for binary-level prediction to be practical. Our results will 
confirm their findings for newer releases of Windows. However, 
we will also investigate how models using the same metrics but 
on finer levels of granularity (source file level) perform.  

The models described to this point have focused on either the 
binary/executable file level, or on the source file level. Giger et al. 
[24] built VPMs at method/function-level granularity, the highest 
granularity prediction model reported in the literature at present. 

2.3 The Impact of Machine Learners 
Menzies et al. [25] highlight that how a model is built is as 
important, or perhaps more important, than the specific metrics 
used. Early work in DPMs for software engineering often used 
either linear regression or logistic regression to model defect or 
vulnerability proneness. In recent years, the software engineering 
community has begun applying machine learning techniques that 
take advantage of structure in the data beyond the linear 



combinations modeled by regression. These modeling techniques, 
among many others, include Decision Trees and Naïve Bayes 
[13], Support Vector Machines [1], clustering algorithms and 
Random Forests [26]. Comparing different machine learners on 
the same dataset can yield significant different results. Weyuker et 
al. [27] compared the effectiveness of several modelling methods 
for fault prediction and showed that different modelling methods 
can lead to different prediction accuracies, depending on the 
dataset. As discussed above, vulnerabilities are rare and thus, 
VPMs have to deal with highly imbalanced datasets. To 
investigate the impact of different modelling methods on 
Windows VPMs, we apply several of these modelling techniques 
in our experiments to assess whether algorithm choice makes a 
difference in terms of classification performance. We also include 
decision tree models, which are believed to work well on 
unbalanced training sets. 

3. Reseearch Methodology 
In principal, we replicated earlier VPMs for Windows proposed 
by Zimmermann at al. [1]. While the original study targeted 
Windows Vista, the experiments described in this paper were 
conducted on datasets collected for Window 7 and Windows 8, 
products of significant size. Choosing the same product as the 
original study, although different releases, enable a comparison 
with the original study, giving insight in to how vulnerability 
prediction metrics in a codebase change over time. 

Both Windows releases contain thousands of binaries, 
hundreds of thousands of source files, and well over 70 million 
lines of code. Windows 7 development began June 1, 2006, and 
the ‘Release to Manufacturing’ (RTM) build was produced on 
July 14, 2009. Windows 8 development began June 14, 2009, and 
the RTM build was produced on July 25, 2012. 

To capture the code metrics and pre- and post- vulnerabilities 
this research study relied on the CODEMINE process [28]. 
Microsoft developed CODEMINE to allow the company to 
monitor the development attributes of its products both during 
development and following product release. The CODEMINE 
process provides a central repository of development and 
vulnerability metrics which were used within this research study.    

3.1 Code Metrics 
VPMs presented in this study are based on 29 metrics broadly 
classified into 5 categories: 

• Churn metrics [5]. Six metrics to verify the theory that change 
is more likely to introduce error than its absence. Churn 
measures are relative to a time period; the period for all 
presented calculations is between the start and RTM date of the 
project.  

• Complexity metrics [3]. One metric to verify the theory that 
more complicated code is more likely to exhibit errors.  

• Dependency metrics [9] Seven metrics to verify the theory that 
the degree to which a piece of code is depended upon, or 
depends upon other code, influences its impact on software 
vulnerabilities.  

• Legacy metrics. Eight metrics to characterize a metric of 
particular interest to Microsoft. The importance of security in 
the development of software at Microsoft began receiving 
increased attention after the Bill Gates’ 2002 Trustworthy 
Computing Memo [29], with significant investments made in 
security training, tools, and process [2]. Code written after 
these processes were put in place has had a higher, more 
process-driven, level of attention to security applied in its 
design, construction and testing. These metrics verify the 

theory that code written before the security reset may be more 
likely to contain vulnerabilities. 

• Size metrics. Seven metrics to verify the theory that larger 
source files are more difficult to mentally manage, and, 
therefore, are more prone to defects and vulnerabilities.  

• Pre-Release vulnerabilities. For VPMs predicting post-release 
vulnerabilities, we used pre-release vulnerabilities to model 
usual suspects. More details on collecting pre-release 
vulnerabilities is given in Section 3.2. 

Most of the discussed measures have been used for predicting 
defects in prior research both within and outside Microsoft (e.g. 
[1,6,9,22]). Table 3, in the appendix, identifies all metric used in 
the study and provides a description of the metric. Where noted, 
average, maximum and total values were taken for several of the 
metrics. Depending on the metric, data was available at either the 
source file level or at the function level. In cases where function 
level data was present, amounts were aggregated up to the file 
level via averages, totals and maximums. Binary-level data was 
obtained by aggregating source-file level data up to the binary in 
which each source file is used. This study uses additional metrics 
that were not available at the time of the original study by 
Zimmermann at al. [1]. The table identifies which metrics are 
common between the two studies and which are unique to this 
study. 

All size, churn, complexity, and dependency metrics were 
measured as of each releases’ RTM date. 

3.2 Pre- and Post-Release Vulnerabilities 
As dependent variables, we used the number of pre- and post-
release security vulnerabilities detected and fixed within the 
corresponding source files and code binaries respectively. A post-
release vulnerability is a security issue detected and corrected 
after releasing the corresponding software product to the public. 
Pre-release vulnerabilities are issues that are identified and fixed 
during software development. Pre-release vulnerabilities of 
product version N may also be post-release vulnerabilities for 
product version N-1. We credit pre-release security changes to 
security practices outlined in the Security Development Lifecycle 
(SDL) [2] as applied during Windows development. Post-release 
security changes can be considered as ‘escapes’ from the SDL. 
Escapes may be worthy of investigation for SDL application in 
future releases. 

To identify post-release vulnerability fixes, we counted the 
number of code changes applied in Windows service pack 
branches marked as security fix. These branches serve as sink of 
defect fixes that will eventually be shipped to customers as part of 
a service pack or hot-fix. No feature development is permitted on 
these branches. Pre-release vulnerabilities were identified by bug 
reports marked as security vulnerabilities which resulted in 
changed source files and binaries. We were confident in the 
accuracy of this security characterization as all bug reports that 
were labeled as security defects have been triaged by the security 
team.  

In our data set, vulnerable source files represent 
approximately 0.003% of all source files. 

3.3 Prediction Models 
For both levels of granularity, binaries and source files, we build 
classification models that separate code entities that had at least 
one vulnerability from code entities that had no vulnerabilities. To 
train individual VPMs, we used the metric data described in 
Section 10 as independent variables and the number of pre- or 
post-release vulnerabilities as dependent variables. For 



classification models predicting post-release vulnerabilities, we 
use the number of pre-release vulnerabilities as additional 
independent variable. For each Windows release and level of 
granularity, we split the overall data collection into two subsets. 
One subset containing 2/3 of the data points is used for training, 
the other for testing purposes. To split the data, we used stratified 
sampling—the ratio of code entities associated with 
vulnerabilities from the original dataset is preserved for both 
subsets. We repeatedly sampled the original dataset 100 times 
(100-cross-fold-validation). In total, we generated 800 
independent training and testing sets: two Windows releases, two 
levels of granularity, and 100-cross folds each (similar to 
[1,9,26]). 

We conducted the experiments using the R statistical software 
[30] (version 3.10). Instead of using the original feature vectors 
provided by the raw metric values, we applied R’s prcomp [31] 
procedure to our data to produce principal components. Principal 
Component Analysis (PCA) [32] reduces redundancy in our 
matrix of metrics and observations by maximizing the variance of 
linearly independent variables. Deciding how many of these 
variables to use in model building typically takes one of two 
forms; either a limit on the number of terms in the model is set, or 
some total amount of variance to be accounted for by the model is 
set. We selected principal components that accounted for 95% of 
variance.   

In pursuit of high prediction performance, we used Max 
Kuhn’s R package caret [33] to build VPMs based on the 
components selected by PCA and on a set of series of machine 
learning techniques [34,35]: 

• Logistic Regression (LR) - Generalized linear model 
using a logistic function.   

• Naïve Bayes (NB) - Applying Bayes’ theorem, this is a 
simple probabilistic classifier assuming strong independence of 
the independent variables.  

• Recursive Partitioning (RP) - A variant of decision 
trees, this model can be represented as a binomial tree and it is 
often used for classification tasks. 

• Support Vector Machine (SVM) - This model classifies 
data by determining a separator that distinguishes the predicted 
classes with the largest margin. We used the radial kernel for 
our experiments. 

• Tree Bagging (TB) - Another variant of decision trees, 
this model uses bootstrapping to stabilize the decision trees. 

• Random forest (RF) - A variant of decision trees, this 
model can be represented as a binomial tree and popularly used 
for classification tasks. 

Each model is optimized by the caret package [33] optimizing 
various tune parameters (please see caret manual for more 
details). “The performance of held-out samples is calculated and 
the mean and standard deviations is summarized for each 
combination. The parameter combination with the optimal 

resampling statistic is chosen as the final model and the entire 
training set is used to fit a final model” [33]. The level of 
performed optimization can be set using the tuneLength 
parameter, which is set to five for all experiments in this paper. 

3.4 Inspection Effort 
We define ‘inspection effort’ to be the number of person-hours 
required to perform security review on the positives (correct or 
incorrect) identified by the VPM. Following previous practice, 
e.g. [36,28], we assume that inspection effort is proportional to 
code size, that all vulnerabilities correctly or incorrectly identified 
by the VPM must be security reviewed. Dowd [37] suggests that 
one hour of security review can cover between 100 and 1000 
lines. Summing the lines of code present in the positives 
predicted, and dividing the sum by the inspection rate yields the 
inspection effort in person-hours for a set of VPM predictions. For 
constant recall and precision values, lower effort values are more 
actionable. To illustrate the difficulties with present VPMs, we 
assume an average inspection rate of 500 lines per person-hour. 

4.  Results 
In this section, we present results collected during our 
investigations.  

We report on a series of experiments in prediction for 
Windows post-release vulnerabilities. Table 1 reports mean recall 
and precision for the 100-fold validations run for each 
combination of release (Windows 7, Windows 8), granularity 
(binary, file), and Model (LR, NB, RF, RP, SVM, TB).  The 
highest precision and highest recall for each release and 
granularity are shown in bold. 

To align our replicated models with original proposed model 
by Zimmermann et al. [1] and other related work, we compare our 
models precision and recall values to closely related work. Table 
2 summarizes results for the VPMs built in this paper, together 
with results for VPMs built in referenced works 
[1,6,7,8,21,23,38]. The list of referenced VPMs in the table is 
based on reporting in the referenced paper of the table data on 
granularity, size and recall and precision performance. The 
‘Source’ column indicates the source of the VPM. ‘Granularity’ 
indicates the unit used to train and predict against. ‘N’ indicates 
the number of entities used in the experiments. ‘% Vulnerable’ 
reports the percentage of vulnerable files in the data used to train 
the VPMs. ‘Recall’ and ‘Precision’ report performance ranges for 
each measure.   

Table 1: Vulnerability Prediction Model Performance 

 
Windows 7  Windows 8 

Precision Recall Precision Recall 
Binary level 

LR 0.5 0.12 0.32 0.09 
NB 0.3 0.42 0.11 0.4 
RF 0.76 0.27 0.69 0.07 
RP 0.51 0.22 0.23 0.07 
SVM 0.51 0.13 0.64 0.04 
TB 0.69 0.13 0.45 0.1 

File level 
LR 0.01 0 0 0 
NB 0.07 0.14 0.01 0.01 
RF 0.47 0.02 0 0 
RP 0.21 0.04 0 0 
SVM 0.38 0.02 0 0 
TB 0.36 0.03 0 0 

 



5. Discussion 
In this section, we consider how our results address the research 
questions, and what the results imply for future work on VPMs. 

5.1 RQ1 Can We Replicate VPMs Proposed for 
Windows with Comparable Accuracy? 

Table 2 holds the answer for this first research question. 
Comparing our replicated models trained and evaluated on 
Windows 7 and Windows 8 with the original study [1] conducted 
on Windows Vista, we can compare the first two lines in Table 2. 
Comparing the best models (highest values) for both studies, we 
see that our replicated models reported slightly better recall and 
precision values than original models: recall increased from 0.40 
to 0.42 while precision increased from 0.67 to 0.76. Zimmermann 
et al. [1] used logistic regression as statistical learner. Comparing 
the original recall and precision values to our equivalent LR 
learner, we see from Table 1 that for both Windows releases the 
reported recall—0.12 for Windows 7 and 0.09 for Windows 8—is 
lower than in the original study (0.20-0.40). For precision, we see 
that LR in this study reported similar values--0.50 for Windows 7 
and 0.32 for Windows 8—than the original model (0.40-0.67). 
Overall, results reported for Windows 7 and Windows 8 were 
comparable with the results reported by Zimmerman et al. [1]—
considering usual fluctuations and differences between product 
releases. 

Compared to other studies (see Table 2), recall values for 
Windows 7 and Windows 8 appear to be below average, 
especially recall values. We suspect that this is due to the fact that 
only very few binaries and source files were reported vulnerable. 
We discuss this issue in more detail in the next section. 

Menzies et al. [25] observe that even low precision models 
can be useful, if the value of the item being recalled is high. This 
situation applies for many VPMs reported in earlier, related 
studies. However, considering Windows recall values for both 
levels of granularity (recall between 0.00-0.14 for files), we doubt 
that moderate precision values will be useful.  

5.2 RQ2 How Does Granularity Affect Classification 
Performance? 

Comparing VPMs for binary level (first line in Table 2) to 
VPMs on source file level (third line in Table 2), we see a 
significant drop in precision and recall. Comparing the best source 
file VPM learner (RF) to results of the same VPM learner on 
binary level, we see for Windows 7 a drop in precision from 0.76 
to 0.46 and a drop in recall from 0.27 to 0.02. Even worse for 
Windows 8 where the highest recall and precision rounds up to 
0.01 for Naïve Bayes. Models based on other statistical learners 
reported recall and precision below 0.01. This trend is true for file 

level VPMS for both releases. Source file VPMs report significant 
lower accuracy measures when compared to binary-level VPMs.  

Comparing our source file VPMs to other studies (lines four 
to ten in Table 2) shows that Windows file VPMs report 
exceptionally low accuracy measures. Comparing the number of 
source files and the relative number of vulnerable source files for 
Windows and binary level and related source file studies, we see a 
significant difference. Please note that binaries can contain 
hundreds of source files and thus accumulate for more 
vulnerabilities, when compared to source files only. Compared to 
binary level, the number of entities (column ‘N’ in Table 2) is two 
orders of magnitude higher while the relative number of 
vulnerable entities drops by one order or magnitude. Compared to 
other study subjects, Windows contains one magnitude more 
source files and also one magnitudes fewer vulnerabilities.   

We conclude that for Windows and our statistical learners, 
file-level granularity decreases recall and precision performance 
compared with binary-level granularity, therefore we can 
replicate prior studies. We also conclude that Windows source file 
VPMs have to deal with a relative number of vulnerable source 
files that is a magnitude lower than reported in related studies.  

5.3 RQ3 Does The Choice of Statistical Learner Affect 
Classification Performance? 

We built classification models using six separate statistical 
learning methods. The main rational behind using multiple models 
was to check for inconsistencies and performance differences 
rather than trying to build the best prediction model. By 
construction, some statistical learners, such as decision trees, are 
known to be a more adequate technique than decision trees with 
imbalanced data [39].  

Recall and precision performance results for different learners 
and different levels of granularity are listed in Table 1.  For both 
levels of granularity, precision and recall values reported by 
different statistical learners differ significantly. As expected, 
decision trees (RF) report best precision values for both releases 
and levels of granularity, except Windows 8 file level. Similar, 
Naïve Bayes (NB) report best recall measurements. Compared to 
the baseline performances of logistic regression (LR) reported by 
Zimmermann et al. [1], Random Forests (RF) and Recursive 
Partitioning (RP) and Support Vector Machines (SVM) report 
better precision values for binary level.  Naïve Bayes (NB) 
models reported better recall values.  

Taking recall and precision together (for non-zero data 
points), there is a 3:1 performance difference when comparing the 
best performing learner against the worst performing learner for a 
given release and granularity. Model selection should be 
approached with caution. Several alternatives, notably Naïve 

Table 2: Vulnerability Prediction Model Comparison 

Source Granularity N % Vulnerable Recall Precision 
current paper binary 1000's 9.5 0.04-0.42 0.11-0.76 
Zimmermann et al. [5] binary 1000's "very low" 0.20-0.40 0.40-0.67 
current paper source file 100000's 0.33 0.00-0.14 0.00-0.47 
Shin [7] source file 11051 3.0 0.52-1.00 0.21-0.90 
Chowdhury et al. [26] source file 11139 7.0 0.29-0.74 Not reported 
Shin [7] source file 11051 3.0 0.52-1.00 0.21-0.90 
Hovsepyan [18] source file 2888 Not reported 0.88 0.85 
Smith and Williams [21] soure file 2213 26.0 0.32 0.43 
Gegick [6] component 25 0.5 Not reported Not reported 
Neuhaus et al. [9] component 10452 4.05 0.35-0.55 0.55-0.80 

 



Bayes (NB) and Random Forests (RF), should be tried, and the 
choice should likely be revisited over time.  

We conclude that statistical learner choice can alter 
performance. Naïve Bayes and Random Forests perform best for 
our dataset which contains relatively few vulnerability-prone files 
(highly imbalanced dataset). 

5.4 RQ4 Are VPMs Predicting Windows Binaries 
Actionable With Respect To Security Inspection Effort? 

From a practitioner’s point of view, VPMs must be considered 
as development tool recommending additional quality assurance 
efforts for predicted code entities. At Microsoft, security teams 
have developed the Security Development Lifecycle (SDL) [2] 
guiding developers to build more secure software. Among others, 
one key aspect of the SDL is to conduct deep reaching security 
code reviews to spot security issues or bad coding practices. For 
Window development teams, code entities predicted to contain 
vulnerable source code will be promoted for additional code 
reviews. The effort to conduct these reviews is proportional to the 
size of the predicted code entity. VPMs predicting binaries, which 
may contain hundreds of source files, would trigger code review 
of significant more effort than source file VPMs would do.  

To validate the feasibility of code reviews triggered by binary 
VPMs, we follow the approach by Dowd [37] who suggests that 
one hour of security review can cover between 100 and 1000 
lines. Microsoft Windows 8.1 is made up of over 6000 binaries 
with the average binaries made up of hundreds of files and 
millions lines of code. If we assume that is it is possible to 
perform a security review on 500 lines per hour (average number 
reported by Dowd [37]), it will take 100’s of work days (8 hour 
working day) to review a single predicted binary. Even if we 
assume security reviews of 10k lines of code per hour, it would 
still take more than a week to review a single binary. Even in an 
unrealistic scenario of 10k lines of code per hour and a perfect 
VPM precision of 1.0, using binary VPMs is infeasible—it simply 
takes too long to review an entire binary. Please keep in mind that 
binaries change daily and that VPMs usually predict more than 
one binary to be vulnerable. 

Predicting source files instead of binaries, decreases review 
effort significantly, although the model would predict more files 
that are potentially vulnerable than binaries. Some Windows code 
files can still contain thousands of lines of code, but the average 
file size is in the hundreds of lines.  Assuming an average review 
speed of 500 lines per hour, reviewing a single predicted source 
files takes about an hour. Even if we assume a lower bound of 100 
lines of code per hour as suggested by by Dowd [37], reviewing a 
single file would take less than a day. Compared to binary 
prediction a feasible and actionable scenario.  

We conclude that VPMs at binary level are not actionable. 
Reviewing only one predicted binary takes 100’s of working days. 
Reviews at file level can be completed within a day per file.  

5.5 Other Observations 
Here, we make several observations based on what we have 

observed over the course of the project. 
In reviewing the defect and vulnerability prediction literature, 

and in discussions with the Windows security team prior to the 
beginning of the project, several themes about expectations of 
metric relationships to vulnerability prediction emerged, notably: 

• Complexity: The more complex a file is, the more likely it is 
to exhibit vulnerabilities.  

• Churn: The more a file changes, the more likely it is to 
exhibit vulnerabilities. 

• Age: The older the code in a file, the more likely it is to 
exhibit vulnerabilities. 

• Process: Code written with attention to security is less likely 
to exhibit vulnerabilities. 

We take each of these notions, and compare them to the empirical 
evidence we collected.  

• Complexity did not appear directly as a factor in our 
investigations. Correlations found for Windows 7 and 
Windows 8 for our direct complexity measures were 
negative, and complexity measures did not dominate the high 
variance principal components. We find this result 
surprising, as it seems intuitive that complexity in code is 
more likely to yield defects and vulnerabilities, and we 
would expect to see an effect. Among alternative hypotheses 
are the notions that attackers will target the easiest means of 
compromising a system, thus favoring simpler (but 
vulnerable) targets within the code, or that some other 
attribute of code (e.g. churn, see below) offers an easier 
target.   

• Churn appears as a factor in vulnerability prediction. All but 
one of the correlations was positive, and several churn 
measures were selected by PCA for both projects.  

• Age appears as a factor in vulnerability prediction. The 
Legacy measures had positive correlations. Legacy LOC 
Percent was selected by PCA for Windows 7, but not for 
Windows 8. One interpretation of this is that enough of the 
legacy code issues were addressed during Windows 7 that 
the legacy code was less of a factor for Windows 8. 

• Process can be indirectly implicated as a factor. We ran a 
correlation analysis between vulnerabilities found pre-release 
in Windows 8 (which we credit to the SDL), and those found 
post-release. There was a 0.41 correlation, suggesting a 
relationship between the two pools of vulnerabilities, from 
which we infer that the SDL is, at least in part, catching the 
kinds of vulnerabilities that are found post-release.  

5.6 Why Did We Fail To Build An Adequate VPM, 
And What Can We Do About It? 

By selecting a wide range of metrics, multiple statistical 
learners, and by following accepted practice for building 
prediction models, we intended to obtain VPMs that performed 
well enough for use by development teams. We did not achieve 
that goal. While using prediction models to identify potentially 
vulnerable binaries might have acceptable precision values, 
reviewing a single entity would require hundreds of days to 
complete. On the other hand, reviews for source files seem to be 
feasible, however, source file VPMs are not precise enough to be 
trusted. 

Nevertheless, we believe the results presented in this paper 
can help scope appropriate next steps.  

With less than 1% vulnerable files in over 100,000 files, 
Windows contributes a unique dataset to the VPM literature. 
Further investigation of how the number of entities and rarity of 
vulnerable entities affects performance, seems warranted.  
Distinct from dataset size, and unsurprisingly, higher granularity 
reduces prediction performance.  

Even though related work reported VPMs on source file level 
with higher precision and recall values, the number of source files 
falsely predicted to be vulnerable must be put in perspective. 
False positive rates around 0.5 would still not be good enough to 
trigger real action. Assuming each security review triggered by a 



false prediction to be a waste of time would introduce 
considerable cost and delays to the Windows development 
process. 

The variance in statistical learner performance within 
experimental unit (release, granularity) and between granularities, 
suggests that learner choice is heavily influenced by 
characteristics of the data. 

6. LIMITATIONS AND THREATS TO VALIDITY 
Our study concerned two versions of Windows, and reported 
results from a previous version of Windows.  We cannot say 
whether these results generalize outside of the Windows 
codebase, Microsoft development processes, or the application of 
the SDL. Even within the relatively constrained environment of 
collecting data on two releases of Windows, many context 
variables influence our measurements and any conclusions drawn 
from them. Within the development process, people, process and 
tools changed over the years during which each release was 
developed. Between releases, different features were focused on, 
presumably featuring varying levels of size, complexity and 
subject matter. Over time, different areas of the code received 
differing amounts of use by the general population, and differing 
amounts of attention by attackers. The development team may 
close attack vectors, or attackers may choose alternative attack 
vectors.  

For a variety of technical reasons, we were unable to access 
metric data for about 5% of the binaries and their constituent 
source files, however no files were intentionally excluded from 
the analysis.  While the model-building and predictions were 
based on post-release vulnerabilities reported within a year after 
release for Windows 7 and Windows 8, the Windows 7 metric 
correlation data was collected over a similar timeframe as the 
Windows Vista data at the time of its reporting, about three years 
after each releases’ RTM date; Windows 8 has approximately one 
year’s worth of Windows 8 vulnerability reporting. All of these 
factors influence the measurements, correlations and models 
developed here in ways that we may not have properly controlled 
for. 

7.  CONCLUSIONS AND FUTURE WORK 
The objective of the work was to understand why Microsoft 
product groups did not use VPM’s as part of their development 
process, in spite of the fact that they did use DPM’s. To validate 
our approach we replicated a previous study of generating VPM’s 
to identify vulnerabilities in Microsoft code. As part of our study 
we collected metrics down to the source file level for two releases 
of Windows, built VPMs for each release, two granularities of 
prediction unit, and six statistical learners. We trained each VPM 
on metric data collected from Windows code and process 
databases, and used it to predict post-release vulnerabilities. The 
results of our studies were comparable to prior studies in 
predicting vulnerabilities at the binary level they were inaccurate 
at the source file level.  

The paper explores the practicalities of using the results of the 
VPM models at the binary level and highlights how impractical 
the data is for developers to take action. Alternatively the paper 
shows that predictions at the source level are actionable but the 
model is inaccurate. This explains why VPM models are not used 
within Microsoft. The study also confirms prior research that the 
choice of the statistical leaner does affect classification 
performance.   

Performance enhancements can be made through further 
experimentation combining of metrics and learning methods, but 

there does appear to be an upper limit to what is possible via these 
avenues. We conjecture that security domain knowledge must be 
added to VPMs before acceptable performance will be achieved.  
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10. APPENDIX 

Table 3: Metrics Definitions 

Metric [Haystack	
  ] Category Definition 

Added	
  LOC  Churn Lines	
  of	
  code	
  added	
  during	
  the	
  development	
  cycle.	
   

ChurnedLOC Total	
  Churn Churn Lines	
  of	
  code	
  added,	
  deleted	
  or	
  altered	
  during	
  the	
  development	
  
cycle.	
   

DeletedLOC  Churn Lines	
  of	
  code	
  deleted	
  during	
  the	
  development	
  cycle.	
   

Editors Number	
  of	
  
Engineers 

Churn Count	
  of	
  unique	
  users	
  who	
  have	
  made	
  changes	
  to	
  each	
  file 

NumberOfEdits Edit	
  
Frequency 

Churn Count	
  of	
  distinct	
  commits	
  made	
  to	
  each	
  file 

RelativeChurn  Churn Relative	
  code	
  measure,	
  ratio	
  of	
  Churned	
  LOC	
  to	
  LOC	
  Project	
  End 

Complexity	
  (Avg,	
  Sum,	
  Max) Cyclomatic	
  
Complexity 

Complexity McCabe	
  complexity	
  measure,	
  number	
  of	
  linearly-­‐independent	
  
paths	
   

through	
  each	
  function,	
  rolled	
  up	
  to	
  source-­‐file	
  level 

Arcs	
  (Avg,	
  Sum,	
  Max)  Dependency Number	
  of	
  transfer	
  of	
  control	
  points	
  between	
  basic	
  blocks	
  
defined	
  in	
  the	
  file 

FanIn	
  (Avg,	
  Sum,	
  Max) Fan-­‐In Dependency Number	
  of	
  calls	
  to	
  functions	
  within	
  each	
  source	
  file 

FanOut	
  (Avg,	
  Sum,	
  Max) Fan-­‐Out Dependency Number	
  of	
  calls	
  by	
  functions	
  within	
  each	
  source	
  file	
  to	
  other	
  
functions 

FanOutExternal	
  	
  
(Avg,	
  Sum,	
  Max) 

 Dependency Number	
  of	
  calls	
  by	
  functions	
  within	
  each	
  source	
  file	
  to	
  other	
  
functions	
  outside	
  the	
  source	
  file 

Incoming	
  Cross	
  Binary  Dependency Number	
  of	
  calls	
  from	
  outside	
  a	
  source	
  file's	
  binary	
  to	
  functions	
  
within	
  the	
  source	
  file 

Incoming	
  Dependencies	
  	
  
(Avg,	
  Sum,	
  Max) 

Incoming	
  
Direct 

Dependency Number	
  of	
  function	
  call,	
  import,	
  export,	
  RPC,	
  COM	
  and	
  Registry	
  
access	
  dependencies	
  on	
  the	
  source	
  file 

Outgoing	
  Dependencies	
  	
  
(Avg,	
  Sum,	
  Max) 

Outgoing	
  
Direct 

Dependency Number	
  of	
  function	
  call,	
  import,	
  export,	
  RPC,	
  COM	
  and	
  Registry	
  
access	
  dependencies	
  by	
  the	
  source	
  file	
   

AddedLOCSinceReset  Legacy Lines	
  of	
  code	
  added	
  since	
  the	
  security	
  reset	
  date 

AgeinWeeks  Legacy Number	
  of	
  weeks	
  since	
  recorded	
  file	
  creation	
  date	
  of	
  source	
  file 

ChurnedLOCSinceReset  Legacy Lines	
  of	
  code	
  added,	
  deleted	
  or	
  altered	
  between	
  the	
  security	
  
reset	
  date	
  and	
  RTM 

ChurnSinceReset  Legacy Lines	
  of	
  code	
  deleted	
  or	
  altered	
  between	
  the	
  security	
  reset	
  date	
  
and	
  RTM.	
   

DeletedLOCSinceReset  Legacy Lines	
  of	
  code	
  deleted	
  between	
  the	
  security	
  reset	
  date	
  and	
  RTM	
   

LegacyLOCPct  Legacy Relative	
  code	
  measure,	
  percentage	
  of	
  LOC	
  written	
  prior	
  to	
  reset 

LOC	
  Pre-­‐Reset  Legacy Total	
  lines	
  of	
  code	
  in	
  the	
  file	
  on	
  the	
  security	
  reset	
  date 

NumberOfEditsSinceReset  Legacy Count	
  of	
  distinct	
  commits	
  made	
  to	
  each	
  file	
  since	
  the	
  reset 

Arguments	
  (Avg,	
  Sum,	
  Max)  Size Number	
  of	
  function	
  arguments	
  defined	
  within	
  the	
  file 

Blocks	
  (Avg,	
  Sum,	
  Max)  Size Number	
  of	
  basic	
  blocks	
  contained	
  within	
  the	
  file	
  (a	
  block	
  is	
  a	
  
single,	
  contiguous	
  set	
  of	
  instructions	
  with	
  one	
  entry,	
  one	
  exit	
  
and	
  no	
  branches) 

Functions  Size Number	
  of	
  functions	
  defined	
  within	
  the	
  file 

LOC	
  Project	
  End LOC Size Total	
  lines	
  of	
  code	
  in	
  the	
  file	
  at	
  Release-­‐To-­‐Manufacturing	
  (RTM) 

LOC	
  Project	
  Start  Size Total	
  lines	
  of	
  code	
  in	
  the	
  file	
  at	
  the	
  start	
  of	
  the	
  development	
  
cycle 

Locals	
  (Avg,	
  Sum,	
  Max)  Size Number	
  of	
  local	
  variables	
  defined	
  within	
  the	
  file 

Paths	
  (Avg,	
  Sum,	
  Max)  Size Number	
  of	
  paths	
   

VulnCount_PreRelase 	
   Defects	
   Number	
  of	
  vulnerabilities	
  fixed	
  prior	
  software	
  release 

VulnCount_SecurityReview	
   	
   Defects	
   Number	
  of	
  security	
  related	
  changes	
  prior	
  software	
  release 

 


