
Foundations and TrendsR© in Information Retrieval
Vol. 9, No. 3-4 (2015) 209–354
c© 2015 M. Gupta and M. Bendersky
DOI: 10.1561/1500000050

Information Retrieval with Verbose Queries

Manish Gupta
Microsoft

gmanish@microsoft.com

Michael Bendersky
Google

bemike@google.com

Contents

Preface 2

1 Introduction 5
1.1 Null Queries . 5
1.2 Verbose Queries are Frequent 6
1.3 Search Engine Performance for Verbose Queries 7
1.4 Datasets . 8
1.5 Metrics . 9
1.6 Organization of the Survey 10
1.7 Summary . 12

2 Properties of Verbose Queries 14
2.1 Performance for Verbose Queries 15
2.2 Categories of Verbose Queries 17
2.3 Query Log Traffic Representation 18
2.4 Other Properties . 19
2.5 Summary . 20

3 Query Reduction to a Single Sub-Query 22
3.1 Introduction . 22
3.2 Will Query Reduction help? 24
3.3 Candidates for Sub-queries 25

ii

iii

3.4 Features to Extract a Single Sub-query 27
3.5 Methods to Combine the Features for Query Reduction . . 36
3.6 Efficiency Aspect of Query Reduction Methods 43
3.7 Ask for User Input to Guide Query Reduction 44
3.8 Summary . 45

4 Query Reduction by Choosing Multiple Sub-Queries 46
4.1 Introduction . 46
4.2 Sub-query Distributions using CRF-perf 47
4.3 Sub-query Distributions using ListNet 50
4.4 Reformulation Trees Method 50
4.5 Summary . 53

5 Weighting Query Words and Query Concepts 55
5.1 Introduction . 55
5.2 A Fixed-Point Method . 57
5.3 Word Necessity Prediction using Regression 58
5.4 Regression Rank . 59
5.5 Sequential Dependence (SD) Model using Markov Random

Fields . 60
5.6 Integrating Regression Rank with Markov Random Fields

(MRFs) . 62
5.7 Quasi-synchronous Dependency (QSD) Language Model . 63
5.8 Weighted Sequential Dependence (WSD) Model 64
5.9 Parameterized Query Expansion (PQE) Model 66
5.10 Multiple Source Formulation (MSF) 69
5.11 Query Hypergraphs . 70
5.12 Summary . 73

6 Query Expansion by Including Related Concepts 75
6.1 Introduction . 75
6.2 When Could Query Expansion Help? 76
6.3 Adding a Category Label to Queries 78
6.4 Parameterized Latent Concept Expansion 79
6.5 Expansion using User-supplied Reference Documents . . . 79
6.6 Selective Interactive Reduction and Expansion 82

iv

6.7 Summary . 82

7 Query Reformulation for Verbose Queries 84
7.1 Introduction . 84
7.2 Reformulation using Translation-based Language Model . . 85
7.3 Reformulation using Random Walks 87
7.4 Reformulation using Query Logs 91
7.5 Reformulation using Anchor Text 93
7.6 Summary . 94

8 Query Segmentation for Verbose Queries 95
8.1 Introduction . 95
8.2 Statistical Methods . 96
8.3 Supervised Methods . 97
8.4 Generative Methods . 98
8.5 NLP-based Methods . 100
8.6 Summary . 101

9 Sources and Treatment of Verbose Queries 103
9.1 Finding Images for Books 103
9.2 Finding Related Videos 105
9.3 Question Answering . 107
9.4 Searching for Medical Information 108
9.5 Fact Verification . 109
9.6 Natural Language Interface for Databases 111
9.7 E-Commerce . 111
9.8 Search Queries from Children 112
9.9 Music Search . 113
9.10 Queries from User Selected Text 114
9.11 Summary . 116

10 Summary and Research Directions 117
10.1 Towards a Unified Verbose Query Processing Framework . 118
10.2 Multi-modal Verbose Query Processing 119
10.3 Search Personalization . 120
10.4 Natural Language Query Understanding 120

v

Acknowledgements 122

Appendices 123

A Basic Information Retrieval Concepts 124
A.1 Language Modeling . 124
A.2 Query Likelihood Model 125
A.3 Pseudo-Relevance Feedback 125
A.4 Divergence from Randomness Framework 126
A.5 Singular Value Decomposition 126
A.6 Metrics . 127

B Graphical Models: MRFs and CRFs 130
B.1 Markov Random Fields (MRFs) 130
B.2 Conditional Random Fields (CRFs) 131

C Dependency Parsing 133

References 135

Index 145

Abstract

Recently, the focus of many novel search applications has shifted from
short keyword queries to verbose natural language queries. Examples
include question answering systems and dialogue systems, voice search
on mobile devices and entity search engines like Facebook’s Graph
Search or Google’s Knowledge Graph. However the performance of text-
book information retrieval techniques for such verbose queries is not as
good as that for their shorter counterparts. Thus, effective handling of
verbose queries has become a critical factor for adoption of information
retrieval techniques in this new breed of search applications.

Over the past decade, the information retrieval community has
deeply explored the problem of transforming natural language verbose
queries using operations like reduction, weighting, expansion, reformu-
lation and segmentation into more effective structural representations.
However, thus far, there was not a coherent and organized survey on
this topic. In this survey, we aim to put together various research pieces
of the puzzle, provide a comprehensive and structured overview of vari-
ous proposed methods, and also list various application scenarios where
effective verbose query processing can make a significant difference.

M. Gupta and M. Bendersky. Information Retrieval with Verbose Queries.
Foundations and TrendsR© in Information Retrieval, vol. 9, no. 3-4, pp. 209–354,
2015.
DOI: 10.1561/1500000050.

Preface

Information retrieval with verbose natural language queries has gained
a lot of interest in recent years both from the research community and
the industry. Search with verbose queries is one of the key challenges for
many of the current most advanced search platforms, including ques-
tion answering systems (Watson or Wolfram Alpha), mobile personal
assistants (Siri, Cortana and Google Now), and entity-based search en-
gines (Facebook Graph Search or Knowledge Graph). Therefore, we
believe that this survey is very timely and should be interesting to
readers from both academia as well as industry.

Scope of the Survey

We cover an exhaustive list of techniques to handle verbose queries.
Intuitively verbose queries are long. Also empirical observations show
that often times long queries are verbose in nature. We use the terms
“verbose” queries and “long” queries interchangeably in this survey.

In order to stay focused, following is a list of related topics that we
do not cover as part of this survey.

• Automatic Speech Recognition (ASR)

• Processing null queries other than verbose queries

2

Preface 3

• Methods (e.g., [Yang et al., 2009] and [Tsagkias et al., 2011]) and
applications (e.g., [Yih et al., 2006]) which consider documents
as queries

• Query processing tasks for short queries which do not need any
non-trivial modification to be applicable to long queries

• Community-based question-answering systems

Development of the Survey

Many tutorials and surveys dedicated to general query handling or
query log analysis have been conducted by researchers in information
retrieval and web mining. However, all of them focus on short queries;
none of these have explicitly focused on long verbose queries. This
survey is based on a full-day tutorial offered by the authors at the
38th International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR 2015). The slides for the tu-
torial can be obtained from http://research.microsoft.com/pubs/
241895/gupta15_verbose.pptx.

This survey is entirely based on previously published research and
publicly available datasets, rather than the internal practices of the
respective employers of the authors. As such, it should prove useful for
both practitioners and academic researchers interested in reproducing
the reported results.

Audience

Researchers in the field of information retrieval will benefit the most,
as this survey will give them an exhaustive overview of the research
in the direction of handling verbose web queries. We believe that the
survey will give the newcomers a complete picture of the current work,
introduce important research topics in this field, and inspire them to
learn more. Practitioners and people from the industry will clearly
benefit from the discussions both from the methods perspective, as
well as from the point of view of applications where such mechanisms
are starting to be applied.

http://research.microsoft.com/pubs/241895/gupta15_verbose.pptx
http://research.microsoft.com/pubs/241895/gupta15_verbose.pptx

4 Preface

After reading the survey, the audience will be able to appreciate
and understand the following.

• What are the interesting properties of complex natural language
verbose queries

• Challenges in effective information retrieval with verbose queries

• State-of-the-art techniques for verbose query transformations
that yield better expected search performance

• State-of-the-art ranking methods for verbose queries, including
supervised learning-to-rank methods

• What user/industry segments can be affected by better retrieval
with verbose queries and what are the possible applications

Writing Style

We have tried to make the survey as self-contained as possible. How-
ever, for some sections, we have deliberately adopted a reference paper
writing style, to enable a holistic overview of the research field. In such
cases, we discuss those pieces of work from a more general and abstract
standpoint, and advise the readers to go through the referenced papers
for details. We provide a basic introduction to preliminary informa-
tion retrieval concepts, graphical models and dependency parsing in
the Appendices.

1
Introduction

Web search has matured significantly in the past two decades. Beyond
the ten blue links, search engines display a large amount of heteroge-
neous information including direct factual answers, task panes, image
answers, news answers, video answers, social results, related searches,
etc. Broadly, queries to a search engine can be divided into two parts:
head and tail. Head queries are the highly popular queries while the
tail queries occur with a low frequency in the query log. Although the
head queries are handled very elegantly by the popular search engines,
there is a large room for improvement when handling the tail queries,
a part of which return no results.

1.1 Null Queries

Null queries are queries for which the search engine returns zero results.
This could be because of the following reasons.

• Query verbosity

• Mismatch between the searcher and the publisher vocabulary

5

6 Introduction

• Unavailability of relevant documents (temporally, or general rar-
ity)

• Inability of the naïve users to formulate appropriate queries

In this survey, we focus on the verbosity aspect of such “null” or diffi-
cult to handle queries. We use the terms “verbose” queries and “long”
queries interchangeably. This work focuses on verbose queries as well
as on long queries which may or may not be verbose.

1.2 Verbose Queries are Frequent

As shown in Figure 2.1, the percentage of the total query traffic follows
a power law distribution with respect to the query length [Arampatzis
and Kamps, 2008, Bailey et al., 2010], i.e., for a query Q,

p(|Q|) = C|Q|−s, for |Q| ≥ k0 (1.1)

where |Q| is the query length in words, C is a normalizing constant, s
is the slope, k0 is the lower bound from which the power law holds.

We consider queries with five or more words as verbose or long
queries. In 2006, Yahoo! claimed that 17% of the queries contained five
or more words.1. Figure 2.1 shows that ∼15% queries contain five or
more words.

Popular usage of speech-based personal assistants like Cortana,
Siri, and Google Now attract an even higher percentage of verbose
queries. Crestani and Du [2006] and Yi and Maghoul [2011] analyzed
the properties of written versus spoken queries which were manually
generated by participants to satisfy TREC topic information needs.
They found that while written queries had an average length of 9.54 and
7.48 words with and without stop words respectively, spoken queries
had an average length of 23.07 and 14.33 words respectively. Voice
queries were considerably longer than the typed mobile queries.

While most of the verbose queries are explicitly asked by the users,
some of them are implicit. Users ask verbose queries explicitly in a large

1http://www.zdnet.com/blog/micro-markets/yahoo-searches-more-
sophisticated-and-specific/27

http://www.zdnet.com/blog/micro-markets/yahoo-searches-more-sophisticated-and-specific/27
http://www.zdnet.com/blog/micro-markets/yahoo-searches-more-sophisticated-and-specific/27

1.3. Search Engine Performance for Verbose Queries 7

number of scenarios. Advanced users searching for an exhaustive list of
relevant documents in medical literature or patent documents often use
verbose comprehensive queries. Naïve users like children or the elderly
are not trained to ask short queries to search engines and hence end
up using full sentence queries. Community-based question answering
platforms also attract long queries. Sometimes users end up using long
queries implicitly. Long queries could be an outcome of cut-and-paste
behavior. For example, a user just found some text on some topic (say
a news headline) and fires it as a query to find related news articles.
Similarly, to find a relevant image for a paragraph in a textbook, one
may fire the entire paragraph as a query to the search engine. We
discuss both the implicit and explicit examples of verbose queries in
more details in §9.

1.3 Search Engine Performance for Verbose Queries

Past research in information retrieval found that long queries increase
the retrieval performance. However, for web search queries, many re-
searchers have observed that search engines perform poorly on verbose
queries. The reasons for poor performance are as follows.

• High degree of query specificity. To satisfy their specific (or nar-
row) needs, users put additional non-redundant information in
verbose queries. But since there are not many web-pages to sat-
isfy such highly specific information needs, it is difficult for search
engines to surface the right results.

• Term redundancy or extraneous terms (lot of noise). Often times,
verbose queries contain a lot of noise, such as extraneous terms
that users believe are important to conveying their information
needs, but in fact are confusing to automatic systems.

• Rarity of verbose queries. Most search engines optimize for highly
popular (or head) queries. Since verbose queries are rare, search
engine algorithms are not tweaked to always perform well for
them.

8 Introduction

• Lack of sufficient natural language parsing. Longer queries can be
answered more effectively if the semantics can be understood us-
ing natural language understanding techniques. However, search
engines currently do not perform such deep parsing because (a)
they are optimized for short queries for which deep natural lan-
guage parsing is not required, and (b) such deep parsing has per-
formance implications.

• Difficulty in distinguishing between the key and complementary
concepts. A verbose query can have multiple concepts. The per-
formance can be improved if the results that contain key concepts
are shown at the top. However, identifying key concepts from a
verbose query is challenging.

Hence, a large number of efforts have been made to understand such
long queries in a more effective manner.

1.4 Datasets

Most of the papers in this area have used the TREC datasets for eval-
uating their approaches. ROBUST04, W10g, GOV2, ClueWeb-09-Cat-
B, TREC123, and CERC are the most popular TREC2 datasets. RO-
BUST04 is a Newswire collection, while W10g, GOV2 and ClueWeb-
09-Cat-B are web collections. TREC123 is a collection of documents
from TREC disks 1 and 2. CERC is the CSIRO Enterprise Research
Collection (CERC), a crawl of *.csiro.au (public) web sites conducted
in March 2007 and used in the 2007 edition of the TREC Enterprise
track. Table 1.1 gives a summary of the dataset statistics. Each of these
datasets contain relevance judgments for multiple topics (or queries).
The judgments are for multiple documents and are binary or graded
(e.g., non-relevant, relevant, highly relevant). TREC topics illustrate
the difference between a keyword query and a description query. A
TREC topic consists of several parts, each of which corresponds to a
certain aspect of the topic. In the example at Figure 1.1, we consider
the title (denoted 〈title〉) as a keyword query on the topic, and the de-

2http://trec.nist.gov

http://trec.nist.gov

1.5. Metrics 9

Collection Content #Docs Topics
Robust04 Newswire 528155 250
W10g Web 1692096 100
GOV2 Web 25205179 150
ClueWeb-09-Cat-B Web 50220423 150
TREC123 TREC disks 1 and 2 742611 150
CERC Enterprise Documents

from *.csiro.au
370715 50

Table 1.1: Statistics for TREC Datasets

scription of the topic (denoted 〈desc〉) as a natural language description
of the information request. In general, the description field is intended
to model what a searcher might first say to someone who will actually
help them with their search. The verbose description is therefore of-
ten used as the verbose query. Another popular similar dataset is the
NTCIR-4/5 English-English ad-hoc IR tasks dataset with an average
length of 14 query words for description queries.

Some of the recent papers have also used real web query logs [Bala-
subramanian et al., 2010, Parikh et al., 2013, Yang et al., 2014]. A few
researchers have also used document paragraphs or passages as verbose
queries [Agrawal et al., 2011, Lee and Croft, 2012, Gupta, 2015].

1.5 Metrics

A variety of standard information retrieval metrics have been used to
evaluate the methods for verbose query processing. Most of the re-
searchers that use TREC datasets evaluate their methods using Mean
Average Precision (MAP), Mean Reciprocal Rank (MRR), and Preci-
sion@K measures against the relevance judgments. Researchers using
query logs also use Normalized Discounted Cumulative Gain (NDCG)
with respect to the original long query as a metric. We provide a short
description of these metrics in §A.6.

10 Introduction

Discovering Key Concepts in Verbose Queries

Michael Bendersky
bemike@cs.umass.edu

W. Bruce Croft
croft@cs.umass.edu

Center for Intelligent Information Retrieval
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

ABSTRACT
Current search engines do not, in general, perform well with
longer, more verbose queries. One of the main issues in pro-
cessing these queries is identifying the key concepts that will
have the most impact on effectiveness. In this paper, we de-
velop and evaluate a technique that uses query-dependent,
corpus-dependent, and corpus-independent features for au-
tomatic extraction of key concepts from verbose queries. We
show that our method achieves higher accuracy in the iden-
tification of key concepts than standard weighting methods
such as inverse document frequency. Finally, we propose a
probabilistic model for integrating the weighted key concepts
identified by our method into a query, and demonstrate that
this integration significantly improves retrieval effectiveness
for a large set of natural language description queries derived
from TREC topics on several newswire and web collections.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query For-
mulation

General Terms
Algorithms, Experimentation, Theory

Keywords
Information retrieval, verbose queries, key concepts extrac-
tion

1. INTRODUCTION
Automatic extraction of concepts of interest from a larger

body of text have proved to be useful for summarization
[16], keyword extraction [15], content-targeted advertising
[33], named entity recognition [4] and document clustering
[11]. In this paper, we describe an extension of automatic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’08, July 20–24, 2008, Singapore.
Copyright 2008 ACM 978-1-60558-164-4/08/07 ...$5.00.

concept extraction methods for the task of extracting key
concepts from verbose natural language queries.

Information retrieval research is generally more focused
on keyword queries: terse queries that contain only a small
selection of key words from a more verbose description of
the actual information need underlying the query. TREC
topics illustrate the difference between a keyword query and
a description query. A TREC topic consists of several parts,
each of which corresponds to a certain aspect of the topic.
In the example at Figure 1, we consider the title (denoted
<title>) as a keyword query on the topic, and the descrip-
tion of the topic (denoted <desc>) as a natural language
description of the information request.

<num> Number 829

<title> Spanish Civil War support

<desc> Provide information on all kinds of material

international support provided to either side in the

Spanish Civil War.

Figure 1: An example of <title> and <desc> parts
of a TREC topic.

It might appear obvious to the reader that the key con-
cept of the topic in Figure 1 is Spanish Civil War, rather
than, say, material international support, which only serves
to complement the key concept. However, there is no ex-
plicit information in the description itself to indicate which
of these concepts is more important.

A simple experiment illustrates this point. When running
the <desc> query from Figure 1 on three commercial web
search engines, the first page of the results (top ten retrieved
documents) for each of the search engines contains six, four
and zero documents related to the Spanish Civil War, re-
spectively. Only one of the search engines returns docu-
ments mentioning international support during the war. In
contrast, running the <title> query from Figure 1 results,
for all three search engines, in all the documents returned
on the first page referring to some aspect of Spanish Civil
War, including international support during the war.

A verbose query could also potentially contain two or
more equally essential key concepts. For example, consider
a query What did Steve Jobs say about the iPod? 1, which
contains two key concepts, Steve Jobs and iPod, that must

1This example originally appeared on the Powerset blog:
http://blog.powerset.com/

Figure 1.1: An Example of 〈title〉 and 〈desc〉 Parts of a TREC Topic

1.6 Organization of the Survey

In this survey we present an organized summary of efforts towards
improved information retrieval for verbose queries. We begin with a
study of the specific properties of verbose queries (§2) which makes
them especially challenging in information retrieval applications. Next,
we discuss six main ways of handling long queries – query reduction
to a single sub-query, query reduction to multiple sub-queries, query
weighting, query expansion, query reformulation, and query segmenta-
tion in §3 to §8. Table 1.2 shows examples of each of the techniques.

Long verbose queries can be reduced to a single sub-query which
could be, for example, the most important noun phrase in the query
(§3). Or the long query could be processed to extract multiple short
queries (§4). Rather than reducing queries by dropping terms from long
queries, each term could be assigned a weight proportional to its impor-
tance (§5). Another way to handle long queries is to add concept words
to the original query to make the intent clearer (§6). If the words used
in the long queries are very specific, they could be completely reformu-
lated to a new query which could potentially match a larger number of
documents (§7). Finally, a verbose query can contain multiple pieces of
the user information need. Such a query could be segmented and then
each such segment can be reduced, weighted, expanded or reformulated
to get desired results (§8). For each of these techniques, we group to-
gether related methods and present comparisons of these methods. We
put together various domains in which verbose queries are frequent,
and also discuss how various verbose query processing techniques have
been used to handle them (§9). We conclude this survey with a brief

1.6. Organization of the Survey 11

Technique Original Query Modified Query
Query Reduction to
a Single Sub-query
(§3)

ideas for breakfast
menu for a morning
staff meeting

breakfast meeting
menu ideas

Query Reduction
to a Multiple sub-
queries (§4)

identify any efforts
proposed or under-
taken by world gov-
ernments to seek re-
duction of iraqs for-
eign debt

reductions iraqs for-
eign debt, iraqs for-
eign debt

Query Weighting
(§5)

civil war battle reen-
actments

civil:0.0889,
war:0.2795, bat-
tle:0.1310, reenact-
ments:0.5006

Query Expansion
(§6)

staining a new deck staining a new deck
Shopping/Home
and Garden/Home
Improvement

Query Reformulation
(§7)

how far is it from
Boston to Seattle

distance from Boston
to Seattle

Query Segmentation
(§8)

new ac adapter and
battery charger for
hp pavilion notebook

new, ac adapter, and,
battery charger, for,
hp pavilion notebook

Table 1.2: Examples of Various Techniques for Handling Verbose Queries

12 Introduction

Notation Meaning
Q = {q1, q2, . . . , qn} Original verbose query
PQ Power set of Q
P A sub-query of Q
C Collection
|C| Number of words in C
N Number of documents in C
m(P,M) Target measure of effectiveness of ranking func-

tion M for query P
tf(qi) Term frequency of qi in C.
tfd(qi) Term frequency of qi in document or document

collection d.
df(qi) Document frequency of qi in C.
TM (Q) Top M relevant documents for query Q.

Table 1.3: Table of Notations

overview of future research directions (§10). Table 1.3 presents a list of
frequent notations that we use in this survey.

1.7 Summary

Query verbosity is one of the main reasons for zero results returned
by search engines. Verbose queries occur in multiple domains and are
increasing with increase in usage of speech-based personal assistants.
Currently, search engines perform poorly for such long verbose queries.
Hence, a large number of efforts have been made to understand such
long queries in a more effective manner. In this survey we present an
organized summary of efforts towards improved information retrieval
for verbose queries.
Suggested Further Reading: [Arampatzis and Kamps, 2008]: Query
length analysis and distribution fitting for multiple datasets; [Crestani
and Du, 2006]: Comparison between written and spoken queries in
terms of length, duration, part-of-speech, aptitude to describe rele-

1.7. Summary 13

vant documents, and retrieval effectiveness; http://trec.nist.gov/:
Details of the various TREC datasets.

http://trec.nist.gov/

2
Properties of Verbose Queries

In this chapter, we study various properties of verbose queries. We
begin with a discussion on the performance of search engines on verbose
queries. Verbose queries can be categorized with respect to topics or
from a grammatical perspective. We discuss the distribution of verbose
queries across these categories. Finally, we discuss properties related
to the representation of verbose queries in the entire query log traffic
with respect to top k coverage and repetition.

Fig. 1. Query length and frequency histograms.

ACM Transactions on The Web, Vol. 4, No. 4, Article 15, Pub. date: September 2010.

Query Length (words)

Pe
rc

en
ta

ge
 o

f T
ot

al
 Q

ue
ry

 T
ra

ffi
c

Figure 2.1: Power Law Distribution
of Query Length vs Frequency [Bailey
et al., 2010]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

People

Weather
Health

Prod/Serv

Rec/Sports
Entert.

Busin
ess

Adult

Sci/te
ch
Places

Edu
Career

Non-sc
i re

f.

Curr.
Ev.

Category name

Pe
rc

en
t o

f
qu

er
ie

s

Unclass.
Unclass.

Curr.
Ev.

People

Weather
Health

Prod/Serv

Rec/Sports
Entert.

Busin
ess

Adult

Sci/te
ch
Places

Edu
Career

Non-sc
i re

f.
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Q
ue

ry
 L

en
gt

h
(w

or
ds

)

Category name

(a) (b)

Figure 2. (a) Distribution of informational goals in tagged data set. (b) Relationship between query length
and information goal of query.

4.2 Distribution and Query Length for Informational Goals

We analyzed the distribution of informational goals in the tagged corpus (Figure 2a). We found
that the largest category was Products and Services, describing 19% of all queries. The second
largest category was Adult Content covering 18% of the queries. The smallest category was
Weather, which occupied less than one percent of all queries.

We explored the influence of informational category on query length (Figure 2b). Compared
to the overall average query length of 2.30 words, the longest queries were in the Education cate-
gory, with a mean of over 3 words per query, followed by Current Events and Scientific/Technical.
The shortest queries were in the Unclassified category. This is not surprising since shorter queries
contain less information and are thus harder to classify into informational goals.

5 Temporal Dynamics of Query Behavior

The analyses we have described so far capture snapshots of a potentially complex process of
formulation and iterative refinement of queries. We shall now review our work on generalizing
the analyses of the tagged log data to probe temporal patterns of query behavior.

5.1 Inter-query Interval and Refinement Actions

We pursued an understanding of relationships between the time taken to browse or process the
results of a search and the nature of refinement actions. As one approach to this problem, we
examined pairs of adjacent queries from individual users, and assigned the pairs to buckets rep-
resenting different inter-query time intervals according to a predefined discretization of intervals,
ranging from the shortest interval of 0-10 seconds to the largest of Greater than 20 minutes. For
each inter-query interval, we computed the conditional probability that the next query would be
in each refinement class. The results of this analysis are displayed in the graph in Figure 3. For
each time bucket, the probabilities of all of the different refinement classes sum to 1.

Figure 2.2: Query Length for different
Categories [Lau and Horvitz, 1999]

14

2.1. Performance for Verbose Queries 15

ROBUST04 W10g GOV2
title 25.28 19.31 29.67
desc 24.50 18.62 25.27

Table 2.1: Retrieval Effectiveness Comparison (Mean Average Precision) for Title
and Desc Queries on several TREC Collections

2.1 Performance for Verbose Queries

2.1.1 Retrieval Effectiveness for TREC Description Queries

Bendersky and Croft [2008] compared the retrieval effectiveness for
short queries versus long queries. For short queries, they used the ti-
tle part of the TREC datasets, while for the long ones they used the
description part. The comparison was done using hundreds of queries
from three TREC datasets. Table 2.1 shows that title queries consis-
tently perform better on a variety of TREC collections.

2.1.2 Click Data Analysis

As shown in Figure 2.3, Bendersky and Croft [2009] observed that
search engine performance drops significantly with increase in the query
length. They found a 29% decrease in the expected reciprocal rank
of the first click between the shortest (length = 1) and the longest
(length = 12) queries in the MSN query log. Also, Figure 2.4 shows
that the average click position is closer to the top position for short
(SH) queries but much lower down for all types of verbose queries. They
also observed that the abandonment rate for users (i.e., the fraction of
queries with no clicks) has a high correlation with the length of the
query. The verbose queries had an average abandonment rate of 0.6,
while short queries had an abandonment rate of just 0.4. Singh et al.
[2012] studied search trails of various eBay users and the impact of null
queries1 on purchase rate. They observed a degradation of purchase rate
for null search trails compared to the non-null search trails. They found

1Singh et al. [2012] found that null queries are on average long in nature and
hence we believe that indirectly the observations should hold for verbose queries
too.

16 Properties of Verbose Queries

that the purchase rate for both classes of users (power users as well as
novices) is lowered when null recall situations are encountered on their
trails.

2 4 6 8 10 12

0.
60

0.
70

0.
80

Mean Reciprocal Rank by Length

query length

M
ea

n
R

R

2 4 6 8 10 12

0.
65

0.
70

0.
75

0.
80

0.
85

Max Reciprocal Rank by Length

query length

M
ax

 R
R

(a) meanRR(q) (b) maxRR(q)

Figure 2: Mean (a) and maximum (b) reciprocal ranks

of clicks, averaged by length.

used to find all the possible non-trivial query segmen-
tations, such that each segment in the segmentation
corresponds to a short query from the log. Non-trivial
segmentation is a segmentation that includes at least
one segment of length greater than one. Queries for
which no such segmentations are found, are marked
as non-composite. Queries of type QE and OP are ex-
cluded.

– Examples

∗ persian rug dealers in austin texas

∗ T.I. the rapper web site

∗ merryhill schools a noble learning community

• Non-Composite. Queries that cannot be represented as
a composition of the queries of the type SH are divided
into two types: noun phrases (NC_NO) and verb phrases
(NC_VE). These types are distinguished by a presence
of a verb in the query (a verb is defined as a word
token tagged3 by a tag from Penn Treebank Tagset
[23], satisfying the regular expression VB.*).

– Examples — NC_NO

∗ TEMPLE OF THE FULL AUTUMN MOON

∗ Hp pavilion 503n sound drive

∗ lessons about children in the bible

– Examples — NC_VE

∗ detect a leak in the pool

∗ teller caught embezzling after bank audit

∗ eye hard to open upon waking in the morinig

3. CLICK DATA ANALYSIS
In this section we perform analysis, based on the click data

in the search logs, aimed at better understanding the user
behavior and the retrieval performance of the search engine
for the long queries. To this end, we examine the clicks in the
search log associated with q. For the purpose of our work,
we associate several click-based measures with each query
instance. meanRR(q) and maxRR(q) are the mean and
maximum reciprocal ranks of the clicks for query instance
q, respectively [31]; meanPos(q) is the mean click position

3MontyLingua (web.media.mit.edu/∼hugo/montylingua) is used
as a POS tagger.

SH OP CO NC_NO NC_VE QE

2
4

6
8

10

Click Positions Distribution by Query Type

A
vg

. C
lic

k
P

os
iti

on

Figure 3: Boxplot of the distribution of the average click

positions per query for different query types.

for q. All the measures are calculated over the queries with
at least one click.

We examine the relation of these measures to query length
(Section 3.1), query type (Section 3.2) and query frequency
(Section 3.3).

3.1 Clicks and Query Length
Previous research on TREC collections [4, 18] showed that

using the existing retrieval techniques, the effectiveness of
the verbose description queries is lower, in general, than the
effectiveness of their shorter keyword counterparts. Figure
2 presents a similar picture for the queries in the search log.

Figure 2 shows the mean and maximum reciprocal rank of
the clicks (meanRR(q) and maxRR(q), respectively), aver-
aged by query length. Note, that if we assume direct relation
between the reciprocal rank of the clicks and the effective-
ness of the retrieval, the effectiveness decreases as the query
length increases. For comparison, there is a 29% decrease
in the expected reciprocal rank of the first click between the
shortest (l(q) = 1) and the longest (l(q) = 12) queries in our
data set.

3.2 Clicks and Query Type
The types of queries discussed in Section 2.2 are derived

from the structure of the query strings. However, although
the proposed taxonomy is reasonable from a syntactical point
of view, we are more interested in its utility for the improve-
ment of the retrieval with long queries. Accordingly, in this
section we explore whether the users interaction with the
search engine differs for each of the query types.

Since the number of queries differs significantly across the
query types, we utilize sampling for fair comparisons of ag-
gregate statistics by type. We collect the complete click in-
formation for a random sample of 10,000 queries from each
of the six query types (the short queries and the five types
of the long queries).

Figure 3 shows the distribution of meanPos(q) measure
for the six types of queries in the random sample. Note
that a larger value in the boxplot translates into a lower
position of the clicks in the ranked list. For example, for the
short queries (type SH) the median of meanPos(q) is the

Figure 2.3: Mean and Max Reciprocal Rank by
Query Length [Bendersky and Croft, 2009]

2 4 6 8 10 12

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

Mean Reciprocal Rank by Length

query length

M
ea

n
R

R

2 4 6 8 10 12

0.
65

0.
70

0.
75

0.
80

0.
85

Max Reciprocal Rank by Length

query length

M
ax

 R
R

(a) meanRR(q) (b) maxRR(q)

Figure 2: Mean (a) and maximum (b) reciprocal ranks

of clicks, averaged by length.

used to find all the possible non-trivial query segmen-
tations, such that each segment in the segmentation
corresponds to a short query from the log. Non-trivial
segmentation is a segmentation that includes at least
one segment of length greater than one. Queries for
which no such segmentations are found, are marked
as non-composite. Queries of type QE and OP are ex-
cluded.

– Examples

∗ persian rug dealers in austin texas

∗ T.I. the rapper web site

∗ merryhill schools a noble learning community

• Non-Composite. Queries that cannot be represented as
a composition of the queries of the type SH are divided
into two types: noun phrases (NC_NO) and verb phrases
(NC_VE). These types are distinguished by a presence
of a verb in the query (a verb is defined as a word
token tagged3 by a tag from Penn Treebank Tagset
[23], satisfying the regular expression VB.*).

– Examples — NC_NO

∗ TEMPLE OF THE FULL AUTUMN MOON

∗ Hp pavilion 503n sound drive

∗ lessons about children in the bible

– Examples — NC_VE

∗ detect a leak in the pool

∗ teller caught embezzling after bank audit

∗ eye hard to open upon waking in the morinig

3. CLICK DATA ANALYSIS
In this section we perform analysis, based on the click data

in the search logs, aimed at better understanding the user
behavior and the retrieval performance of the search engine
for the long queries. To this end, we examine the clicks in the
search log associated with q. For the purpose of our work,
we associate several click-based measures with each query
instance. meanRR(q) and maxRR(q) are the mean and
maximum reciprocal ranks of the clicks for query instance
q, respectively [31]; meanPos(q) is the mean click position

3MontyLingua (web.media.mit.edu/∼hugo/montylingua) is used
as a POS tagger.

2
4

6
8

10

Click Positions Distribution by Query Type

A
vg

. C
lic

k
P

os
iti

on

Figure 3: Boxplot of the distribution of the average click

positions per query for different query types.

for q. All the measures are calculated over the queries with
at least one click.

We examine the relation of these measures to query length
(Section 3.1), query type (Section 3.2) and query frequency
(Section 3.3).

3.1 Clicks and Query Length
Previous research on TREC collections [4, 18] showed that

using the existing retrieval techniques, the effectiveness of
the verbose description queries is lower, in general, than the
effectiveness of their shorter keyword counterparts. Figure
2 presents a similar picture for the queries in the search log.

Figure 2 shows the mean and maximum reciprocal rank of
the clicks (meanRR(q) and maxRR(q), respectively), aver-
aged by query length. Note, that if we assume direct relation
between the reciprocal rank of the clicks and the effective-
ness of the retrieval, the effectiveness decreases as the query
length increases. For comparison, there is a 29% decrease
in the expected reciprocal rank of the first click between the
shortest (l(q) = 1) and the longest (l(q) = 12) queries in our
data set.

3.2 Clicks and Query Type
The types of queries discussed in Section 2.2 are derived

from the structure of the query strings. However, although
the proposed taxonomy is reasonable from a syntactical point
of view, we are more interested in its utility for the improve-
ment of the retrieval with long queries. Accordingly, in this
section we explore whether the users interaction with the
search engine differs for each of the query types.

Since the number of queries differs significantly across the
query types, we utilize sampling for fair comparisons of ag-
gregate statistics by type. We collect the complete click in-
formation for a random sample of 10,000 queries from each
of the six query types (the short queries and the five types
of the long queries).

Figure 3 shows the distribution of meanPos(q) measure
for the six types of queries in the random sample. Note
that a larger value in the boxplot translates into a lower
position of the clicks in the ranked list. For example, for the
short queries (type SH) the median of meanPos(q) is the

SH OP CO NC_NO NC_VE QE

Figure 2.4: Click Posi-
tions Distribution by Query
Type [Bendersky and Croft,
2009]

2.1.3 Smoothing and Tokenization

Zhai and Lafferty [2001, 2004], Cummins et al. [2015] studied the
smoothing aspect for verbose queries. Zhai and Lafferty [2001] found
that irrespective of the smoothing method, the performance of longer
queries is much more sensitive to the choice of the smoothing parame-
ters than that of short queries. Verbose queries generally require more
aggressive smoothing compared to short queries. While Zhai and Laf-
ferty [2004] found that Dirichlet prior method is good for short queries,
but Jelinek-Mercer is better for longer queries; [Cummins et al., 2015]
found that Dirichlet prior method is the best way of smoothing even
for longer queries. Further, Zhai and Lafferty [2004] found that a two-
stage smoothing approach is better where first the document language
model is smoothed using Dirichlet prior method and then further using
Jelinek Mercer. Jiang and Zhai [2007] found that stemming improves
performance more for verbose queries compared to short queries. Also,
they found that replacing special characters (e.g., hyphens, slashes and
brackets) with spaces is the best way of tokenizing verbose queries. In
addition, Smucker and Allan [2006] found that augmenting smoothing

2.2. Categories of Verbose Queries 17

with inverse collection frequency weighting can improve performance
of retrieval with verbose queries by more than 6%.

2.2 Categories of Verbose Queries

2.2.1 Query Category vs Length

Figure 2.2 shows the distribution of query length for different query
categories. There is a huge variation in the query length with respect
to the query category. On average, queries are much longer for the
education, current events and science and technology categories. We
suspect that this is because the users in these categories are usually
“researchers” and hence tend to put in more keywords.

2.2.2 Types of Verbose Queries

Using a one-month MSN search query log with ∼15M queries, Bender-
sky and Croft [2009] studied categorization of verbose queries from a
different perspective. They classified verbose queries into the following
five types.

• Questions: Queries that begin with (what, who, where, when).

• Operators: Queries that contain at least one Boolean operator
(AND, OR, NOT), one phrase operator (+, words within double
quotation marks), or one special web search operator (contains:,
filetype:, intitle:, etc.).

• Composite: Queries which are a composition of short query seg-
ments.

• Noun phrases: Non-composite queries that contain a noun phrase
but not a verb phrase.

• Verb Phrases: Non-composite queries that contain a verb phrase.

They observed that 7.5% of the verbose queries are questions (QE),
5.5% are operators (OP), 64% are composite (CO), 14.7% are noun

18 Properties of Verbose Queries

886 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2006
DOI: 10.1002/asi

00:00

00:43

01:26

02:10

02:53

03:36

04:19

0 2 4 6 8 10 12 14

User ID

du
ra

ti
on

 in
 m

m
:s

s

written queries spoken queries

FIG. 4. Average duration of queries per participant.

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12

Topic ID

nu
m

be
r

of
 w

or
ds

written queries spoken queries

written queries - stopwords spoken queries - stopwords

FIG. 5. Average length of queries across topics.

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14

User ID

no
. o

f w
or

ds

length of written queries length of written queries-stopwords

length of spoken queries length of spoken queries-stopwords

FIG. 6. Average length of queries per participant.

written ones whereas only one third of the participants
required more time for spoken queries than written ones.

Query length without stopwords. From the previous analy-
sis, we know that spoken queries in general are lengthier
than written queries. One would argue that people with a nat-
ural tendency to speak more conversationally would formu-
late spoken queries as long sentences containing a great deal
of function words such as prepositions, conjunctions, or
articles that have little semantic content of their own. Such
words have been referred as stopwords in IR and often
discarded from document and query representations. So we
removed the stopwords from both spoken and written
queries and plotted the average length of spoken and written
queries against their original length.

Figure 1 show query length after stopwords removal. The
average length of spoken queries reduced from 23.07 to
14.33 with a 38% reduction rate, while the average length of
written queries reduced from 9.54 to 7.48 with a reduction
rate at 22%. These figures indicated that spoken queries con-
tained more stopwords than written ones. This indication can
also be seen from the difference between the average length
and median length for both spoken and written queries.

As we can see from Figure 5, the markers for spoken
queries is consistently on top of the ones for the written
queries for every participant, even after stopword removal,
though spoken queries are undoubtedly becoming shorter.
Moreover, the markers for spoken queries without stop-
words stay above the ones for written queries without stop-
words consistently also across every topic as depicted in
Figure 6. Statistically, the average spoken query is still
almost double the length of the written ones. This significant
difference in length indicates that the ease of speaking
encourages people to express not only more conversationally,
but also more semantically.

Part of speech. A natural language sentence is usually
composed of nouns, pronouns, articles, verbs, adjectives,

adverbs, connectives, etc. From the IR point of view, not all
words are equally significant for representing the semantics
of a document. Investigating the distribution of different part
of speech (POS) in the two forms of queries gives us another
opportunity to shed light on the nature of the differences and
similarities between spoken and written queries. Figure 7
shows a comparison of POS between the two query sets.
This figure indicates that categorematic words, primarily
nouns, verbs, and adjectives, i.e., words that are not function

0%

10%

20%

30%

40%

50%

60%

70%

n. adj. vb. conj. prep. adv. art. pron.

written queries
spoken queries

FIG. 7. Percentages of part-of-speech in written and spoken queries.Figure 2.5: Percentages of Part-of-Speech Tags in Written and Spoken
Queries [Crestani and Du, 2006]

phrases (NC_NO), and 8.3% are verb phrases (NC_VE). Thus a ma-
jority of verbose queries are composite in nature signifying the use of
query segmentation as an important step in handling verbose queries.

2.2.3 Part-of-speech Distribution

Figure 2.5 shows the part-of-speech distribution for written and spoken
queries. Usually nouns are the most important information conveying
words in queries. Spoken queries contained far less number of nouns
compared to the written queries. Some popular prepositions (like ‘in’
and ‘at’) appeared twice as frequently in the voice sample data set as
in the written samples.

2.3 Query Log Traffic Representation

2.3.1 Repetition Factor

Singh et al. [2012] studied the repetitiveness of queries across time on
an e-commerce query log from eBay. They found the repetition factor to
be as low as 1.45 for null queries versus 19.57 for non-null queries. Even
the most popular null queries do not repeat more than tens of thousands
of times within a month. But the most popular non-null query repeats
more than millions of times. Figure 2.6 shows percent of null queries
that repeated x days in the past. This analysis shows that ∼30% queries
repeated within a month in the past. Also, it was observed that any two

2.4. Other Properties 19

separate days have only 7% null queries in common. A low repetition
factor makes it difficult to use query log-based signals to improve the
performance of null queries.

2.3.2 Top k Coverage

As shown in Figure 2.7, only 30% of null query traffic is covered by 10%
of the most popular null queries. But 90% of non-null query traffic is
covered by 10% most popular queries.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

P
e

rc
e

n
ta

g
e

 o
f

s
e

a
rc

h
e

s
 c

o
v
e

re
d

Top k% of queries by traffic

Percentage of searches covered by top k% queries.

Zero recall queries
Non-zero recall queries

(a)

5

10

15

20

25

30

0 5 10 15 20 25 30 35

S
in

g
le

 d
a

y
 n

ul
l q

ue
ry

 o
v
e

rl
a

p

Number of days

Single day zero recall query overlap with historical queries

(b)

Figure 2: (a)Search traffic coverage of top k% most popular queries. Only 30% of null query traffic is covered
by 10% most popular null queries. But 90% of non-null query traffic is generated by 10% most popular
queries. (b) Overlap of single day null queries with historical queries.

Figure 3: Figure shows two trails starting with same null search. In the first trail user is searching for
volitation brand toy helicopter. User reformulates the query twice but still gets the null result and exits the
site. In the second trail user is able to reformulate the query successfully. The V’s are product description
page view.

copter volitation spare parts cheap”. The user is searching for
spare parts for Volitation brand toy helicopter. The user re-
formulated the query to ”helicopter volitation replace parts”
(S2) which also returned no results. This user did another
query (S3) which returned zero results again and at this
time user gave up.

4. DATASET AND TERMINOLOGY
In this section we define the terminology used in the rest

of paper. We also describe the dataset used along with some
key data properties.

4.1 Terminology
For search engines built over ephemeral documents, doc-

uments are consistently being added and removed. As the
item expires search engine removes it from the searchable
documents and it is not to be shown to the user. The doc-
ument corpora on which search engine searches over is also
dynamic and users at different time will see different results.
Hence the search engine becomes dynamic, volatile and time
sensitive.

For any time stamp t, we define the set of all documents
that may be shown as a response to a search query at that
time St. These items are considered of value to user at that
particular time and hence are shown to user. In other words

the recall set of every query will be a subset of St. We will
also refer to items in Snow as live items. Different systems
expire documents differently. In e-commerce, items that get
purchased expire. In social media, stale or old documents
are considered to be expired or irrelevant. For example,
http://twitter.com expire any tweet which is more than
few weeks old. Ticketing or invitation management systems
expire tickets or invitations after the event has happened.

We also provide a notation to represent the set of all doc-
uments which were live in recent past. We will denote this
set as Ut. Many items in this set are not live any more.
Hence the search engine will not search over all of these
items. More formally

Ut = ∪t1St1 ; where now − t ≤ t1 ≤ now

That is Ut is the set of all items that were live at any point
since last t time stamps. For example U6months is set of all
items which were live at any point in last 6 months. It is
very easy to see that U0 = Snow. And Snow ⊂ Ut ∀t; t ≥ 0.
Metadata space is defined as space over which documents
are clustered or labeled. This is engineered into many sys-
tems, either provided by the editor or users or inferred by
the system. For example, a taxonomy class or tags over doc-
uments are a good example of Metadata space. For example,
sites like wikipidea provide a rich taxonomical classification

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

77

Figure 2.6: Single Day Null Query
Overlap with Historical Queries [Singh
et al., 2012]

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 s

ea
rc

he
s

co
ve

re
d

Top k% of queries by traffic

Null queries
Non-null queries

Figure 2.7: Percentage of Searches
Covered by Top k%Queries [Singh et al.,
2012]

2.4 Other Properties

2.4.1 Information Need Specificity

Phan et al. [2007] studied the variation of information need specificity
of queries versus the query length. Queries were manually labeled as
broad or narrow on a 4-point scale. Results in Figure 2.8 show a strong
correlation between decreasing query length and increasing broadness
or generality of queries with a cross-over at ∼3 words/query across four
different datasets.

2.4.2 Effect of User Interfaces

Agapie et al. [2013], Franzen and Karlgren [2000] found that the user
interface has a significant impact on the length of the query entered

20 Properties of Verbose Queries

Figure 1: Expts 1 & 2 – Specificity vs query length

the counts of people voting for very broad and broad ratings,
and for very narrow and narrow ratings. We used Pearson’s
Correlation to assess the association between specificity and
query length. These were well above the minimum corre-
lation coefficient of 0.463. Thus we may state that there
is a statistically highly significant relationship (99% con-
fidence level) between narrow/broad specificity and query
length (rnarrow(28) = 0.766, rbroad(28) = −0.766, ρ < 0.01).
The Kendall tau coefficients were narrow τ = 0.828, 2-sided
p = 0.0015; broad τ = −0.828, 2-sided p = 0.0015.

Graphing the normalized results (Figure 1) with polyno-
mial lines (order 5) of best fit we detect an intersection
between broadness and narrowness at 3 words. To sum-
marise, as query length increases, the corresponding infor-
mation need is more likely to be perceived to be narrow.

The second experiment used the same method as the first.
A random sample of 100 topics from a series of collections
used in TREC Ad Hoc and Web tracks was used as the
dataset; we also had fewer participants (16). The purpose
was two-fold: to validate that the results obtained could be
replicated, and to use a dataset that other groups without
access to query logs could use too.

The minimum Pearson’s correlation coefficient is 0.623
(ρ < 0.01). Again, the results calculated exceed this min-
imum value to indicate a correlation (rnarrow(14) = 0.737,
rbroad(14) = −0.737, ρ < 0.01). Computing the Kendall tau
coefficient confirms this result, though less strongly than
in Experiment 1, and not at a 5% confidence level. (nar-
row τ = 0.449, p = 0.088; broad τ = −0.449, p = 0.088.)
More noise was observed at large query lengths, which might
smooth out with more queries or more participants. The
normalized results are shown in Figure 1, and are similar.

2.2 Experiment 3
To address possible biases or flaws in the method of the

previous experiments (for example, participants were judg-
ing queries from other people and had to imagine an infor-
mation need), another experiment was undertaken. This ex-
periment required participants to imagine their own narrow
and broad information needs, and express these as search
queries. A basic web form displaying text boxes (two for
narrow, two for broad) was given to participants to fill in.

We had 30 participants, and placed the queries into buck-
ets similar to the other experiments (1 . . . 5 & 6+ words).
The minimum Pearson’s correlation coefficient is 0.463 for
ρ < 0.01 and 0.361 for ρ < 0.05. The Pearson’s result
for narrowness is rnarrow(28) = 0.288, and the Kendall tau
correlation is τ = 0.298, 2-sided p = 0.546. We conclude
short queries are not correlated with narrowness. However,
the Pearson result for broadness is above this minimum –

rbroad(28) = −0.846, ρ < 0.01 and the Kendall tau correla-
tion is τ = −0.867, p = 0.024. Peaks of 2 and 4 words exist
for broad and narrow.
From this, we see that queries are more likely to be broader

as the length of a query decreases. The experiment also
confirmed that users tend to use short queries in general,
as shown in the workload distribution for the national gov-
ernment’s large (16000+) query log (overlaid in Figure 2).
In other words, uniform distribution of query lengths does
not occur in real-life situations. We found 3 words to be the
cross-over point again.
However, users may provide narrow queries at all query

lengths. This result accords with general intuitions about
web search – that people often have very narrow informa-
tion needs (e.g. the home/best/known page finding task [1])
which can be expressed and satisfied with short queries.

Figure 2: Expt 3 – Workload (percentage of queries)

3. CONCLUSIONS & FUTURE WORK
We hypothesised that there is a correlation between query

length and the degree of specificity of a query. Our exper-
iments partially validate this theory (for broadness), and
indicate a cross-over of 3 words for queries being 2-3 times
more frequently about narrow than broad information needs.
Deeper analysis of query characteristics to identify fea-

tures which could be extracted to indicate narrowness in
short queries is indicated. For example, detection of best
page queries through anchor text matching. This would ad-
dress the issue of short but specific queries. We plan to
conduct experiments to investigate searcher preference for
different result ranking when information needs are broad.

4. ACKNOWLEDGMENTS
We thank the many participants who carried out judge-

ments, our colleagues for advice, and the reviewers.

5. REFERENCES
[1] N. Craswell, D. Hawking, and S. Robertson. Effective

site finding using link anchor information. In
Proceedings of ACM SIGIR 2001, pages 250–257, 2001.

[2] P. Ingwersen and K. Järvelin. The Turn. Springer, 2005.

[3] T. Lau and E. Horvitz. Patterns of search: analyzing
and modeling web query refinement. In UM ’99:
Proceedings of the seventh international conference on
User modeling, pages 119–128. Springer-Verlag, 1999.

[4] G. Ramı́rez and A. P. de Vries. Relevant contextual
features in XML retrieval. In Proceedings of the 1st
international conference on Information Interaction in
Context, pages 95–110. ACM Press, 2006.

SIGIR 2007 Proceedings Poster

710

Figure 2.8: Information Need Specificity with respect to Query Length [Phan et al.,
2007]

by the user. Franzen and Karlgren [2000] found that a longer query
field motivates users to enter longer queries. Agapie et al. [2013] found
that a halo with color change around the query field also leads people
to writing long queries. Their color change design was as follows. To
begin with, an empty query box has a pink halo. As the person starts to
type, red hue starts to fade. As the query gets longer, the halo becomes
progressively bluer. Long queries are displayed with a blue halo.

2.5 Summary

In this chapter, we studied various properties of verbose queries.

• Short queries consistently show a better performance compared
to longer queries as measured both in terms of mean average pre-
cision for TREC datasets, as well as in terms of mean reciprocal
rank for MSN query logs.

• Dirichlet prior has been found to be the best smoothing method.
Also, stemming improves performance for verbose queries.

• A majority of verbose queries are a composition of short query
segments signifying the use of query segmentation as an impor-
tant step in handling verbose queries.

2.5. Summary 21

• POS distribution analysis of written versus spoken queries shows
that spoken verbose queries contain a lesser number of nouns and
more prepositions than written ones.

• Verbose queries do not repeat very often. Unlike short queries,
most popular verbose queries do not cover majority of the traffic
by verbose queries.

• Verbose queries usually have a narrow specific intent.

• Certain types of user interfaces can be instrumental in soliciting
verbose queries.

Verbose queries show very different properties compared to the
short queries. These differences bring in new challenges in handling
verbose queries. The low frequency of verbose queries as well as low
repetition factor are a major reason for search engines to not fine tune
for them and hence perform poorly. In the remaining part of the survey
we will discuss various techniques for handling such verbose queries and
their applications.
Suggested Further Reading: [Bendersky and Croft, 2008]: Analysis
of long queries from MSN search log with respect to length distribution,
query types, and click data analysis; [Singh et al., 2012]: Properties of
null queries on e-commerce portals. How to rewrite them to improve
user experience; [Phan et al., 2007]: Relationship between information
need specificity and search query length.

3
Query Reduction to a Single Sub-Query

3.1 Introduction

As discussed in §1 and §2, without any special processing, search en-
gine performance for verbose queries is often poor. In this chapter, we
will focus on one way to improve this performance by translating the
original verbose query into a language that the search engines “un-
derstand” and work well with. Namely, instead of searching with the
original verbose query, it will be reduced to a shorter version.

The query reduction problem can be formally defined as follows.
Given an arbitrary query Q = {q1, q2, . . . , qn}, let PQ denote the power
set of Q. Let M be a ranking function (or a retrieval model) which
ranks various documents for any query P from the collection C with
|C| words and N documents. Let m(P,M) denote a target measure
of effectiveness of ranking function M for the query P . The query
reduction problem aims at finding a sub-query P ∗ = arg max

P∈PQ
m(P,M).

Note that the problem of identifying a sub-query is equivalent to the
problem of deciding whether to keep or drop a word from Q, or deciding
whether to select or reject a group of words from Q, or ranking various
sub-queries in PQ.

22

3.1. Introduction 23

While dropping information from the original query may sound
counter-intuitive at first, it is important to note that such practice
of reducing the amount of information available to the algorithm is not
limited to verbose query processing. Case in point, query reduction can
be viewed as an instance of feature subset selection [Kohavi and John,
1997], a technique often used in machine learning. In machine learning
and statistical NLP problems, feature subset selection often improves
model fit to previously unseen data by enhancing generalization and
avoiding overfitting.

Similarly, in retrieval problems, dropping too specific, redundant
or obscure terms may significantly increase search engine effectiveness.
Search engines often employ multiplicative combination of query term
weights (e.g., the query likelihood model – see §A.2 for details) or
weakly conjunctive logic [Broder et al., 2003] for document scoring.
In the case of verbose queries, this may overly benefit documents with
potentially spurious matches and cause topic drift. The query reduction
process penalizes such documents, promotes documents that contain
the most important query terms and lessens topic drift.

Absolute query reduction (one in which the original query is com-
pletely discarded and only the reduced query is used for retrieval) is a
very hard problem, since it requires high term selection precision – re-
moving an important query term can substantially hurt performance.
The most successful absolute query reduction techniques tackled the
problem via supervised approaches that combine a multitude of fea-
tures from the query, documents and search logs (see §3.4 for more
details).

In addition to the absolute query reduction, prior work demon-
strated that retrieval can be further improved by interpolating the
original query with the reduced query (see §3.5). This lessens the risk
of completely dropping the important query terms associated with the
absolute query reduction. Finally, as another way to mitigate this risk,
the researchers also explored user interaction as a way to select the
best query reductions (see §3.7).

In addition, in §3.6 we also discuss the efficiency aspects of query
reduction methods. Since many of these methods operate over an ex-

24 Query Reduction to a Single Sub-Query

(a) Average Gains (b) Max Gains (c) Original versus Gains

Figure 1: Distribution of Potential Gains in NDCG@5.
3.2 Approximation

Efficiency is a key challenge for query reduction. Because
the number of possible reduced queries in PQ is exponen-
tially large, enumerating and evaluating all possibilities is
not feasible. This challenge is even more important for web
search engines, where response times are in the order of mil-
liseconds.

To address this issue, we propose a simpler version of the
query reduction problem. In particular, instead of consider-
ing all possible reduced versions, we only consider those that
differ from the original query Q by only one term. That is,
instead of using the entire power-set PQ, we use a restricted
version PQ

1 = {P |P ∈ PQ ∧ |P | ≥ |Q| − 1}. Thus, if the
original query had n query words, we only need to consider
the n reduced versions and original query Q.

Despite the obvious limitation of ignoring a large number
of potentially better reduced versions, this simple approach
can yield dramatic performance improvements. On a large
collection of more than 6400 Web queries (see Section 4 for
details), we find that an oracle that chooses between an orig-
inal long query and its reduced versions achieves more than
10 points gain in NDCG@5.

However, in order to achieve this gain, we need to reli-
ably identify reduced versions whose performances are bet-
ter than that of the corresponding original queries. To illus-
trate the potential impact of this technique, we analyze the
distribution of maximum and average gains for reduced ver-
sions using Figures 1(a), (b), and (c). Figures 1(a) and (b)
show the distribution of gains when compared to the orig-
inal query. Figure 1(c) shows distribution of gains (as box
plots) for original queries with different NDCG@5 values.

On average, the reduced versions’ effectiveness are worse
compared to the original query’s effectiveness, as shown by
the negative gains dominant in Figure 1(a). Also, the maxi-
mum gains, the gains that can be achieved if we always iden-
tify the best reduced version, are mostly positive as shown
in Figure 1(b). However, for some queries the maximum
gains are negative i.e., choosing any reduced version will re-
sult in decreased performance. Finally, Figure 1(c) shows
that if the original query has poor performance, then it is
more likely for some reduced version to be better than the
original query. Conversely we are unlikely to find reduced
versions of well-performing queries that provide substantial
performance gains.

Based on these observations, we develop learning tech-

niques that can reliably improve the performance of hard
long web queries through query reduction.

3.3 Learning Formulations
We use three formulations for choosing between the orig-

inal query and its reduced versions: 1) Independent perfor-
mance prediction, 2) Difference prediction, and 3) Rank-
ing queries. All three formulations use the same perfor-
mance predictors to generate features but differ in their tar-
get learning functions. For the remainder of this paper, we
assume that the same ranking algorithm, f , is used to re-
trieve results for both the original query and its reduced
versions and hence drop it from our notations.

Let Q be the set of training queries and let T (Q) be the
effectiveness of their retrieved results.

3.3.1 Independent Prediction
Given an original long query and its reduced versions, we

predict the performance of each query independently. Then,
we select the query that has the highest predicted perfor-
mance. Thus, the query selection problem is transformed
into a query performance prediction task: Given a query,
and the retrieved results, the task is to predict the effective-
ness of the retrieved results.

Formally, given a set of functions h : PQ → R, we learn
a non-linear regressor h∗ that minimizes the mean squared
error as given by:

h∗ = arg min
h

vuut X
∀Q∈Q,P∈PQ

1

(h(P)− T (P))2

For a given test query Qt, we select the query P ∗ with the
largest predicted performance, i.e.:

P ∗ = arg max
P∈PQt

1

h∗(P) (3)

3.3.2 Difference Prediction
While the Independent formulation is relatively simple, it

does not encode the relationship between the original query
and its reduced versions. Furthermore, based on the ob-
servations from Figure 1(c), it may be more important to
predict the difference in performance between the original
query and its reduced versions, than to accurately predict
the effectiveness of the individual queries.

573

(a) (b) (c)

Figure 3.1: Distribution of Potential Gains in NDCG@5 [Balasubramanian et al.,
2010]

ponentially large set of sub-queries, it is important to focus on ways
to reduce this set, to make the query reduction techniques usable in
practical applications.

3.2 Will Query Reduction help?

Empirical analysis by Kumaran and Carvalho [2009] and Balasubra-
manian et al. [2010] showed that query reduction could be very useful
in improving performance for verbose queries. Perfectly reducing long
TREC description queries can lead to an average improvement of up
to ∼23% in the MAP. Note that perfect reduction is chosen by an or-
acle, and it means that the best sub-query was selected to replace the
original long query. Figure 3.1 shows that (a) on average a randomly
chosen sub-query may not perform well; but (b) the best sub-query
provides a positive gain over the original verbose query; and (c) gains
obtained using best sub-query are higher for verbose queries for which
the performance was originally very poor.

Here are a few examples of reducing verbose queries to a single
sub-query.

• “ideas for breakfast menu for a morning staff meeting”→ “break-
fast meeting menu ideas” [Kumaran and Carvalho, 2009]

• “provide information on all kinds of material international sup-
port provided to either side in the spanish civil war” → “spanish
civil war” [Bendersky and Croft, 2008]

3.3. Candidates for Sub-queries 25

• “define argentina and britain international relations.” → “britain
argentina” [Kumaran and Allan, 2007]

When selecting the best sub-query the following questions need to
be answered. What could be the candidates for a sub-query (§3.3)?
What could be the features identifying an appropriate sub-query
(§3.4)? What are the ways to combine these features in order to find
the best sub-query (§3.5)? How can we make the search for the best
sub-query efficient (§3.6)? Does asking for user input help (§3.7)? We
address these questions in this chapter.

3.3 Candidates for Sub-queries

Various units of Q could be used to extract a sub-query. The following
sub-units have been used in the literature.

• Each of the individual words [Allan et al., 1996, Lee et al., 2009b,
Park and Croft, 2010, Park et al., 2011]: The simplest way of
choosing candidates is to consider each word individually. In this
case, one or more top few words could be chosen to form the
sub-query.

• All two-word combinations (unordered) [Lee et al., 2009a]: Con-
sidering words individually could ignore correlations between im-
portance of words. Hence, two word combinations could also be
used as candidates.

• All word subsets [Kumaran and Allan, 2007, Kumaran and Car-
valho, 2009, Datta and Varma, 2011, Cummins et al., 2011, Ku-
maran and Allan, 2008]: To incorporate correlations between im-
portance of multiple words, all subsets of the set of words in the
original query could be considered as candidates. However, this
leads to a large number of candidates, and hence the approach is
very inefficient.

• All word subsets with one word deleted [Balasubramanian et al.,
2010, Jones and Fain, 2003, Yang et al., 2014]: This approach
assumes that the original query can be improved by removing

26 Query Reduction to a Single Sub-Query

one specific keyword only. Balasubramanian et al. [2010] observed
that dropping just a single (and correct) term from the original
long query can result in a 26% improvement in NDCG@5.

• All one to three word queries without stop words [Maxwell and
Croft, 2013]: Stop words usually are not important. Hence, it
could be better to consider candidates ignoring the stop words.

• Right part of the query [Huston and Croft, 2010]: Many verbose
queries contain unimportant words in the beginning of the query.
The performance for such queries can be significantly improved
by removing the first few unimportant words (also called as the
stop structure).

• All noun phrases [Bendersky and Croft, 2008]: Noun phrases have
proven to be reliable for key concept discovery and natural lan-
guage processing, and are flexible enough to naturally distinguish
between words, collocations, entities and personal names among
others. Hence, noun phrases could act as effective sub-query can-
didates.

• All named entities [Kumaran and Allan, 2007, Kumaran and Car-
valho, 2009]: Named entities (names of persons, places, organiza-
tions, dates, etc.) are known to play an important anchor role in
many information retrieval applications. Hence, named entities
could act as effective sub-query candidates.

• All matching queries from personal query log [Chen and Zhang,
2009]: Query reduction by selecting a random subset of words
from the original query may lead to non-meaningful queries. The
past short queries may provide us with what specific aspects in-
terest users, and we may discover the users’ interesting topics in a
given long query. Moreover, since the short queries are created by
users, they should contain the significant and meaningful terms
for describing the topics.

• Most frequent Part-Of-Speech (POS) blocks extracted from lan-
guage samples and mapped to the query [Lioma and Ounis, 2008]:

3.4. Features to Extract a Single Sub-query 27

The syntactic arrangement in language can be captured using re-
current arrangements of parts of speech, namely POS blocks. In
line with the principle of least effort, one can assume that the
most frequently occurring POS blocks in language must be the
ones that capture the most information content possible in the
least effort-consuming way. This assumption has been known to
be valid in the field of linguistics, where complicated and/or dif-
ficult syntactic structures and features are used less frequently
with time, until they become extinct from language as a whole.
It is this exact relation between syntax and information content
that can be modeled by considering popular POS blocks as can-
didates.

3.4 Features to Extract a Single Sub-query

In this section, we provide an exhaustive list of features that have been
used for sub-query identification. Note that some features are defined
for individual words of the verbose query Q, some for groups of words,
and others for sub-queries P .

3.4.1 Statistical Features

These features are mainly based on counts from the query, corpus or
external data sources.

• TF-IDF Features [Bendersky and Croft, 2008, Cummins et al.,
2011, Kumaran and Carvalho, 2009, Huston and Croft, 2010,
Park et al., 2011, Xue et al., 2010, Church and Gale, 1999]: This
feature set includes the following features.

– TF, i.e. the term frequency in corpus

– IDF, i.e., the inverted document frequency in the corpus

– Average IDF of query terms, maximum IDF of query terms

– Sum, standard deviation, max/min, arithmetic mean, geo-
metric mean, harmonic mean, coefficient of variation of IDF
of query terms

28 Query Reduction to a Single Sub-Query

– RIDF, i.e., Residual IDF in corpus which is defined as the
difference between the observed IDF and the value pre-
dicted by a Poisson model.

ridf(P) = idf(P)− log 1
1− e−tf(P)/N (3.1)

This is based on the assumption that the Poisson distribu-
tion only fits the distribution of non-content concepts.

– TF extracted from Google N-Grams counts [Brants and
Franz, 2006]

– TF in matching Wikipedia titles1

– TF in MSN query logs2

– Count of passages containing the sub-query

• Simplified Clarity Score [Kumaran and Carvalho, 2009, Cummins
et al., 2011]: This is the KL divergence between the query model
and the collection model. It is the pre-retrieval equivalent of the
Query Clarity. It is defined as follows.

SCS(qi) =
∑
qi∈Q

tfQ(qi)
|Q|

× log2

tfQ(qi)
|Q|

tfC(qi)
|C|

(3.2)

where tfQ(qi) and tfC(qi) are the number of occurrences of the
word qi in the query Q and collection C respectively.

• Similarity Collection/Query-based (SCQ) Score [Kumaran and
Carvalho, 2009, Cummins et al., 2011]: Queries that have higher
similarity to the collection as a whole are of higher quality. Hence,
the SCQ score feature is defined as follows.

SCQ(qi) =
[
1 + log tf(qi)

N

]
× log

[
1 + N

df(qi)

]
(3.3)

1https://dumps.wikimedia.org/
2http://research.microsoft.com/en-us/um/people/nickcr/wscd09/

https://dumps.wikimedia.org/
http://research.microsoft.com/en-us/um/people/nickcr/wscd09/

3.4. Features to Extract a Single Sub-query 29

where tf(qi) is the frequency of qi in the collection, and df(qi) is
the number of documents in which qi is present. Given a query,
a binary feature could be defined for every word indicating if the
word has the maximum SCQ score among all query words.

• Dictionary-based Features [Yang et al., 2014]: Domain-specific
dictionaries could be used to define presence features. For exam-
ple, does the word indicate a brand name, probability of the word
occurring in product titles, etc.

• Mutual Information (MI) between Words [Kumaran and Allan,
2007, 2008, Kumaran and Carvalho, 2009, Yang et al., 2014]: This
feature is used to rank various sub-queries of a verbose query. For
a sub-query P , they first form a graph with words as vertices;
edge weight is set to mutual information between terms. Mutual
information between two words qi and qj is defined as follows.

I(qi, qj) = log

 n(qi, qj)/|C|
tf(qi)
|C| ×

tf(qj)
|C|

 (3.4)

where n(qi, qj) is the number of times words qi and qj occurred
within a window of 100 words across the collection C. Based on
such a graph, the following two features can be derived.

– Average mutual information between words

– Weight of the maximum spanning tree

Also, one can use mutual information between a word and the
query category as a feature for each query word.

3.4.2 Linguistic Features

These features are based on the linguistic properties of the queries and
also those of individual words themselves.

• POS Tags [Park et al., 2011, Lee et al., 2009a,b, Lioma and Ounis,
2008, Yang et al., 2014, Xue et al., 2010]: Whether the word is

30 Query Reduction to a Single Sub-Query

a noun, verb, adjective, adverb, conjunction, or numeric; ratio of
nouns, adjectives and verbs in a query per query length.

• Named Entities [Balasubramanian et al., 2010, Kumaran and Al-
lan, 2007, Lee et al., 2009a,b, Xue et al., 2010]: Is the query word
a person name, a location, an organization, or a time string? Does
the query contain a location?

• Combination of POS and Named Entities for a Pair of Words
as Candidate [Lee et al., 2009a]: For example, if both words qi
and qj are nouns (or person names), the feature pos_nn=1 (or
ne_pp=1).

• Acronyms [Lee et al., 2009a,b]: Is the query word an acronym?

• Syntactic Features [Park et al., 2011, Xue et al., 2010]: Number
of noun phrases in the query, average depth of the key-concept
(noun phrases) terms in the parse tree of the query, height of the
parse tree for the query.

• Lexical Forms of Neighboring Words [Yang et al., 2014, Lease
et al., 2009].

3.4.3 Query Features

These features are based on various properties of the query alone with-
out any other context.

• Query Length [Kumaran and Carvalho, 2009, Park et al., 2011,
Balasubramanian et al., 2010]

• Similarity Original Query [Kumaran and Carvalho, 2009]: Cosine
similarity between TF-IDF vectors representing each sub-query
and the original long query.

• Presence of Stop Words [Park et al., 2011, Balasubramanian
et al., 2010]: Ratio of stop words in sub-query.

• Presence of URL [Balasubramanian et al., 2010]

3.4. Features to Extract a Single Sub-query 31

Query Term Ranking based on Dependency Parsing of
Verbose Queries

Jae-Hyun Park and W. Bruce Croft
Center for Intelligent Information Retrieval

Department of Computer Science
University of Massachusetts, Amherst, MA, 01003, USA

{jhpark,croft}@cs.umass.edu

ABSTRACT
Query term ranking approaches are used to select effective
terms from a verbose query by ranking terms. Features used
for query term ranking and selection in previous work do not
consider grammatical relationships between terms. To ad-
dress this issue, we use syntactic features extracted from de-
pendency parsing results of verbose queries. We also modify
the method for measuring the effectiveness of query terms
for query term ranking.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query for-
mulation

General Terms
Algorithm, Experimentation, Performance

Keywords
Dependency Parse, Query Reformulation, Query Term Rank-
ing

1. INTRODUCTION
Most search engines have a tendency to show better re-

trieval results with keyword queries than with verbose queries.
Verbose queries tend to contain more redundant terms and
these terms have grammatical meaning for communication
between humans to help identify the important concepts..
Search engines do not typically use syntactic information..
For example, given a verbose query,“Identify positive accom-
plishments of the Hubble telescope since it was launched ...”,
search engines cannot recognize that“Hubble telescope” is the
key concept of the query whereas “accomplishments” should
be considered as a complementary concept, while people can
readily identify this by analyzing the grammatical structure
of the query. Therefore, search engines potentially need a
method for exploiting this structure.

In this work, we rank terms in a verbose query and re-
formulate a new query using selected highly ranked terms.
Good selection methods should be able to leverage the gram-
matical roles of terms within a query. To do this, we use
syntactic features extracted from dependency parsing trees
of queries. In addition, we suggest a new method for mea-
suring the effectiveness of terms for query term ranking.

Copyright is held by the author/owner(s).
SIGIR’10, July 19–23, 2010, Geneva, Switzerland.
ACM 978-1-60558-896-4/10/07.

2. QUERY TERM RANKING

2.1 Features extracted from Dependency Pars-
ing

We use syntactic features extracted from dependency pars-
ing to capture the grammatical properties of terms for a
query. Features used by previous work in query term rank-
ing [1, 6] are inadequate to reflect these characteristics. The
limitation of these features is that they are based on individ-
ual terms. Features such as tf, idf, part-of-speech (PoS) tag,
etc. will not change even if the role of the term changes ac-
cording to the syntactic structure of queries. Even features
for sub-queries [5] are also unlikely to reflect grammatical
characteristics because they are not affected by the struc-
ture of queries.

Therefore, we propose to overcome this limitation by using
dependency parsing trees. A typed dependency parse labels
dependencies with grammatical relations [3]. Figure 1 shows
an example of a typed dependency parse tree. Dependency
parsing tree fragments of terms can provide grammatical
information about terms in queries [2].

It is infeasible to use all dependency parse tree fragments
as syntactic features. We limit the number of arcs in syn-
tactic features to two arcs. Even if we limit the number
of arcs, some of collected tree fragments are too specific to

Identify positive accomplishments of the
Hubble telescope since it was launched in 1991

 Identify

accomplishments

dobj

telescope

prep_of

nnpositive

Hubble

amod

Sentence:

Figure 1: An example of dependency parsing trees.
Labels attached to arcs are types of dependencies.

Identify

accomplishments

dobj

(a)

*

accomplishments

dobj

(b)

Identify

accomplishments

*

(c)

Figure 2: Three types of syntactic features for the
term “accomplishments”. (a) An original syntactic
feature (b) The word is generalized to a * (c) The
type of the dependency is generalized to a *

829

Figure 3.2: An Example of Dependency Parse Trees [Park and Croft, 2010]

• IsRightMost [Yang et al., 2014]: Users tend to put a modifier
word as the rightmost word in the query.

• IsLeftMost [Yang et al., 2014]: Users tend to put optional adjec-
tives on the left and key noun phrases on the right.

• Is the query a wh-question? [Park et al., 2011]

• Is the query a question? [Park et al., 2011]

• Category of the query [Yang et al., 2014]

• Location of the word in the query [Lease et al., 2009]

• Is the word trailed by a comma? [Lease et al., 2009]

3.4.4 Word Dependency Features

These features capture the dependencies between query words. We pro-
vide a basic introduction to dependency parsing in §C.

• Binary Dependencies [Park and Croft, 2010]: Dependency parse
trees help to illustrate the binary dependencies existing between
various query words as shown in Figure 3.2. Based on these, three
types of syntactic features can be defined as follows.

– An original syntactic feature with the specific word and the
particular dependency

32 Query Reduction to a Single Sub-Query

Dependency grammar describes linguistic structures di-
rectly in terms of dependencies between words themselves [14].
This is especially useful in information retrieval, where the
words themselves, and not additional phrasal or clausal struc-
tures, are not our primary concern. Dependency parsers
output directed trees over words: each word in the sentence
has exactly one incoming edge, which comes from its ‘head’
or ‘parent’, with the except of the ‘root’ word, which has no
incoming edges. An example dependency tree for a query is
depicted in Figure 3.

In information retrieval, we wish to measure the distance
between a query and various candidate documents. By us-
ing dependency syntax, we can cast this problem as one of
distance between a query tree and document trees. Of espe-
cial interest are the many approaches to comparing trees in
the machine translation literature. In particular, Smith and
Eisner proposed a quasi-synchronous stochastic process [21]
to allow parent and child words in a source-language tree to
be associated with words having different syntactic relations
in a target-language tree.

3.1 Modeling Dependency Transformations
Synchronous grammars, originally proposed for machine

translation [20], jointly generate trees of a source and tar-
get sentence. Depending on the size and complexity of the
rewrite rules in a synchronous grammar—and the compu-
tational complexity required for inference—, the source and

The inspectorate searched chemical weapons.

(a) parent-child

The inspectorate searched toxic chemicals which is used as

weapons.

The inspectorate searched the chemical compounds, the weapons

of mass destruction.

The inspectorate searched the chemical compounds which is used

as weapons.

(c) siblings

(b) ancester-descendent

(d) c-commanding

s

Figure 4: Four types of syntactic dependency con-
figurations for the quasi-synchronous model. The
quasi-synchronous model matches terms in queries
and documents along with transformations be-
tween these dependence relations: (a) parent-child,
(b) ascendant-descendant, (c) siblings, and (d) c-
commanding.

target trees can diverge more or less in their structures. For
information retrieval and other problems, however, we are
only interested in the conditional probability of one tree
given another; moreover, we are usually not interested in
the full generative process of either tree but only in the
parts of the two trees that match with greater or lesser fi-
delity. Words in a source tree (e.g., in a document) are not
always translated into a target tree (e.g., a query) with the
same syntactic structure. Some source words may be trans-
lated into one target word, and others may be match more
than one word or a phrase. To solve these disagreements
in source and target languages, a quasi-synchronous model
allows words in a target sentence, which are aligned with
a words in a parent-child dependency relation in a source
sentence, to have a different relationship to each other. In
this paper, we consider the four following configurations:

19

Figure 3.3: Four Types of Dependencies [Park et al., 2011]

– Feature with the particular dependency and any word (i.e.,
the word is generalized to a ‘*’)

– Feature with the specific word and any type of dependency
(i.e., the type of dependency is generalized to a ‘*’)

• Quasi-synchronous Dependencies [Park et al., 2011]: These fea-
tures capture the dependencies as shown in Figure 3.3. Features
include the number of dependent clauses in the query; and the ra-
tio of the dependent term pairs which have parent-child, ancestor-
dependent, siblings and c-commanding relations in the query. We
provide details about dependency parsing in §C.

3.4.5 Query Log-based Features

These features are computed using a query log in context along with
the current query.

• Query log frequency [Bendersky and Croft, 2008]: the number of
times qi was used as part of a query, and the number of times qi
was used as an exact query.

3.4. Features to Extract a Single Sub-query 33

• Similarity with Past Queries [Chen and Zhang, 2009]: This can
be defined in two ways as follows.

– Count of common terms between the long query Q and sub-
query P .

R(Q,P) =
s∑
i=1

|Si ∩ P |
|P |

(3.5)

where Si is the ith sentence in Q.

– Number of common noun phrases between Q and noun
phrases from sentences around sub-query terms in clicked
result page.

R(LQF, STF) = 2|LQF ∩ STF |
|LQF |+ |STF | (3.6)

where LQF and STF are features (or noun phrases) from
long query Q and sub-query context respectively.

• Deletion History [Jones and Fain, 2003, Yang et al., 2014]: the
number of times word qi was deleted, the number of times word
qi was deleted/the number of times qi was seen in the query log for
a particular category c, conditional deletion which is P (deleting
qi for similar long query earlier).

• Rareness in Query Log [Yang et al., 2014]: This is defined as the
ratio of the number of queries in category c to the number of
queries in category c containing qi.

3.4.6 Post Retrieval Features

These features are computed by observing the results when sub-queries
are fired to the search engine. Hence, these are expensive to compute.
But they have been proven to be very effective.

• Query-document Relevance Scores [Balasubramanian et al., 2010,
Chen and Zhang, 2009]: LambdaRank and BM25 scores of top

34 Query Reduction to a Single Sub-Query

K documents (position-wise as well as aggregated as minimum/
maximum/ average/ standard deviation/ variance), click through
counts of top K documents, Page-rank scores of top K docu-
ments.

• Term/Topic Co-occurrence/Context Features [Lee et al., 2009a,b,
Yang et al., 2014]: Features in this group include the following.

– Term-topic: Co-occurrence of word qi and {Q− qi}

– Term-term: Co-occurrence of word qi and qj ∈ {Q − qi}
where i 6= j

– Term-term context: Cosine similarity between context vec-
tors of qi and qj ∈ {Q− qi} where i 6= j

– Term-topic context: Cosine similarity between context vec-
tors of qi and {Q− qi}

Here the context vector for qi is defined as a list 〈docID, relevance
score〉. Recall that N is the total number of documents. Let a
be the number of documents with qi and qj , b be the number of
documents with qi but not qj , c be the number of documents with
qj but not qi, and d be the number of documents with neither qi
nor qj . Co-occurrence for two words qi and qj can be measured
using three different measures as follows.

– Point-wise mutual information

PMI(qi, qj) = log aN

(a+ b)(a+ c) (3.7)

– Chi square statistic

χ2(qi, qj) = N(ad− bc)2

(a+ b)(a+ c)(b+ d)(b+ c) (3.8)

3.4. Features to Extract a Single Sub-query 35

– Log likelihood ratio
−2 log LLR(qi, qj)

= a log aN

(a+ b)(a+ c) + b log bN

(a+ b)(b+ d)

+ c log cN

(c+ d)(a+ c) + d log dN

(c+ d)(b+ d) (3.9)

• Word Co-occurrence in Pseudo-relevant Documents [Maxwell and
Croft, 2013].

• Query Scope [Kumaran and Carvalho, 2009]: Query Scope of a
sub-query P is the size of the retrieved document set relative to
the size of the collection. We can expect that high values of query
scope are predictive of poor-quality queries as they retrieve far
too many documents.

QS(P) = − log NP

N
(3.10)

where NP is the number of documents containing at least one
query term.

• Weighted Information Gain [Bendersky and Croft, 2008]: Change
in information about the quality of the retrieval (in response to
P) from a state where only the average document is retrieved to
a state where the actual results are observed.

wig(P) =

1
M

∑
d∈TM (P)

log(p(P |d))− log(p(P |C))

− log(p(P |C)) (3.11)

where TM (P) is the set of topM documents retrieved in response
to P from collection C, and p(P |·) is the query likelihood proba-
bility calculated using the maximum likelihood estimate (MLE).

• Query Clarity [Kumaran and Carvalho, 2009, Cummins et al.,
2011]: It is defined as the KL divergence of the query model from
the collection model and has been found to be better than the
IDF and the MI features.

QC(P) =
∑
qi∈P

tfTM (P)(qi)
|P |

× log2

tfTM (P)(qi)
|P |

tfC(qi)
|C|

(3.12)

36 Query Reduction to a Single Sub-Query

where tfTM (P)(qi) and tfC(qi) are the number of occurrences of
the word qi in the top M documents retrieved in response to the
query P and the number of occurrences of the word qi in the
collection C respectively.

• Query Drift among Results [Cummins et al., 2011]: A set of fea-
tures can be used to incorporate the query results drift signal as
follows.

– Standard deviation of the relevance scores at 100 documents

– A normalized version of standard deviation at 100 docu-
ments: Standard deviation normalized by relevance score of
corpus (treat corpus as a big document) for the query.

– The maximum standard deviation in the ranked-list

– Standard deviation using a variable cut-off point where cut-
off is defined by the document whose score is at least 50%
of the score of the top ranked document.

– Query length normalized standard deviation using a vari-
able cut-off point.

3.5 Methods to Combine the Features for Query Reduction

In this section, we discuss in detail a few methods to combine the
various features that we discussed in the previous section.

3.5.1 Classification/Regression

A large number of research efforts have been made towards combining
the features using a classification or a regression model. Typically the
classification problem is to classify whether a word should be included
in the sub-query or discarded. Typically the regression problem is to
learn a weight for each word denoting its importance score or to learn a
weight for a sub-query; the top few words or the sub-query with high-
est weight is then chosen. RankSVM [Balasubramanian et al., 2010,

3.5. Methods to Combine the Features for Query Reduction 37

Kumaran and Carvalho, 2009, Park and Croft, 2010], decision trees,
AdaBoost, logistic regression [Yang et al., 2014] are some of the pop-
ular classification methods. Random forests [Balasubramanian et al.,
2010] is the most popular regression model. Besides this, Lee et al.
[2009a] proposed a multi-level regression for individual words and also
for pairs of words. Lee et al. [2009b] studied both generation and reduc-
tion approaches based on classification and regression. The generation
approach greedily selects “effective” terms until k terms are chosen
while the reduction approach greedily removes “in-effective” terms un-
til k terms have been removed. k is an empirical value given by the
users. They found the generation approaches to be better than the
reduction approaches.

3.5.2 Core Term Identification using Heuristic Rules

The earliest work [Allan et al., 1996] in the area of query reduction was
performed using simple heuristic rules. Allan et al. [1996] proposed the
following method to identify the most important sub-query from a long
query.

• Discard query words that are present in the stop word list.

• Weigh words (weight=ω) based on rules like (a) “purpose clause”
is the most important part of query, (b) for queries of the form
“What is the X of Y ?” and “How X is Y ?”, Y is more important
than X, etc.

• Rank words by ω × avg_tf0.7 × idf where avg_tf is the term’s
average frequency in documents where it occurs. The top ranked
term is called as the core term.

• If the core term is part of some phrase, the phrase becomes the
core term.

• Cluster the query terms. If the cluster with the core term has
multiple terms, replace the core term with a proximity operator
(window) containing all terms in the cluster.

38 Query Reduction to a Single Sub-Query

• If the term with highest ω is not in the core term, add it to the
core term.

• If the proximity operator matches <10 documents, relax it by
discarding the terms with low weights until ≥10 documents are
matched.

3.5.3 Clustering and Rules-based Approach

This method [Chen and Zhang, 2009] uses clustering to perform seg-
mentation of the query and then chooses the sub-query from among
those clusters. The detailed method is as follows.

• Retrieve several short queries P related to a long query Q from
the user’s query history. Relatedness is measured in terms of com-
mon words between the sub-query and the long query as follows.

R(Q,P) =
n∑
i=1

|Si ∩ P |
|P |

(3.13)

where Si is the ith sentence in the long query Q.

• Filter the non-relevant results by comparing contexts from search
results with contexts from the original long query. Context for the
long query is expressed in terms of the noun phrases in the long
query. Similarly, context for the sub-query is expressed in terms of
the noun phrases extracted from sentences around the sub-query
terms in the clicked result page. Comparison is performed using
the following measure.

R(LQF, STF) = 2|LQF ∩ STF |
|LQF |+ |STF | (3.14)

where LQF and STF are features (or noun phrases) from the
long query Q and sub-query context respectively.

• Construct sub-query clusters. Clustering is performed using an
iterative method on a bipartite graph constructed using noun
phrases (features) from the long query in one layer and the sub-
queries as nodes in the second layer. Two noun phrases are clus-
tered together if they are contained in many sub-queries. Two

3.5. Methods to Combine the Features for Query Reduction 39

sub-queries are clustered together if they contain many common
noun phrases from the long query.

• Select the most representative sub-query to substitute the long
query based on this score.

S(P) = 1
n

|P |∑
i=1

 numj(Pi)∑
k
numj(Pk)

× log |c|
|{c : Pi ∈ c}|

 (3.15)

where numj(Pi) is the number of occurrences of term Pi in the
cluster cj , |c| is the number of clusters, and |{c : Pi ∈ c}| is the
number of clusters containing Pi.

3.5.4 Key Concept (KC) Discovery

Given a long query Q, the following modified ranking principle can
be followed to rank documents. This is a linear combination of the
traditional matching combined with the concept (or a sub-query)-based
matching.

rank(d) ∝ λp(Q|d) + (1− λ)
∑
i

p(Pi|Q)p(Pi|d) (3.16)

where Pi corresponds to a sub-query/concept (or a noun phrase) and
can be a key concept (KC) or not. Bendersky and Croft [2008] use
AdaBoost algorithm with many statistical features to estimate hk(Pi),
i.e., the confidence that Pi ∈ KC. Then an estimate of p(Pi|Q) is
computed as follows.

p(Pi|Q) = hk(Pi)∑
Pi∈Q

hk(Pi)
(3.17)

For a query, only one or two of the most key concepts are chosen. They
observed that their approach is better than the Sequential Dependency
Model [Metzler and Croft, 2005] (SD, described in §5) and much better
than using the verbose query Q directly. Note that Park and Croft
[2010] studied the binary dependency features and found their model
to be better than the KC model.

40 Query Reduction to a Single Sub-Query

3.5.5 Query Reduction Using Stop Structures

Many verbose queries contain unimportant words in the beginning of
the query. The performance for such queries can be significantly im-
proved by removing the first few unimportant words (also called as the
stop structure). For example, “My husband would like to know more
about cancer” can be reduced to “cancer”, “if i am having a lipid test
can i drink black coffee” can be reduced to “lipid test can i drink black
coffee”. Stop structure identification can be performed using sequential
taggers like CRF++ and Yamcha. Huston and Croft [2010] found that
Yamcha provided better accuracy compared to CRF++. They also ob-
served that removing stop structures could improve the performance
for verbose queries from Yahoo! API and Bing API datasets almost
1.5–2 times in terms of NDCG@5 and NDCG@10.

3.5.6 Query Reduction using Random Walk

Query reduction can also be performed by using linkage-based impor-
tance of query words in a word-word co-occurrence graph (PhRank).
Given a query Q = {q1, . . . , qn}, let TM (Q) be the set of topM relevant
documents (pseudo-relevant document set). Maxwell and Croft [2013]
build a co-occurrence graph of word stems such that adjacent stems in
TM (Q) are linked. Edge weights are computed as follows.

lij = rij ×
∑

dk∈TM (Q)
p(dk|Q)(λcijw2 + (1− λ)cijw10) (3.18)

where cijw2 is the number of stem co-occurrences within window of size
2, and rij is computed as follows.

rij = log2

∑
ij∈TM (Q)

cijw2

1 + cijw2
(3.19)

Next, word scores (πqi) are computed using random walk on this graph.
Each vertex score is weighed by exhaustiveness and global salience in
the collection as follows.

πqi = πqi × favg(qi)× idf(qi) (3.20)

3.5. Methods to Combine the Features for Query Reduction 41

where favg(qi) is the frequency of qi averaged over all documents in
TM (Q) and normalized by the maximum average frequency of any term
in TM (Q); idf(qi) = log2

|C|
1+df(qi) where |C| is the size of the collection

vocabulary. Candidate terms (or reduced query candidates) are all com-
binations of 1–3 words in a query that are not stop-words. Term scores
are computed using the average word score for words in a term, com-
bined with global discrimination weights.

f(x,Q) = zx ×
∑
qi∈x

πqi
n

(3.21)

where

zx = fx × idf(x)× lx (3.22)

and

lx = |x||x| (3.23)

where |x| is the number of words in term x, fx is the number of times
x appears in a window of size 4|x| in C and idf(x) = log2

|C|
1+df(x) .

PhRank achieves significant performance gains with a small number
of compact terms. It outperforms the following baselines by a signif-
icant margin in terms of both MAP and R-Precision3: Query Like-
lihood [Ponte and Croft, 1998] (QL, §A.2), Sequential Dependency
Model [Metzler and Croft, 2005] (SD, §5.5), Key Concept Discov-
ery [Bendersky and Croft, 2008] (KC, §3.5.4) and Sub-query Distri-
butions [Xue et al., 2010] (§4.2).

3.5.7 Different Formulations to Optimize

The problem of identifying the best sub-query for a given long query
can be modeled in many ways. Balasubramanian et al. [2010] study
the following three ways. Given a long query Q and one of its reduced
versions P , let h(P) be the predicted performance of sub-query P ,
and T (P) is the true performance of sub-query P measured as the
effectiveness of the retrieved results.

3R-Precision is precision at cut-off R where R is the number of relevant docu-
ments for the query.

42 Query Reduction to a Single Sub-Query

• Independent Prediction: This method learns a regressor h∗ such
that it minimizes the mean squared error.

h∗ = arg min
h

√√√√ ∑
∀Qt∈Q̄t,P∈PQt1

(h(P)− T (P))2 (3.24)

Then use this model to predict the performance of each sub-query
independently and select the sub-query with the highest predicted
performance.

P ∗ = arg max
P∈PQ1

h∗(P) (3.25)

Here, Q̄t is the collection of training verbose queries, Qt is a
particular training verbose query, and PQ1 is a set of all sub-
queries obtained by dropping one word from Q.

• Difference Prediction: This method learns the regressor h∗d such
that it minimizes the mean squared difference between the true
and the predicted performance differences as follows.

h∗d = arg min
hd

√√√√ ∑
Qt∈Q̄t

∑
P∈PQt1 ∧P 6=Qt

(hd(Qt, P)−D(Qt, P))2(3.26)

Then, use this model to predict the difference in performance
between each reduced version and its original query, and then
select the query that has the highest positive difference.

P ∗ = arg max
P∈PQ1

h∗(Q,P) (3.27)

Note that here hd and D are the predicted and true performance
differences.

• Ranking Queries: The goal is to rank the original long query Q
and its reduced versions P in order to select the top ranking query.
Ranking model h∗r is learned by training on pairwise preferences
between queries.

h∗r = arg min
hr

∑
Qt∈Q̄t

∑
P∈PQt1

I[sign(h(P)− h(Qt))

6= sign(T (P)− T (Qt))] (3.28)

3.6. Efficiency Aspect of Query Reduction Methods 43

where I is the indicator function. Use the model to predict the
best sub-query as follows.

P ∗ = arg max
P∈PQ1

h∗r(P) (3.29)

They observed that among all these formulations, the Indepen-
dent formulation with appropriate thresholding provided the best
NDCG gain.

3.6 Efficiency Aspect of Query Reduction Methods

In the previous section, we discussed various methods to rank all sub-
queries of a long query. However, a verbose query has an exponentially
large number of sub-queries and so performing such evaluations across
all sub-queries could be computationally intensive for long queries.
Hence, in this section we discuss various ways of choosing a limited
number of sub-query candidates rather than considering all sub-queries
as candidates. Following are the popular ways of making the query re-
duction process efficient.

• Consider sub-queries with a small fixed length only [Kumaran
and Carvalho, 2009], say between 3 and 6 terms.

• Consider only those sub-queries that contain named entities [Ku-
maran and Carvalho, 2009].

• Consider candidates of a fixed type only like named entities or
noun phrases.

• Consider sub-sequences with no gaps only.

• One word deletion [Jones and Fain, 2003, Yang et al., 2014]: Bal-
asubramanian et al. [2010] observed that dropping just a single
(and correct) term from the original long query can result in a
26% improvement in NDCG@5.

• Randomly pick up a few sub-queries [Datta and Varma, 2011]:
Discard the kth query word with probability=lopt/|Q| where |Q|

44 Query Reduction to a Single Sub-Query

is the length of the query and lopt is the optimal length of queries
obtained using a training query set. This approach was found
to be better than [Balasubramanian et al., 2010] with sub-query
sample size as small as 3|Q|.

3.7 Ask for User Input to Guide Query Reduction

Kumaran and Allan [2007, 2008] observed that applying automated
ways to reduce long queries using simple mutual information-based
statistical features did not give much gains. Hence, they proposed a
solution where sub-queries are ranked automatically, followed by seek-
ing user input (Interactive Query Reduction). The interface to seek
user input consists of (1) the description (long query) and narrative
portion of the TREC topic, and (2) the list of candidate sub-queries
along with result snippets. They observed that user input helped and
the selected sub-queries showed better performance compared to the
original queries.

However, showing too many sub-query options to the user can ir-
ritate the user. Hence, they proposed two tricks to reduce the number
of options shown to the user.

• Overlapping search results (or set cover pruning): Let X be the
union of sets of 10 documents retrieved across options. Find min-
imal set of options that cover X. It is an NP hard problem and
hence they propose a greedy algorithm for the same.

• Identical snippets (or snippet-based pruning): Retain one option
from the set of sub-queries that retrieve the same snippet.

It was observed that for Interactive Query Reduction (IQR), an
average decrease of two options per query using set cover pruning
does not cause any significant drop in performance. In case of Interac-
tive Query Expansion (IQE), an average reduction of six options per
query is achieved using set cover pruning without any performance loss.
Snippet-based pruning also leads to reduction of one option on average
without any performance loss for both IQR and IQE. An inter-leaving

3.8. Summary 45

of the top results from IQR and IQE (i.e., Selective Interactive Re-
duction and Expansion) with set cover pruning performed better than
either IQR or IQE with significantly less number of options.

3.8 Summary

Reducing the long query to a smartly selected shorter version can pro-
vide better performance compared to just using the original query.
Various units of the original query could be used to extract a sub-
query. A large number of various types of features have been explored
for reducing verbose queries to single sub-queries. These include sta-
tistical features, linguistic features, query features, word dependency
features, query log-based features, and post retrieval features. While
most of the papers suggest the use of plain classification or regression
models to find the best sub-query, other innovative methods like ran-
dom walks and stop structures have been found to be effective too.
Finally, the efficiency aspect has been addressed by smartly selecting a
few candidate sub-queries. Soliciting help from the user by showing a
few nearly optimal sub-query options without causing overload seems
to be promising.
Suggested Further Reading: [Kumaran and Carvalho, 2009]: De-
tailed description of statistical and query features for sub-query quality
prediction; [Balasubramanian et al., 2010]: Three learning formulations
that combine query performance predictors to perform automatic query
reduction; [Yang et al., 2014]: Reduction using query term deletion
using large-scale e-commerce search logs; [Maxwell and Croft, 2013]:
Query reduction using random walks; [Huston and Croft, 2010]: Query
reduction using stop structures; [Kumaran and Allan, 2007, 2008]: Ef-
ficient and effective user interaction for query reduction.

4
Query Reduction by Choosing Multiple

Sub-Queries

4.1 Introduction

In the previous chapter, we examined ways to reduce a verbose query
into a single best sub-query. However, instead of selecting the best sub-
query to represent a long query, one can take a more general approach
and model the query reduction problem as a distribution over the space
of all possible sub-queries. All these sub-queries can then be submitted
to the search engine and the results obtained from all these queries are
merged to obtain the final list of results for the long query.

For example, consider the query “give information on steps to man-
age control or protect squirrels.” Using the techniques mentioned in the
previous chapter, one can reduce the query to a single sub-query: “steps
manage control protect squirrels.” Instead, reducing it to the following
sub-query distribution would be more general:

“steps protect squirrels”:0.621
“steps control squirrels”:0.324
“steps control protect squirrels”:0.048
“steps manage squirrels”:0.002.

46

4.2. Sub-query Distributions using CRF-perf 47

Methods based on such sub-query distributions have been shown
to outperform single query reduction methods. This may be accounted
to the fact that these methods lessen the risk of completely dropping
important query terms as discussed in the previous chapter.

In sub-query distribution methods, the sub-queries are generally
modeled as random variables, and their probabilities are assigned ac-
cording to their expected retrieval performance. In this chapter, we dis-
cuss various mechanisms to define such probability distributions over
sub-queries, and also how to merge results from multiple sub-queries.

In §4.2 we discuss a method that uses a variant of Conditional Ran-
dom Fields for probability assignment, while §4.3 discusses a method
that uses a list-wise approach, ListNet. Finally in §4.4, we discuss a
tree-based method that constructs a sub-query tree based on reformu-
lation operations. In such a way, reformulation trees are able to encode
the dependency between the different sub-queries, which yields better
performance compared to the previous methods that treat sub-queries
as independent random variables.

4.2 Sub-query Distributions using CRF-perf

To learn distributions over sub-queries, the training set consists of
{Q, {P,m(P,M)}} where Q is the original query, P is a sub-query,
m(P,M) is the retrieval performance measure value for query P under
the retrieval model M . It is also denoted by m(P) when M is clear
in the context. The sub-query selection problem is to decide for every
word whether to include it in the sub-query or not. Neighboring words
generally tend to have the same labels, either keep all of them or drop
all of them. Therefore, it is reasonable to model sub-query selection as
a sequential labeling problem.

When there is a single label associated with every instance, a CRF
(conditional random field) optimizes the labeling accuracy based on the
training set of input sequences and their corresponding gold-standard
label sequences. We provide a basic introduction to CRFs in §B.2. To
address the case of multiple labels each with a certain weight, CRF-

48 Query Reduction by Choosing Multiple Sub-Queries

perf was proposed by Xue et al. [2010]. CRF-perf directly optimizes
the expected retrieval performance over all the sub-queries.

For a typical CRF, the distribution over sub-queries is given by the
following equation.

P (P |Q) =
exp

[
K∑
k=1

λkfk(Q,P)
]

Z(Q) (4.1)

where the partition function Z(Q) is computed as follows.

Z(Q) =
∑
P∈PQ

exp

[
K∑
k=1

λkfk(Q,P)
]

(4.2)

Here, fk are the feature functions, and λk is the weight of the kth
feature.

For CRF-perf, the distribution over sub-queries is given by the fol-
lowing equation.

Pm(P |Q) =
exp

[
K∑
k=1

λkfk(Q,P)
]
m(P)

Zm(Q) (4.3)

where the partition function Z(Q) is computed as follows.

Zm(Q) =
∑
P∈PQ

exp

[
K∑
k=1

λkfk(Q,P)
]
m(P) (4.4)

A large number of features as described in §3.4 were used as fk to train
the CRF. Average Precision (AP) was the optimized retrieval perfor-
mance measure m. Xue et al. [2010] experimented with the following
four retrieval modelsM to compute the relevance score for a document
D.

• SubQL

scoreQL(D,P) =
∑
pi∈P

log(P (pi|D)) (4.5)

where P (pi|D) is estimated using the language modeling ap-
proach with Dirichlet smoothing (§A.1 and §A.2).

4.2. Sub-query Distributions using CRF-perf 49

• SubDM

scoreDM (D,P) = λT
∑
pi∈P

log(P (pi|D))

+ λO
∑

o∈O(P)
log(P (o|D)) + λU

∑
u∈U(P)

log(P (u|D)) (4.6)

where O(P) denotes a set of ordered bigrams extracted from P ,
and U(P) denotes a set of unordered bigrams extracted from P .
Usually λT , λO, and λU are set to 0.85, 0.1 and 0.05 respectively.
This is the same as the SD model (§5.5).

• QL+SubQL

score(D,Q,P) = αscoreQL(D,Q) + (1− α)scoreQL(D,P) (4.7)

where α is a constant.

• DM+SubQL

score(D,Q,P) = αscoreDM (D,Q) + (1− α)scoreQL(D,P)(4.8)

where α is a constant.

The retrieval models above are used to compute m(P,M) for each
sub-query P which is useful for training the CRF. Once the parameters
of the CRF are learned, given a new query Q, a distribution P (P |Q)
is computed using the CRF. The following two strategies can be used
to compute the final results for Q.

• Top 1: Select the sub-query with the highest CRF probability and
feed it to the retrieval model M .

• Top K: Select top k sub-queries, feed them to the retrieval model
M and compute the combined score as follows.

scoreQL(D, {P}) =
k∑
i=1

P (Pi|Q)scoreQL(D,Pi) (4.9)

where Pi is the ith sub-query.

50 Query Reduction by Choosing Multiple Sub-Queries

Xue et al. [2010] observed that the sub-query distributions method
performs better than all the four baselines: QL [Ponte and Croft, 1998]
(§A.2), SD [Metzler and Croft, 2005] (§5.5), SRank [Kumaran and Car-
valho, 2009], and KC [Bendersky and Croft, 2008] (§3.5.4). Note that
SRank considers sub-query selection as a ranking problem and uses
Rank SVM as the ranking model and features as discussed in §3.4.
Among all the methods for computing sub-query distributions they
observed that DM+SubQL(K) performed best at K=10.

4.3 Sub-query Distributions using ListNet

Xue and Croft [2011] took a different approach to estimate P (P |Q).
They assume that it is a linear combination of a variety of query fea-
tures. To learn the combination parameter for each query feature, they
generate the corresponding retrieval feature by calculating the sum of
the retrieval scores of using all sub-queries weighted by their query fea-
ture values. They use the ListNet [Cao et al., 2007] Learning to Rank
approach to learn combination parameters of these generated retrieval
features. ListNet is a listwise ranking algorithm. Unlike pairwise ap-
proaches such as Rank SVM and RankBoost using pairs of objects in
learning, lists of objects are used as instances in the listwise approch.
ListNet employs cross entropy loss as the listwise loss function in gra-
dient descent.

Again they implement the subset query distributions using either
QL or SD as the retrieval model. The two models are thus called QDist-
QL and QDist-DM respectively.

Xue and Croft [2011] found that QDist-DM performed better than
QDist-QL as well as previously proposed QL+SubQL and DM+SubQL
methods [Xue et al., 2010].

4.4 Reformulation Trees Method

Xue and Croft [2012] proposed a more sophisticated way of handling
multiple sub-queries of a verbose query. It organizes these multiple sub-
queries in the form of a tree called the reformulation tree. A reformu-
lation tree (as shown in Figure 4.1(c)) organizes multiple sequences of

4.4. Reformulation Trees Method 51

This representation does not explicitly model a reformu-
lated query, which serves as the basis of the reformulation
sequences. An example of the “bag of words” representation
is shown in Fig. 2 (a). Recently, the “query distribution”
representation [27] was proposed to transform the original
query into a set of reformulated queries. For example, Xue et
al [30] represents a verbose query as a set of subset queries.
This representation indeed considers a reformulated query
as the basic unit, but it fails to capture the relationships
between the reformulated queries. Therefore, the sequences
of reformulated queries still cannot be modeled using this
representation. An example of the “query distribution” rep-
resentation is shown in Fig. 2 (b).

In this paper, a novel query representation is proposed to
transform a complex query into a reformulation tree, where
the nodes at each level of this tree correspond to the refor-
mulated queries generated using a specific query operation.
Using this representation, a reformulation sequence is natu-
rally modeled as a path from the root node to the leaf node.
The construction of the reformulation tree simulates the pro-
cess of applying a series of query operations to the complex
query. Furthermore, weight is assigned to each node of the
reformulation tree, which indicates the importance of the
corresponding reformulated query. The estimation of the
weight for a node considers not only the characteristics of
this node itself, but also its relationships with other nodes.
Different with previous reformulation models that treat re-
trieval models as independent steps, we estimate the weights
on the reformulation tree by directly optimizing the perfor-
mance of retrieval models, which considers the reformulation
model and the retrieval model in a joint view.

Verbose queries, as a typical example of complex queries,
have attracted much attention recently. Previous research
on verbose queries either weights the query words in the
original query [16, 15, 3] or selects the best subset of query
words from the original query [12]. Relatively little research
considers combining multiple query operations together for
improving verbose queries. Therefore, as an implementation
of the reformulation tree framework, a two-level tree struc-
ture is constructed for verbose queries, where the first level
corresponds to the subset query selection operation and the
second level corresponds to the query substitution operation.
A weight estimation method is also described, which in-
corporates the relationships between different reformulated
queries and directly optimizes the retrieval performance.

Fig. 2 (c) shows an example reformulation tree. The first
level of this tree consists of two subset queries extracted from
the original query, i.e., “reductions iraqs foreign debt” and
“iraqs foreign debt”. At the second level, each subset query is
further modified to generate query substitutions. For exam-
ple, “iraqs foreign debt”has been modified to “iraqs external
debt”. Furthermore, weight is assigned to each node of this
tree, which measures the importance of each reformulated
query. Compared with other representations, the reformu-
lation sequences as shown in Fig. 1 are captured using the
reformulation tree.

The contributions of this paper can be summarized as four
folds. First, a tree based query representation is proposed
to deal with complex queries, which models a series of query
operations and captures the relationships between the re-
formulated queries. Second, a specific implementation, i.e.,
the two-level reformulation tree, is introduced for verbose
queries, which combines two important operations, subset

a) Bag of Words

{0.09 reduction, 0.09 iraqs, 0.09 foreign, 0.09 debt, …}

b) Query Distribution

{0.55 seek reduction iraqs, 0.23 seek reduction iraqs debt,

 0.05 undertaken iraqs debt, 0.03 efforts seek reduction iraqs, … }

c) Reformulation Tree

Original Query
0.36

reduction iraqs foreign debt
0.20

iraqs foreign debt
0.12

reduce iraqs foreign debt
0.20

iraqs foreign debts
0.08

iraqs external debt
0.04

Subset Selection:

Query Substitution:

Figure 2: Different query representations for a ver-
bose query “identify any efforts proposed or under-
taken by world governments to seek reduction of
iraqs foreign debt”

query selection and query substitution. Third, a weight es-
timation method is designed by incorporating the relation-
ships between different reformulated queries and directly
optimizing retrieval performance. Fourth, detailed experi-
ments are conducted to show that the tree-based represen-
tation outperforms other query representations for verbose
queries.

2. RELATED WORK
In this section, we first describe previous work on complex

queries, especially on verbose queries and then we review
previous query representation approaches.

2.1 Complex Query
As described in the introduction, complex queries have

been widely used in different applications. Some examples
include the verbose query, the natural language question
query and the document-based query.

Kumaran and Allan [11] studied shortening a verbose query
through human interaction. Bendersky and Croft [2] discov-
ered key concepts from a verbose query. These key concepts
were combined with the original query to improve the re-
trieval performance. Kumaran and Carvalho [12] learned to
automatically select subset queries using several query qual-
ity predictors. Balasubramanian et al [1] extent [12] for web
long queries.

Lease et al [16] developed a regression model to assign
weights to each query word in the verbose query by using
the secondary features. Lease [15] further combined their
regression model with the Sequential Dependence Model,
which achieved significant performance improvement. Ben-
dersky et al [3] proposed a unified framework to measure the
weights of words, phrases and proximity features underlying
a verbose query.

A natural language question query is widely used in a
community-based Question and Answer service such as Ya-
hoo! Answers and Quora. Previous work [8, 9, 24] stud-
ied effectively finding previously answered questions that
are relevant to a new question asked by a user. Different
retrieval models have been proposed to calculate the simi-

526

Figure 4.1: Different Query Representations for a Verbose Query “identify any
efforts proposed or undertaken by world governments to seek reduction of iraqs
foreign debt” [Xue and Croft, 2012]

52 Query Reduction by Choosing Multiple Sub-Queries

reformulated queries as a tree structure, where each node is a reformu-
lated query and each path of the tree corresponds to a sequence of re-
formulated queries. A two-level reformulation tree combines two query
operations, i.e., sub-query selection and query substitution, within the
same framework. A weight estimation approach assigns weights to each
node of the reformulation tree by considering the relationships with
other nodes and directly optimizing the retrieval performance. Refor-
mulation trees are richer than sub-query distributions as the latter do
not consider relationships between the nodes. When the tree T is used
for retrieval, the score of document D is computed as follows.

sc(T,D) =
∑
qr∈T

w(qr)sc(qr, D) (4.10)

where w(qr) is the weight of node corresponding to the reformulated
query qr and is computed as follows.

w(qr) = w(parent(qr))
∑
k

λkfk(qr) (4.11)

The tree is constructed as follows. Given the original long query, remove
stop words, select top 10 words by IDF, and generate subsets of length 3
to 6. Select SubNum sub-queries as nodes in the tree. Next,ModNum

nodes at first level need to be substituted. Substitution can then be
performed using one of the following three ways.

• Morph: Morphologically similar words

• Pattern: Words matching patterns extracted from original query

• Wiki: Wikipedia redirect pairs

Weight assignment is then done as follows. w(Q) is set to 1 for
the original query Q. Weights for the sub-queries are computed using
ListNet by aggregating features across various sub-queries as follows.

w(qsub) =
∑
k

λsubk fsubk (qsub) (4.12)

where the λs are estimated using features which are defined as follows.

F subk ({qsub}, D) =
∑
qsub

fsubk (qsub)sc(qsub, D) (4.13)

4.5. Summary 53

Further, weights for substituted queries are computed as follows.

w(qmod) = w(qsub)
∑
k

λmodk fmodk (qmod) (4.14)

where the λs are estimated using features which are defined as follows.

Fmodk ({qmod}, D) =
∑
qmod

w(qsub)fmodk (qmod)sc(qmod, D) (4.15)

SD [Metzler and Croft, 2005] (§5.5) is used to compute sc(qr, D),
sc(qsub, D) and sc(qmod, D).

Reformulation trees were found to provide significantly better per-
formance in terms of MAP, Precision@10 and NDCG@10 compared to
QL (§A.2), SD (§5.5), KC (§3.5.4), QL+SubQL (§4.2, Eq. 4.7) as well
as DM + SubQL (§4.2, Eq. 4.8).

4.5 Summary

A more general way of reducing verbose queries is to reduce it to mul-
tiple sub-queries and assign a weight to each of the these reduced
queries. We discussed three main methods to obtain such sub-query
distributions: CRF-perf, ListNet and Reformulation Trees. The CRF-
perf method proposed learning sub-query distributions by directly opti-
mizing the expected retrieval performance over all sub-queries using an
adaptation of the traditional CRF model. The ListNet method assumes
that the probability of each sub-query can be learned as a linear combi-
nation of a variety of query features where the combination parameters
are learned using ListNet. In the reformulation trees also, weight of the
sub-queries is learned using ListNet by aggregating features across var-
ious sub-queries. However, the sub-queries are organized in a tree fash-
ion and the method also incorporates the notion of query substitution
followed by sub-query extraction. All of these sub-query distributions
methods have been found to perform better than the methods which
reduce the verbose query to a single sub-query. Reformulation trees is
the most general framework amongst these. Both ListNet and Refor-
mulation Trees have been found to perform better compared to the
CRF-perf method.

54 Query Reduction by Choosing Multiple Sub-Queries

Suggested Further Reading: [Xue et al., 2010]: Good motivation for
reduction to multiple sub-queries, and the CRF-perf-based sub-query
distributions method; [Xue and Croft, 2011]: ListNet-based method to
model sub-query distributions; [Xue and Croft, 2012]: Two-level re-
formulation tree that effectively combines two query operations, i.e.,
subset selection and query substitution, within the same framework.

5
Weighting Query Words and Query Concepts

5.1 Introduction

Given a verbose query, we discussed (1) selecting a single sub-query,
and (2) selecting multiple weighted sub-queries in Chapters 3 and 4
respectively. In this chapter, we will discuss techniques that go beyond
making a binary decision (include / exclude) per query word, and in-
stead assign weights to individual query words or concepts.

Term weighting approaches that were used in prior information re-
trieval research were targeted mostly at keyword queries and employed
either simple collection statistics or pseudo-relevance feedback for term
weighting. Both of these approaches have disadvantages when applied
in the context of retrieval with verbose queries.

Term collection statistics, such as commonly used inverse document
frequency weighting, ignore the context of the current query. For in-
stance, consider the two queries:

• Q1=“Term limitations for US Congress members”

• Q2=“Insurance Coverage which pays for Long Term Care”

55

56 Weighting Query Words and Query Concepts

The word “term” has much more importance in query Q1 rather than
in query Q2. In Q1 assigning a low weight to the word “term” would
clearly not produce desired search results as it is a central word in the
query. However in Q2, assigning a low weight to the word “term” would
still be able to produce desired results. However, inverse document
frequency-based weighting will provide the same weight to the word
“term” in both cases, which will hurt the retrieval performance of query
Q1. Such scenarios are especially common for verbose search queries,
where term weights tend to be highly dependent on their surrounding
context. Hence, we start this chapter by discussing various methods of
assigning weights to words which can provide better overall retrieval
performance for verbose queries. Usually, the document language model
(θD) and the query language model (θQ) are simply computed using the
word frequency-based Maximum Likelihood Estimate (MLE) approach
combined with smoothing using the corpus. Using various methods as
described in §5.2, §5.3 and §5.4, the query model can be estimated
more accurately leading to better matching.

Standard pseudo-relevance feedback based weighting may also ad-
versely affect the performance of verbose queries. Since, as demon-
strated in the previous chapters, verbose queries’ performance is often
inferior to short keyword queries, using pseudo-relevance feedback can
cause topic drift in the retrieved result set, which in turn leads to in-
correct term weight assignment. In this chapter, we describe methods
that overcome the query drift via better concept weighting at the initial
retrieval stage (§5.9) or via retrieval using multiple corpora (§5.10).

Finally, much of the prior work on retrieval with keyword queries
treated individual words independently, which can further hurt perfor-
mance of verbose queries due to spurious word matches. Instead, in this
chapter we describe methods that assign weights to word dependencies
or “concepts”. These concepts may be defined syntactically (§5.7) or
statistically (§5.8).

In §5.11 we further extend the discussion to concept dependencies
(or dependencies between word dependencies). Such concept dependen-
cies can yield very rich and expressive query representations. For in-
stance, Q1 in the example above can be modeled via the concepts “term

5.2. A Fixed-Point Method 57

limitations”, “US congress” and “members”, with further dependency
between these concepts that will give preference to documents where
these concepts co-occur within a close proximity.

Word and concept weighting, expansion and dependencies provide
powerful and flexible mechanisms for dealing with verbose queries.
They can be applied in a variety of retrieval scenarios, including, among
others, web search [Bendersky et al., 2010], image search [Nie et al.,
2012] and medical information retrieval [Choi et al., 2014] and have
been shown to provide state-of-the-art retrieval performance.

5.2 A Fixed-Point Method

Paik and Oard [2014] perform query weighting by drawing on an idea
from text summarization, in which centrality is also a key issue. They
iteratively estimate which words are most central to the query using
power iterations. They use an initial set of retrieval results to define
a recursion on the query word weight vector that converges to a fixed
point representing the vector that optimally describes the initial result
set. Their approach is based on the following two key intuitions.

• Important words are more frequent than the less important words
in the segment of the collection where original query words are
densely present.

• Importance of a word increases if it is more frequent than other
important words.

Let A(qi) denote the centrality of word qi. Let D be the initial set
of documents retrieved for query Q. Word centrality is then defined as
follows.

A(qi) =
|Q|∑

j=1,i 6=j

∑
d∈D

RF (qi|qj , d)A(qj) (5.1)

where RF is computed as follows.

RF (qi|qj , d) =
{ log2(1+tfd(qi))

log2(1+tfd(qj)) , if tfd(qj) > 0
log2(1 + tfd(qi)), otherwise

58 Weighting Query Words and Query Concepts

Importance of the word qi is then computed as a combination of
the centrality factor with an IDF factor as follows.

I(qi) = A(qi).
idf(qi)

c+ idf(qi)
(5.2)

where c is a constant. The fixed point method was found to be better
than QL (§A.2), SD (§5.5), KC (§3.5.4) and WSD (§5.8) models. Also,
the computation time was found to be much less than SD, KC and
WSD.

5.3 Word Necessity Prediction using Regression

Zhao and Callan [2010] propose that SVD-based similarity could be
used to compute intuitive features that can help predict word neces-
sity. Let S(t, w) denote the cosine similarity between words t and w

in Singular Value Decomposition (SVD) concept space. We provide a
basic introduction to SVD in §A.5. SVD is computed using a TF-IDF
weighted word-document matrix where the documents are the top K
relevant documents for the query. Let wi be the words in descending
order of similarity to query word t, i.e., S(t, w1) ≥ S(t, w2) ≥ . . . and
so on. Based on the SVD space, they propose the following features.

• If a word is not central to a topic, it is unlikely to be necessary. To
capture this intuition, they define Topic Centrality(t) = S(t, w)
where w is the word with highest S(t, w). In most cases, t = w

and S(t, w) indicates the weight of the word preserved after SVD.

• Searchonyms (synonyms, antonyms, hyponyms) may replace the
original query word in relevant documents, lowering the necessity
of the query word. Hence, they define the Synonymy feature as
follows.

Synonymy(t) =
c+1∑
i=2

S(t, wi)
c

(5.3)

where c is a constant.

• If a word does not often co-occur with its synonyms, then it is
often replaceable by the synonyms, and the word is less necessary.

5.4. Regression Rank 59

Thus, Replaceability is defined as follows.

Replaceability(t) =
wi 6=t∑
i=1...6

df(wi)− n(t, wi)
dfi

× S(t, wi)
S(t, t) (5.4)

where n(t, wi) is the number of documents in the collection
matching both t and wi.

• Many abstract but rare words are unnecessary, because they
are at a different abstraction level than the relevant documents.
Rareness is thus captured as a feature.

Rareness(t) = idf(t) = log N

df(t) (5.5)

Necessity enhanced Language modeling (LM) and Okapi methods
were found to be better than the LM and Okapi models without “ne-
cessity”.

5.4 Regression Rank

Lease et al. [2009] propose a regression method to estimate the query
language model rather than the usual MLE approach. A key idea of
their approach is that one can generalize knowledge of successful query
models from past queries to predict effective query models for novel
queries. Regression Rank is a framework which uses regression to weigh
query words, i.e., estimate more effective query models. Given a dataset
of queries with labeled relevant and non-relevant documents, one needs
to generate training data such that each instance corresponds to a query
word. In order to do this, we must have query models to generalize
from (i.e., to train the regression model). Various statistical, linguistic,
and query features (as discussed in §3.4) are used to characterize each
query word and form the features for each instance. The regression la-
bel for each training instance is computed by estimating θQ using a
weighted combination of frequency-based language models of its sub-
queries where the weights are defined by query performance. For every
training query Q, estimate θ̂Q =

∑
s

[Metric(θs)θs]. The language mod-
els θs are selected using grid search in the space of all possible query

60 Weighting Query Words and Query Concepts

language models. Grid points are query reduction candidates of size up
to 6.

Regression Rank was found to be significantly better than query
likelihood with maximum likelihood estimates, SD (§5.5) and KC
(§3.5.4) models.

5.5 Sequential Dependence (SD) Model using Markov Ran-
dom Fields

It is well known that dependencies exist between terms in a collection
of text. Occurrences of certain pairs of terms are correlated. The fact
that either one occurs provides strong evidence that the other is also
likely to occur. The SD model [Metzler and Croft, 2005] weighs query
words and word pairs by modeling such dependencies between query
words using a Markov Random Field (MRF) network. We provide a
basic introduction to MRF in §B.1. The network consists of words in a
query and a document node. Then, in this model, the query-document
match can then be computed using the posterior as follows.

P (D|Q) ≡
∑

c∈C(G)
log ψ(c) =

∑
c∈C(G)

λcf(c) (5.6)

where C(G) is the set of cliques in the network G, ψ(c) is a potential
function defined over clique c, f(c) is the feature function, λc is the
weight for feature f(c) and ≡ denotes rank equivalence. Three variants
of such a network are shown in Figure 5.1. They are Full Independence,
Sequential Dependence, and Full Dependence. The Full Independence
variant makes the assumption that query words qi are independent
given some document D. The Sequential Dependence variant assumes
a dependence between neighboring query words. The Full Dependence
variant assumes all query words are in some way dependent on each
other.

Potentials (defined over cliques) can then be grouped into three
types as follows.

• Potential function over the query word-document clique

ψT (c) = λT logP (qi|D) = λT log
[
(1− αD) tfqi,D

|D|
+ αD

cfqi
|C|

]
(5.7)

5.5. Sequential Dependence (SD) Model using Markov Random Fields61

����

������������

J
J

J
J
J

D

q1 q2 q3

����

������������

J
J

J
J
J

D

q1 q2 q3

����

������������

J
J

J
J
J

D

q1 q2 q3

ψU (c) = λU logP (#uwN(qi, . . . , qj)|D)

= λU log

[
(1 − αD)

tf#uwN(qi...qj),D

|D| + αD

cf#uwN(qi...qj)

|C|

]

where tf#uwN(qi...qj),D is the number of times the terms
qi, . . . qj appear ordered or unordered within a window N
terms. In our experiments we will explore various settings
of N to study the impact it has on retrieval effectiveness.
It should also be noted that not only do we add a poten-
tial function of this form for non-contiguous sets of two or
more query terms, but also for contiguous sets of two or
more query terms. Therefore, for cliques consisting of con-
tiguous sets of two or more query terms and the document
node D we define the potential function to be the product
ψO(c)ψU (c), which itself is a valid potential function.

Using these potential functions we derive the following
specific ranking function:

PΛ(D|Q)
rank
=

∑

c∈C(G)

λcf(c)

=
∑

c∈T

λT fT (c) +
∑

c∈O

λOfO(c) +
∑

c∈O∪U

λUfU (c)

where T is defined to be the set of 2-cliques involving a
query term and a document D, O is the set of cliques con-
taining the document node and two or more query terms
that appear contiguously within the query, and U is the set
of cliques containing the document node and two or more
query terms appearing non-contiguously within the query.
For any clique c that does not contain the document node
we assume that ψ(c) = 1 for all settings of the clique, which

However, there are two hindrances that cause us to aban-
don traditional training methodologies. First, the event
space Q×D is extremely large or even infinite depending on
how it is defined. Generally, the only training data available
is a set of TREC relevance judgments for a set of queries.
The documents found to be relevant for a query can then be
assumed to be samples from this underlying relevance distri-
bution. However, this sample is extremely small compared
to the event space. For this reason, it is highly unlikely that
a maximum likelihood estimate from such a sample would
yield an accurate estimate to the true distribution.

Even if a large sample from the underlying distribution
existed, it would still be very difficult to compute a maxi-
mum likelihood estimate because of the normalization factor
ZΛ, which is infeasible to compute both in our model and
in general. Methods exist for efficiently approximating ZΛ,
but none appear to be directly applicable to a problem of
our size.

Many IR techniques that involve automatically setting pa-
rameters from training data make use of maximum likeli-
hood or related estimation techniques. Even though these
techniques are formally motivated, they often do not max-
imize the correct objective function. Simply because the
likelihood of generating the training data is maximized does
not mean the evaluation metric under consideration, such as
mean average precision, is also maximized. This is true be-
cause models serve as rough approximations to complex dis-
tributions, and therefore the likelihood surface is unlikely to
correlate with the metric surface. This has been shown to be
true experimentally and is known as metric divergence [13].

Figure 5.1: Three Variants of the Markov Random Field Network [Metzler and
Croft, 2005]

• Ordered potential function over cliques with more than two query
words

ψO(c) = λO logP (#1(qi, . . . , qi+k), D)

= λO log
[
(1− αD)

tf#1(qi,...,qi+k),D

|D|
+ αD

cf#1(qi,...,qi+k)

|C|

]
(5.8)

where tf#1(qi,...,qi+k),D denotes the number of times the exact
phrase qi, . . . , qi+k occurs in document D with an analogous def-
inition for cf#1(qi,...,qi+k).

• Unordered potential function over cliques with more than two
query words

ψU (c) = λU logP (#uwN(qi, . . . , qj), D)

= λU log
[
(1− αD)

tf#uwN(qi,...,qj),D

|D|

+αD
cf#uwN(qi,...,qj)

|C|

]
(5.9)

where tf#uwN(qi,...,qj),D is the number of times the words qi, . . . , qj
appear ordered or unordered within a window of N words.
cf#uwN(qi,...,qj) is defined similarly.

62 Weighting Query Words and Query Concepts

Relevance of the document D for the query Q is then computed as
follows.

P (D|Q) ≡
∑

c∈C(G)
λcf(c)

=
∑
c∈T

λT fT (c) +
∑
c∈O

λOfO(c) +
∑

c∈O∪U
λUfU (c) (5.10)

where T , O and U are the set of all words, all ordered bigrams and all
unordered bigrams within a window in Q respectively. Note that the
parameters are constrained by setting λT + λO + λU = 1. Coordinate-
level hill climbing algorithm is used to fix λs where the objective is to
optimize the MAP. The performance was seen to be the best when the
window for the unordered pairs was set to 8 words. The Full Dependent
model and Sequential Dependence Model were found to be better than
the Full Independent model. The number of cliques in the FD model is
exponential in the number of query terms which limits the application
of this variant to shorter queries. SD and FD provided similar accuracy
in most cases. However, since FD considers a much larger set of depen-
dencies compared to SD, FD takes significantly more execution time.
Thus, considering both accuracy and execution time, SD was found to
be better than the FI and FD models for verbose queries. The best
parameter values for SD were found to be (0.85, 0.10 and 0.05) across
the TREC datasets.

5.6 Integrating Regression Rank with Markov Random Fields
(MRFs)

Although the weights for each feature class are learned from data
in SD [Metzler and Croft, 2005], feature weights within each class
are estimated by the same uniform assumption as the standard uni-
gram. That is, the MRF uses the maximum likelihood estimate (MLE)-
based Dirichlet-smoothed unigram. Regression Rank provides a metric-
optimized θQ rather than MLE. Lease [2009] observed that MRF’s first
term computation could use Regression Rank rather than simple max-
imum likelihood. Weights for bigrams, λO and λU , are still computed
using the same ML estimates. Such a combination of MRF and Regres-

5.7. Quasi-synchronous Dependency (QSD) Language Model 63

sion Rank framework was shown to be clearly better than either of the
two.

5.7 Quasi-synchronous Dependency (QSD) Language Model

The SD model captures word dependencies by allowing differences in
order and promixity of words in queries versus the documents. How-
ever, it ignores word dependence based on syntactic relationships in
queries. Also, if one uses binary dependencies with the head-modifier
relation in which two dependent words are directly linked in a de-
pendency structure, long-distance word dependencies can get ignored.
Quasi-synchronous word dependence models support multiple syntactic
configurations and hence allow flexible inexact query-document match-
ing. Hence, Park et al. [2011] proposed the QSD model which influ-
ences the query-document matching process using the word dependence
based on quasi-synchronous syntactic relationships in queries. We pro-
vide a basic introduction to dependency parsing in §C. We discussed
four types of such quasi-synchronous linguistic dependencies in §3.4.

Let TQ and TD be the dependency trees for the query and the
document respectively. A synchronous model allows dependent pair of
(e.g., parent-child) words in the query to be aligned with words having
different syntactic configurations in the document tree. Let A be a loose
alignment between the query and the document. A is a set of all possible
combinations of four syntactic configurations between a query and a
document. It has 4 × 7 elements: parent-child, child-parent, ancestor-
descendent, descendent-ancestor, siblings, and two for c-commanding.
For example, word ‘a’ is parent of word ‘b’ in the query dependency
tree could match with word ‘a’ is a parent of word ‘b’ in the document
or word ‘b’ is a parent of word ‘a’ in the document. Using this notion
of quasi-synchronous dependencies, the probability that the query is
generated by the document model can be written as follows.

P (Q|D) = P (TQ, A|TD) = P (A|TD)P (TQ|A, TD) (5.11)

Let N be the number of elements in A. Let synD and synQ be one
of the four syntactic configurations. Let TD,synD represent a set of de-
pendent terms having synD dependency and P (synD, synQ|TD,synD)

64 Weighting Query Words and Query Concepts

be the probability that a syntactic relation synD in a document is used
in the form of synQ in the query. Then we can write the following.

P (A|TD)P (TQ|A, TD)

=
∑

(synD,synQ)∈A
P (synD, synQ|TD,synD)P (TQ,synQ |TD,synD)

=
∑

(synD,synQ)∈A

1
N
P (TQ,synQ |TD,synD) (5.12)

For the first term, we assumed P (synD, synQ|TD,synD) to be 1
N . The

second term of the above equation can be computed as follows.

P (TQ,synQ |TD,synD) =
∑

(qi,qj)∈TQ,synQ

λ(qi, qj)P (qi, qj |TD,synD) (5.13)

where qi and qj are dependent terms with relation as synQ in the parse
tree of a query. Here λ(qi, qj) is the mean value of the query term
ranking scores for qi and qj as computed by Park and Croft [2010].
Further, the joint probability of a pair of query terms qi and qj given
the dependency can be computed as follows.

P (qi, qj |TD,synD) = (1− αD)
tfqi,qj ,synD
|D|

+ αD
cfqi,qj ,synD
|C|

(5.14)

where tf(qi, qj , synD) and cf(qi, qj , synD) are the frequency of word
pairs qi and qj with the syntactic relation synD in a document D and
in the collection C respectively. The model can be combined with the
Sequential Dependency Model [Metzler and Croft, 2005] to lead to the
following query-document match score.

P (Q,D) = λSD(Q,D) + (1− λ)QuasiSync(Q,D) (5.15)

where λ is learned using regression such that it maximizes the overall
average precision of the interpolated retrieval model. SD model along
with the Quasi-Sync interpolation was found to be better than the SD
model.

5.8 Weighted Sequential Dependence (WSD) Model

One of the primary limitations of the SD model is the fact that all
matches of the same type (e.g., words, ordered window, or unordered

5.8. Weighted Sequential Dependence (WSD) Model 65

window) are treated as being equally important. This is the result of
the massive parameter tying that is done in Eq. 5.10. Instead, it would
be desirable to weight, a priori, different terms (or bigrams) within the
query differently based on query-level evidence. For example, in a ver-
bose query, there will likely be a few concepts (terms or phrases) within
the query that will carry the most weight. While the sequential depen-
dence model would treat all of the concepts as equally important, we
would like to be able to weight the concepts appropriately, with regard
to each other. The WSD model aims to address this drawback [Bender-
sky et al., 2010]. For example, weighted concepts for the query “civil
war battle reenactments” using WSD were “civil:0.0619, war:0.1947,
battle:0.0913, reenactments:0.3487, civil war:0.1959, war battle:0.2458,
battle reenactments:0.0540”.

As an extreme, one way is to have a different λ for every word qi and
λi,i+1 for every bigram (qi, qi+1). But these are too many parameters.
Each λ now depends on 1 (or 2) query words. Bendersky et al. [2010]
proposed the WSD model which finds a middle path by parameterizing
λs as follows.

λ(qi) =
ku∑
j=1

wuj g
u
j (qi) (5.16)

and

λ(qi, qi+1) =
kb∑
j=1

wbjq
b
j(qi, qi+1) (5.17)

where gu(qi) and gb(qi, qi+1) are features defined over unigrams and
bigrams respectively. The retrieval model is then expressed as follows.

P (D|Q) =
ku∑
i=1

wti
∑
q∈Q

gui (q)fT (q,D)

+
kb∑
i=1

∑
qj ,qj+1∈Q

gbi (qj , qj+1)fO(qj , qj+1, D)

+
kb∑
i=1

wbi
∑

qj ,qj+1∈Q
gbi (qj , qj+1)fU (qj , qj+1, D) (5.18)

66 Weighting Query Words and Query Concepts

Here, gu and gb are concept importance features: endogenous (collection
dependent) and exogenous (dependent on external data sources like
Google N-Grams, MSN Query log, Wikipedia titles – see Section 3.4
for more details on these sources). They are document independent
and capture importance of a concept within the query. In Eq. 5.18,
ku and kb are the number of unigram and bigram importance features
respectively. Also, wu and wb are free parameters estimated so as to
optimize for the retrieval metric of interest such as MAP or NDCG.
Since the ranking function is linear with respect to w, coordinate level
ascent algorithm is used to update each parameter wi one at a time
and iteratively.

On all the three TREC datasets (ROBUST04, W10g and GOV2)
and a web corpus dataset, WSD was found to be better than QL (§A.2)
and SD (§5.5). Also, WSD using both unigrams and bigrams was better
than WSD with only unigrams or WSD with only bigrams for both the
TREC and the web datasets. Similarly, WSD with all features was
better than WSD with only endogenous features or WSD with only
exogenous features on TREC datasets. However, for the web corpus,
the exogenous features did not improve the accuracy.

5.9 Parameterized Query Expansion (PQE) Model

Previous work focused on few concept types only: noun phrases [Ben-
dersky and Croft, 2008], terms [Lease, 2009], query term spans [Svore
et al., 2010]. WSD extended the SD model to include generic term con-
cepts like bigrams with individual weights. The PQE model, proposed
by Bendersky et al. [2011b], focuses both on explicit query concepts as
well as on latent concepts that are associated with the query through
pseudo-relevance feedback (PRF). We provide a basic introduction to
PRF in §A.3. PQE is a unification of the concept weighting and the
query expansion models. It considers four concept types as follows.

• QT-concepts: words

• PH-concepts: bigrams

5.9. Parameterized Query Expansion (PQE) Model 67

• PR-concepts: bigrams from queries that are within a window of
size 8 in documents

• ET-concepts: top-K terms associated with the query through
pseudo-relevance feedback

For example, for the query: “What is the current role of the civil
air patrol and what training do participants receive?”, the following are
the weights assigned to the query words, query bigrams and expansion
terms.

• Query Words: 0.1064 patrol, 0.1058 civil, 0.1046 training, 0.0758
participants.

• Query Bigrams: 0.0257 civil air, 0.0236 air patrol, 0.0104 training
participants, 0.0104 participants receive.

• Expansion Terms: 0.0639 cadet, 0.0321 force, 0.0296 aerospace,
0.0280 cap.

Query-document scoring is then done as follows.

sc(Q,D) =
∑
T∈T

∑
κ∈T

λκf(κ,D) (5.19)

where T is the set of concept types and f(κ,D) is a matching function
that defines how related the concept κ is toD. It is computed as follows.

f(κ,D) = log
tfκ,D + µ

tfκ,C
|C|

|D|+ µ
(5.20)

In Eq. 5.19, the λs are parameterized in the same way as done in
the WSD model. Thus, each λκ is represented as a linear weighted
combination of importance features ΦT of type T .

λκ =
∑
ψ∈ΦT

wψψ(κ) (5.21)

The initial set of ET-concepts are obtained using Latent Concept Ex-
pansion (LCE) as follows. First rank documents in the collection includ-
ing only the concept types manifested in the query itself (QT-concepts,

68 Weighting Query Words and Query Concepts

PH-concepts and PR-concepts). Then, all the words in the pseudo-
relevant set of documents R (top ranked documents) are weighted by
wLCE(κ) which is computed as follows.

wLCE(κ) =
∑
D∈R

exp

[
γ1sc(Q,D) + γ2f(κ,D)− γ3 log tfκ,C

|C|

]
(5.22)

Top K words with highest LCE form the set of ET-concepts.
Each type is associated with the following six importance features.

• GF (κ): Frequency of κ in Google N-Grams

• WF (κ): Frequency of κ in Wikipedia titles

• QF (κ): Frequency of κ in a search log

• CF (κ): Frequency of κ in the collection

• DF (κ): Document frequency of κ in the collection

• AP (κ): A priori concept weight. AP is set to LCE weight for ET
concepts, 1 for other types

Unlike WSD, in this case the parameter estimation needs to be done
using a two stage optimization technique.

• Use coordinate ascent to learn feature importance weights for
explicit concept types.

• Compute the topK ET-concepts. Again, use coordinate ascent to
learn feature importance weights for explicit and latent concept
types

The authors compared PQE with many other models and found PQE
to be the best. The following models were compared: QL (§A.2), SD
(§5.5), RM[10] [Lavrenko and Croft, 2003], LCE[10] (Eq. 5.22), WSD
(§5.8), and WRM[10] (weighted version of RM). RM and LCE are both
Pseudo-relevance feedback (PRF) expansion models. RM[10] means
that 10 expansion concepts were used. Figure 5.2 compares these mod-
els with respect to the concepts they consider.

5.10. Multiple Source Formulation (MSF) 69

Concept Types
QT PH PR ET

Non-parameterized QL N
methods SD N N N

RM N N
LCE N N N N

Parameterized WSD P P P
methods WRM P P

PQE P P P P

Table 4: Summary of the evaluated retrieval meth-
ods. Each cell indicates whether the weights for the
concept type are parameterized according to Eq. 3
(P) or not (N). An empty cell indicates that the
concept type is not used by the retrieval method.

dard INQUERY stopword list [2]. The free parameter µ in
the concept matching function f(κ,D) (see Eq. 2) is set to
2, 500, according to the default Indri configuration of the
Dirichlet smoothing parameter.

The optimization of the PQE method is done using 3-fold
cross-validation with mean average precision (MAP) as the
target metric of the CA algorithm (see Sec. 3.3.2). The
statistical significance of differences in the performance of
PQE with respect to other retrieval methods is determined
using a two-sided Fisher’s randomization test with 50,000
permutations and α < 0.05.

As was shown in previous work [4, 5, 6, 18], the impact
of concept weighting techniques varies significantly across
queries of different length. In general, more verbose queries
are expected to benefit more from concept weighting, since
they are more likely to contain concepts of varying impor-
tance. Thus, to test the performance of the proposed meth-
ods across multiple query lengths, we treat the 〈title〉 and
the 〈desc〉 portions of TREC topics as two separate sets of
queries in our experiments. The 〈title〉 and the 〈desc〉 query
convey the same information need for the same topic, but
differ in their structure. The 〈title〉 query is a short keyword
query, while the 〈desc〉 query is a verbose natural language
description of the information need. Fig. 2 shows an exam-
ple of 〈title〉 and 〈desc〉 queries for TREC topic #752.

5.2 General Evaluation
Our initial evaluation compares the retrieval performance

of the parameterized query expansion (PQE) retrieval method
(described in Sec. 3) to the performance of several standard
baseline methods that do not employ concept weight param-
eterization.

First, we compare the retrieval performance of the PQE

method to the performance of the query likelihood (QL) [29]
and sequential dependence model (SD) [23] retrieval meth-
ods. These baselines do not perform query expansion, and
differ in the choice of the query-based concept types that
they use. QL is a standard bag-of-words method. In contrast,
the SD method uses, in addition to query terms, both PH-
concepts and PR-concepts (which are described in Sec. 3.1).
The SD method has consistently demonstrated state-of-the-
art retrieval effectiveness in a variety of search tasks, and
especially for search over large web collections [23]. Top per-
forming submissions at several TREC tracks have used SD:
Terabyte Track 2004-2006 [26], Million Query Track 2007-
2008 [1] and Web Track 2009 [32].

Second, we compare the performance of PQE to the per-
formance of two retrieval methods that perform pseudo-
relevance feedback (PRF) for query expansion: the RM3
variant of the relevance model (RM) [16] and Latent Concept
Expansion (LCE) [24]. Both of these methods are known to
improve retrieval performance over methods that do not em-
ploy query expansion. Analogously to the QL and SD meth-
ods, the RM and LCE methods differ in their choice of the
query-based concept types. RM is a bag-of-words model,
while LCE uses both PH-concepts and PR-concepts. Both
PRF-based methods use individual terms (i.e., unigrams)
for query expansion.

Both RM and LCE exhibit highly competitive retrieval per-
formance. Particularly, the LCE method is among the most
effective PRF-based methods for large-scale web collections
[23, 15]. Lease [17] has recently affirmed its effectiveness at
the TREC Relevance Feedback track.

To ensure competitive baseline performance, the free pa-
rameters in the PRF-based methods – such as the number
of documents used for pseudo-relevance feedback, the query
weight in the RM method and the γ parameters in the LCE

method (see Eq. 5) – are set using 3-fold cross-validation,
analogously to the PQE method. To maintain reasonable ef-
ficiency, especially for the large web collection GOV2, we
limit the number of expansion terms to 10 for all the PRF-
based methods presented in Table 5.

Overall, the four baselines described above differ in their
choice of concept types. In contrast to the PQE method, they
do not parameterize the concept weights. Table 4 summa-
rizes the choice of concepts and weight parameterization by
these methods (as well as two additional methods that will
be discussed in Sec. 5.3). For instance, we can see from Ta-
ble 4 that LCE and PQE share the same concept types, but
differ in the parameterization of the concept weights.

5.2.1 Baseline Comparisons

Table 5 compares the retrieval effectiveness of the four
baselines to the retrieval effectiveness of PQE, both for 〈title〉
and 〈desc〉 queries. Effectiveness is measured using both
an early precision metric (prec@20), and the mean average
precision of the entire ranked list of 1,000 documents (MAP).

First, it is clear from Table 5 that methods that use multi-
ple concept types (SD, LCE, PQE) are superior to the methods
that use terms alone (QL, RM). This result holds for all the
collections, for both prec@20 and MAP.

Second, the LCE method, which uses both multiple ex-
plicit query concept types and latent expansion concepts,
outperforms the SD method, which uses the query concepts
alone. This result is consistent with previous work [24], and
demonstrates the positive effect of query expansion, even
when multiple query concept types are used.

Finally, we compare the proposed method, PQE, to the four
baselines. In all 12 comparisons (three collections, two met-
rics and two query types), our method outperforms all the
baselines, in most cases to a statistically significant degree.
There are two key elements that contribute to the success
of the PQE retrieval method.

First, similarly to LCE, PQE combines multiple explicit con-
cept types with expansion concepts. This combination leads
to a very substantial improvement over the standard bag-
of-words methods. For instance, for 〈desc〉 queries on the
GOV2 collection, PQE achieves 24% and 17% improvement
in MAP over QL and RM, respectively.

Figure 5.2: Comparison of Concepts across Models (N means Non-parameterized,
P means Parameterized) [Bendersky et al., 2011b]

5.10 Multiple Source Formulation (MSF)

Bendersky et al. [2012] further extended the PQE model to include
more data sources which were used to compute richer features. The fol-
lowing features were used for concept weighting from external sources.

• Google N-Grams: Frequency of concept κ

• MSN Query Log: Frequency of concept κ

• Wikipedia Titles: Frequency of concept κ

• Retrieval Corpus: Document frequency of concept κ

The following features were used for query expansion from external
sources.

• ClueWeb Heading Text: Single line of heading text (as defined by
the <h1>–<h6> tags)

• ClueWeb Anchor Text: Single line of anchor text (as defined by
the <a> tag)

• Wikipedia Corpus: Single article

• Retrieval Corpus: Single document

70 Weighting Query Words and Query Concepts

Compared to the PQE model, the initial set of expansion con-
cepts are computed per source. These expansion concepts are combined
across sources to get the initial pool of expansion concepts. Coordinate
ascent is used in a two stage procedure to estimate all parameters as in
PQE. Comparisons with SD (§5.5), WSD (§5.8), LCE[10] (Eq. 5.22),
LCE-WP[10], PQE[10] (§5.9) show that the MSF[10] is better than all
of these. Note that LCE-WP performs the pseudo-relevance feedback
on Wikipedia, rather than using the retrieval corpus.

5.11 Query Hypergraphs

Various MRF models discussed till now (SD, WSD, PQE, MSF) model
multiple dependencies between various query words. The query hyper-
graphs model, proposed by Bendersky and Croft [2012], is even more
general as it models arbitrary higher order term dependencies (a de-
pendency between term dependencies) as concepts. Vertices in a hyper-
graph correspond to individual query concepts. Dependency between a
subset of concepts is modeled using a hyperedge. Query hypergraphs
use passage-level evidence to model dependencies between concepts.
They assign weights to both concepts and concept dependencies, pro-
portionate to the estimate of their importance for expressing the query
intent. Here are the examples of the possible structures and the con-
cepts they might contain for the query “members of the rock group
nirvana” (stop words removed).

• Words: members, rock, group, nirvana

• Bigrams: members rock, rock group, group nirvana

• Noun phrases: members, rock group nirvana

• Named entities: nirvana

• Dependencies: members nirvana, rock group

Figure 5.3 shows an example hypergraph representation. Let KQ

be the set of all concepts. Then the hypergraph has V = KQ ∪ {D}
and E = {(k,D) : k ∈ PKQ} where PKQ stands for the power set of

5.11. Query Hypergraphs 71

international art crime "art crime"D

Terms Phrases

({international},D) ({art},D) ({crime},D) ({"art crime"},D)

({international, art, crime, "art crime"},D)

Figure 2: Example of a hypergraph representation for the query “international art crime”.

The structures in the set ΣQ are both complete and disjoint.
The completeness of the structure implies that it can be used
as an autonomous query representation. The disjointness of
the structures means that there is no overlap in the linguistic
phenomena modeled by the different structures. In other
words, each structure groups together concepts of a single
type (e.g., terms, bigrams, noun phrases, etc.).

Second, within each structure, arbitrary term dependen-
cies can be modeled as concepts. In other words, each struc-
ture σi ∈ ΣQ is represented by a set of concepts

σi , {κ1
i , κ

2
i , . . .}.

Each such concept is considered to be an atomic unit for
the purpose of query representation. In addition, for conve-
nience, we adopt the notation

KQ ,
n

[

i=1

σi,

to refer to the union of all the query concepts, regardless of
their respective structures.

These modeling assumptions, while conceptually simple,
create an expressive formalism for hierarchical query rep-
resentation. This formalism is flexible enough to specify a
wide range of specific instantiations. Table 1 shows that
it can model a wide spectrum of linguistic phenomena that
are often encountered in natural language processing and
information retrieval applications.

For instance, as we can see in Table 1, a structure can
contain single terms as concepts, resulting in a bag-of-words
query representation. A structure can also contain adjacent
bigrams or noun phrases. Concepts need not be defined over
contiguous query terms, as is demonstrated by the last struc-
ture in Table 1, which models a set of linguistic dependency
links between the query terms.

For the purpose of information retrieval, we are primarily
interested in using the resulting hierarchical query represen-
tation to model the relationship between a query Q and a
document D in the retrieval corpus. Specifically, given a set
of query structures ΣQ and a document D, we construct a
hypergraph H(ΣQ, D)3.

A hypergraph is a generalization of a graph where an edge
can connect an arbitrary set of vertices. A hypergraph H is

3 For conciseness, we use the abbreviation H , H(ΣQ,D) in the
remainder of this paper.

represented by a tuple 〈V, E〉, where V is a set of elements or
vertices and E is a set of non-empty subsets of V , called hy-
peredges. In other words, the set E ⊆ PS(V) of hyperedges
is a subset of the powerset of V [18].

Specifically for the scenario of document retrieval, we de-
fine the hypergraph H over the document D and the set of
query concepts KQ as

V , KQ ∪ {D}
E , {(k, D) : k ∈ PS(KQ)}. (1)

Figure 2 demonstrates an example of a hypergraph H for
the search query “international art crime”. In this particular
example, we have two structures. The first structure con-
tains the query terms denoted i, a, and c, respectively. The
second structure contains a single phrase, ac. Over these
concepts, we can define a set of five hyperedges – four hy-
peredges connecting document D and each of the concepts,
and one hyperedge connecting D and all of the concepts.

Formally, for the hypergarph H in Figure 2, the vertices
and the hyperedges are defined as follows

VFig.2 = {D, i, a, c, ac}
EFig.2 = {({i}, D), ({a}, D), ({c}, D),

({ac}, D), ({i, a, c, ac}, D)}.

Note that this hypergraph configuration is just one possible
choice. In fact, any subset of query terms can serve as a
query concept, and similarly, any subset of query concepts
can serve as a hyperedge, as shown by Equation 1.

2.2 Ranking with Query Hypergraphs
In the previous section, we defined the query representa-

tion using a hypergraph H = 〈V, E〉. In this section, we
define a global function over this hypergraph, which assigns
a relevance score to document D in response to query Q.
This relevance score is used to rank the documents in the
retrieval corpus.

A factor graph, a form of hypergraph representation which
is often used in statistical machine learning [6], associates a
factor φe with a hyperedge e ∈ E. Therefore, most generally,
a relevance score of document D in response to query Q
represented by a hypergraph H is given by

sc(Q, D) ,
Y

e∈E

φe(ke, D)
rank
=

X

e∈E

log(φe(ke, D)). (2)

943

Figure 5.3: Example of a Hypergraph Representation for the Query “international
art crime” [Bendersky and Croft, 2012]

KQ. Similar to the other MRF models, relevance score to a document
D for query Q is computed as follows.

sc(Q,D) =
∏
e∈E

ψe(ke, D) ≡
∑
e∈E

log(ψe(ke, D)) (5.23)

where ≡ means “rank equivalent”.
Note that since the graph contains hyperedges, the potentials are

defined over concept sets rather than single concepts. QT, PH and PR
concepts were used as nodes in the hypergraph. The following two types
of hyperedges were used.

• Local Edges: They link every concept to D. They represent the
contribution of the concept κ to the total document relevance
score, regardless of the other query concepts.

• Global Edges: A single global hyperedge (KQ, D) is defined over
the entire set of query concepts. It represents the contribution
of each concept given its dependency on the entire set of query
concepts.

Local potential functions are defined on local hyperedges and global
potential functions on the global hyperedge. For both types of poten-
tial functions, the same matching function f(κ,D) is used as in the
PQE model [Bendersky et al., 2011b]. The local potential functions are
defined as follows.

ψ(κ,D) = exp(λ(κ)f(κ,D)) (5.24)

72 Weighting Query Words and Query Concepts

where λ(κ) is the importance weight for concept κ. For the global
potential function, the documentD is divided into multiple overlapping
passages ΠD and each passage π ∈ ΠD is ranked with respect to the
query. The potential function value is computed based on a match with
the best matching passage (also called as the Max-Passage retrieval
model).

ψ(KQ, D) = exp

max
π∈ΠD

∑
κ∈KQ

λ
(
κ,KQ

)
f(κ, π)

 (5.25)

where λ
(
κ,KQ

)
is the importance weight of concept κ in the context

of entire set of query concepts KQ, and f(κ, π) is a matching function
between concept κ and a passage π ∈ ΠD. Intuitively, the global func-
tion assigns a higher relevance score to a document that contains many
important concepts in the confines of a single passage. λ(κ,D) and
λ(κ,KQ) could be computed by parameterization by structure (tying
all concepts of the same type together, as in SD (§5.5)) or by param-
eterization by concepts (as in PQE (§5.9)). Parameter estimation is
done using a two stage coordinate ascent algorithm.

It was observed that the hypergraph-based versions of various mod-
els like QL, SD (§5.5), FD (§5.5), WSD (§5.8) were better than the
original models. It is important to note, however, that relative improve-
ments were diminishing as the baseline grew stronger. For instance,
Bendersky and Croft [2012] note that while improvements over the QL
model are around 5%, the improvements over the more sophisticated
WSD model are around 1%, which demonstrates that WSD already
captures some of the dependencies modeled by the global potential
function in the query hypergraph. In addition, query hypergraph-based
models optimize twice as many parameters as the original models,
which might require a significant amount of training data, obtained
either through labeling or implicit user feedback such as click data.
However, the hypergraph approach is indeed helpful for many complex
queries. For instance, Bendersky and Croft [2012] report that for the
GOV2 collection, the hypergraph-based method improves the perfor-
mance (in terms of MAP) for 60% of the queries compared to the WSD
baseline, while hurting only 30% of the queries. Figure 5.4 demonstrates

5.12. Summary 73

Figure 5.4: Analysis of the Best Performing Queries for Hypergraph-based Mod-
els [Bendersky, 2012]

some of the queries with the highest improvements, along with the local
and global factor weights.

5.12 Summary

In this chapter, we discussed multiple methods to assign weights to
the query words. Broadly we studied four kinds of methods: one us-
ing power iterations, another using features in the SVD space, regres-
sion rank and the fourth using Markov Random Fields. Within the
Markov random field-based methods, we studied Sequential Depen-
dence (SD), Quasi-Synchronous Dependency (QSD), Weighted Sequen-
tial Dependence (WSD), Parameterized Query Expansion (PQE), Mul-
tiple Source Formulation (MSF) and Query Hypergraphs. SD model
considers dependencies between words only. QSD models the word

74 Weighting Query Words and Query Concepts

dependence based on syntactic relationships in queries. WSD models
query word dependencies and weighs generic word concepts (e.g., uni-
grams, bigrams, etc.). The PQE model focuses both on explicit query
concepts as well as on latent concepts that are associated with the
query through pseudo-relevance feedback. Multiple external document
sources have been helpful to extract robust statistical features in MSF.
The query hypergraphs model is even more general as it models ar-
bitrary higher order term dependencies (a dependency between term
dependencies) as concepts. Only a few types of features have been used
to define potential functions for the query hypergraphs model; more
complicated feature functions from §3 could be used to further improve
the accuracy. Overall, the dependency models have been shown to be
significantly better than the models proposed in the previous chapters.
Suggested Further Reading: [Paik and Oard, 2014]: A fixed-point
method; [Zhao and Callan, 2010]: Regression using features in the SVD
space; [Lease et al., 2009]: Regression using knowledge of successful
query models from past queries; [Metzler and Croft, 2005]: First work
to model dependencies between query words; [Park et al., 2011]: Models
long-distance syntactic word dependencies between query words; [Ben-
dersky et al., 2010]: Parameterizing weights for generic word con-
cepts; [Bendersky et al., 2011b]: Parameterizing weights for generic
word concepts as well as latent concepts using query expansion; [Ben-
dersky et al., 2012]: Using multiple external document sources; [Bender-
sky and Croft, 2012]:Model arbitrary higher order term dependencies.

6
Query Expansion by Including Related Concepts

6.1 Introduction

As discussed in Chapters 3 and 4, query reduction helps improve the
performance for a verbose query. Better results were obtained using
query weighting methods as discussed in Chapter 5. Although it sounds
counter-intuitive, can we increase the performance of a verbose query
by adding words?

Indeed, query expansion has a rich and successful history in infor-
mation retrieval, where it has been shown to improve performance in a
diverse set of applications. However, it needs to be applied with some
caveats, since adding erroneous expansion terms to the query may hurt
its performance. This is especially true in the case of verbose queries,
which already contain redundant terms as discussed in §3.

Therefore, we start this chapter with a discussion on how to find out
whether query expansion indeed could be helpful for verbose queries
(§6.2). Then, we explore various query expansion techniques like adding
a category label to queries (§6.3), adding weighted latent concepts
to the query (§6.4), and interactive query expansion using pseudo-
relevance feedback (§6.6). We also review a query expansion method
where the user pro-actively provides guidance in the form of relevant

75

76 Query Expansion by Including Related Concepts

System P@5 P@10 NDCG@15 MAP
Baseline (QL) 0.472 0.397 0.379 0.240
PRF (Best) 0.514 0.442 0.423 0.288

Query Reduction
Upper Bound (UB) 0.799 0.671 0.626 0.366
Interaction UB 0.634 0.528 0.498 0.300

Query Expansion
Upper Bound (UB) 0.738 0.643 0.587 0.368
Interaction UB 0.571 0.480 0.447 0.292

Table 2: The utility of IQR and IQE. Italicized val-
ues indicate that the scores are significantly better
than the baseline, while those in bold are signifi-
cantly better than PRF. Statistical significance was
measured using a paired t-test, with α set to 0.05.

0 50 100 150 200 250
−1

−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Queries

D
iff

er
en

ce
 in

 M
A

P

IQR Better

IQE Better

Figure 1: Difference in MAP due to Selective IQR
and IQE.

2.2 Opportunities
The results in Table 2 for query reduction and expansion

show that user interaction can lead to significant improve-
ments in performance for long queries. Further improve-
ments can be obtained if we selectively invoke IQR or IQE.
Figure 1 shows the ordered distribution of the difference be-
tween the potential gains due to IQR and IQE. Some queries
are better suited for IQR, while others can be better im-
proved through IQE. If we can selectively invoke IQR or
IQE for each query we can potentially obtain a 51% (from
0.240 to 0.363, compared to 0.300 and 0.292 for only IQR
and only IQE respectively) improvement in MAP over the
baseline. Determining when to reduce and when to expand
is similar in flavor to the problems of determining when to
perform PRF [7] or when to perform stemming [9]: correct
answers to either can lead to significant improvements in
performance. The tremendous scope for improvement makes
the reduce/expand problem worthy of further investigation.
We will show in Section 3 that we can address this problem
through implicit feedback from the user.

The current interaction paradigm involves always present-
ing users with ten options for all queries. There is clearly
scope for reducing the number of options presented to users,
especially when on average only three out of ten of them
are better than the baseline. Figure 2 is a histogram of the
number of options better than the baseline for each of the
249 queries we used for training. Clearly, a large fraction

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

Number of options better than baseline

Fr
eq

ue
nc

y

Figure 2: Distribution of the number of options in
the ten presented to users that are better than the
baseline query, for a set of 249 training queries.

of the options presented to users have no utility, and can
potentially degrade the user experience. In Section 5 we
present techniques that enable us to reduce the number of
options we present to users significantly, without degrading
performance.

IQR and IQE as reported in past work require a large
amount of background processing. For query reduction the
top ten options have to be selected from an exponential
number of candidates since a query of length n has 2n sub-
queries. Similarly, for query expansion, we need to analyze
all 2n combinations of expansion terms from the n suggested
by PRF. Such exhaustive exploration of the sub-query space
is infeasible in an operational environment. Also in Section 5
we will present a simple technique based on empirical obser-
vations that significantly reduces the search space, without
sacrificing performance.

3. SELECTIVE INTERACTIVE REDUCTION
AND EXPANSION (SIRE)

Tremendous gains in performance can be obtained by se-
lectively expanding or reducing long queries. For each long
query, our approach involved selecting the top five sub-queries
and top five expansion sets and providing the user a merged
list for interaction. The downside of this technique was that
we risked losing potentially useful options ranked between
six and ten. However, as Table 3 shows, this risk was in-
significant when compared to the potential for improvement
through SIRE. By viewing this mix of expansion and reduc-
tion options, along with a snippet of text to guide selection,
the user can implicitly guide the system towards expansion
or reduction of the query.

Table 3 summarizes the improvements in performance that
can be achieved using the SIRE technique3. When IQR and
IQE are used with five options, the performance is as de-
tailed. However, when the options are combined (SIREcomb),

3These results were obtained using an efficient processing
technique described later in Section 5

13

Figure 6.1: Some queries are better suited for IQR, while others can be better
improved through IQE [Kumaran and Allan, 2008]

reference documents (§6.5). For interested readers, we provide a basic
introduction to pseudo-relevance feedback (PRF) in §A.3.

6.2 When Could Query Expansion Help?

Figure 6.1 shows that there are certain queries for which query reduc-
tion is useful while for other queries, query expansion is good. Query
expansion (QE) does not work in all cases. Intuitively, QE is helpful
when the initial set of top k retrieved documents have a high precision.
QE is also useful when the query is relatively short. How to define a
measure to decide if QE will fail or succeed? Amati et al. [2004] study
this problem and come up with two important measures: InfoBo2 and
Info based on the DFR (Divergence From Randomness) framework.
We provide a basic introduction to DFR in §A.4.

Let Q be a query, C be the document collection, and R be the set
of top documents retrieved for Q from R using language models. The
Divergence From Randomness (DFR) models are based on this simple

6.2. When Could Query Expansion Help? 77

idea: “The more the divergence of the within-document term-frequency
from its frequency within the collection, the more the information
carried by the word w in the document d.” Using the Bose-Einstein
distribution-based DFR framework, InfoBo2 is defined as follows.

InfoBo2(qi) = − log2

[1
1 + λ

]
− tfR(qi). log2

[
λ

1 + λ

]
(6.1)

where λ = |R|. tfC(qi)
|C| , |R| and |C| are the total number of terms in R

and C respectively, and tfR(qi) is the frequency of qi in R. We refer the
reader to [Amati, 2003] for details of this formulation for the InfoBo2
measure. When summed across all terms in the query, InfoBo2 was
found to be significantly positively correlated with Average Precision
(correlation=0.52).

Let InfoPrior(Q) be defined as follows.

InfoPrior(Q) =
∑
qi∈Q
− log2

tf(qi, C)
tf(C) (6.2)

Also let MQ be defined as follows.

MQ = max
[
InfoPrior(Q)− µInfoPrior(Q)

σInfoPrior(Q) ,

max
M∈DFR

InfoM (Q)− µInfoM (Q)
σInfoM (Q)

]
(6.3)

where the mean µ and standard deviation σ are computed across dif-
ferent query words. Note that here M denotes various DFR models
like Divergence approximation of the binomial, Bose-Einstein distribu-
tion, Inverse Document Frequency model, etc. Finally, using these two,
Info(Q) can be defined as follows.

Info(Q) = 1
|Q|

[
InfoPrior(Q)− µInfoPrior(Q)

σInfoPrior(Q)
+MQ

]
(6.4)

where |Q| is the length of the query Q in words. The Info measure was
found to be related to Average Precision increase after QE activation.

They found that low InfoBo2 is an indicator of a possible low out-
come of average precision for the query, attesting thus when a query is

78 Query Expansion by Including Related Concepts

possibly difficult. On the other hand, the information content measure
Info is negatively correlated to the increase in average precision after
application of query expansion.

6.3 Adding a Category Label to Queries

The Open Directory Project (ODP) 1 is a multilingual open-content
directory of World Wide Web links which uses a hierarchical ontol-
ogy scheme for organizing site listings. Listings on a similar topic are
grouped into categories which can then include smaller categories. Bai-
ley et al. [2010] propose an approach that leverages past queries for
which ODP category labels have been assigned, mines these past queries
that are similar to rare long queries of interest, and propagates the la-
bels from them to the rare long queries. For queries with successful
URL trails, they assign a URL to one of the ODP categories using a
back-off strategy as follows. If the URL does not match with an ODP
category, remove successive path fragments from the end of URL until
there is a match. Thus a query is assigned a distribution over ODP
categories. This is then called as the aggregated labeled query trails
(ALQT) for the query.

Given a long query, it is matched to obtain multiple similar ALQTs
to obtain the ODP label for this long query. Four matching methods
were proposed as follow.

• Term dropping: Drop least frequent term with respect to the
query log.

• Named entities: Match any past query with at least one named
entity from the long query.

• Language modeling: The long query is evaluated for match
against all past queries using smoothed language model scores.

• BM25 scoring.

All matching ALQTs for the long query are further aggregated to
compute an ALQT for the long query. Using the above strategies,

1http://www.dmoz.org/

http://www.dmoz.org/

6.4. Parameterized Latent Concept Expansion 79

it was possible to correctly identify the ODP category with about
20% accuracy even for long queries with no exact match with any
past query. BM25 provided the best accuracy among the four tech-
niques. These ODP category labels were then used to reorder the top-
ranked search results. The following retrieval methods were compared:
BM25F, Click, ODP, BM25F+Click, BM25F+ODP, Click+ODP, All
(BM25F+ODF+Click). The findings suggest that re-ranking based on
the ODP labels alone can outperform BM25F and click-through meth-
ods. Combining BM25 with ODP and also Click with ODP also ap-
peared to help.

6.4 Parameterized Latent Concept Expansion

As discussed in Section 5.9, the Parameterized Query Expansion (PQE)
model [Bendersky et al., 2011b] learns in a supervised setting the im-
portance weights for explicit query concepts as well as latent concepts
that are associated with the query through pseudo-relevance feedback.
It was shown to be better than similar techniques that did not use the
latent concepts. Bendersky et al. [2012] proposed an extension of the
PQE model called the Multiple Source Formulation (MSF) (see Sec-
tion 5.10) which performs query weighting and query expansion across
multiple information sources. MSF was found to be better than many
other query weighting models. Table 6.1 shows how different external
sources could help in obtaining expansion terms for the query from dif-
ferent perspectives. For more detailed technical discussion of the PQE
and MSF methods see Sections 5.9 and 5.10, where these models were
introduced in the context of concept weighting techniques.

6.5 Expansion using User-supplied Reference Documents

Balog et al. [2008] address a specific enterprise document search sce-
nario, where the information need is expressed in an elaborate manner.
User information needs are expressed using a short query (of a few key-
words) together with examples of key reference pages. Given this set
of reference documents S, they propose methods for query-dependent
as well as query-independent query expansion.

80 Query Expansion by Including Related Concepts

Table 6.1: Comparison between the lists of expansion terms derived from the indi-
vidual external information sources for the query “toxic chemical weapon” and the
combined list produced by MSF.

Source Expansion Terms
Retrieval Cor-
pus

chemical, weapon, toxic, convention, substance,
gas, destruction, product, plant, mirzayanov

Wikipedia chemical, agent, gas, weapon, warfare, war, poi-
son, mustard, disseminate, nerve

Anchor Text toxic, chemical, cigarette, tobacco, terrorist, tts,
weapon, leach, terror, wwf

Heading Text toxic, chemical, weapon, terrorist, terror, assess,
biology, behavior, incinerate, emission

Combined weapon, agent, gas, russia, convention, mustard,
warfare, substance, destruction, product

Query likelihood model ranks documents as follows.

logP (d|Q) ∝ logP (d) +
∑
qi∈Q

P (qi|θQ). logP (qi|θD) (6.5)

The document model is often smoothed with the collection statistics
as follows.

P (qi|θD) = (1− λ).P (qi|D) + λ.P (t|C) (6.6)

One way to use set of reference documents S is to influence setting
of the smoothing parameter λ. Balog et al. [2008] propose the following
two methods to compute a query-dependent λQ.

• Maximizing Average Precision: This approach maximizes the av-
erage precision assuming that S is the only set of relevant docu-
ments given query Q.

• Maximizing Query Log Likelihood: This approach tries to max-
imize the log-likelihood of the query Q, given the set of sample
documents S.

6.5. Expansion using User-supplied Reference Documents 81

Besides influencing the smoothing parameter of the document
model, the set S can also be used to influence the pseudo-relevance
feedback based query expansion. Given any word t, the probability of
the word t given the document set S can be computed as follows for
query expansion.

P (t|S) =
∑
D∈S

P (t|D).P (D|S) (6.7)

The above model has two main components, one for estimating
(expansion) word importance, and one for estimating the importance
of the documents from which expansion words are selected.

The first part P (t|D) can be computed in three different ways as
follows.

• Maximum likelihood estimate: P (t|D) = PML(t|D) = n(t,D)∑
t′ n(t′,D) .

• Smoothed estimate of a word: P (t|D) = (1 − λ).PML(t|D) +
λ.PML(t|C).

• Unsupervised query expansion [Ponte and Croft, 1998]: s(t) =
log PML(t|D)

PML(t|C) and P (t|D) = s(t)∑
t′ s(t

′) .

The second part P (D|S) can be computed in three different ways
as follows.

• Uniform: P (D|S) = 1/|S|, i.e., all sample documents are assumed
to be equally important.

• Query-biased: P (D|S) ∝ P (D|Q), i.e., a document’s importance
is approximated by its relevance to the original query.

• Inverse query-biased: P (D|S) ∝ 1−P (D|Q), i.e., we reward doc-
uments that bring in aspects different from the query.

They observed that maximizing query log likelihood and maximiz-
ing average precision perform almost the same. They considered the
query likelihood model with smoothing using maximum query log likeli-
hood, and with no query expansion, as the baseline. Their query expan-
sion based methods clearly outperformed the baseline. Uniform query

82 Query Expansion by Including Related Concepts

expansion method brought in more “rare” relevant documents, that are
not identified by the standard query-biased expansion methods.

6.6 Selective Interactive Reduction and Expansion

Interactive retrieval is a setting where the user is allowed to choose the
reduced or expanded forms of the verbose query. As discussed in §3, it
was observed that set cover pruning as well as snippet-based pruning
worked fine with both Interactive Query Reduction (IQR) and Inter-
active Query Expansion (IQE). However, an inter-leaving of the top
results from IQR and IQE (i.e., Selective Interactive Reduction and
Expansion) with set cover pruning performed better than either IQR
or IQE while significantly reducing the number of options [Kumaran
and Allan, 2008].

6.7 Summary

For short queries, query expansion using pseudo-relevance feedback has
been found to be very useful. However, for verbose queries, query ex-
pansion should be performed only if the predicted performance of the
verbose query is low and when the expected improvement in perfor-
mance using query expansion is high as indicated by the InfoBo2 and
the Info measures. Query expansion with the right set of expansion
words can be helpful even for verbose queries. We discussed various
techniques for adding expansion terms: adding ODP category label to
queries, adding weighted latent concepts to the query, and interactive
query expansion using pseudo-relevance feedback. In the first and the
third technique, words are added as a whole while in the second tech-
nique words are added along with a weight capturing their importance.
The first technique needs a query log while the others use the traditional
method of pseudo-relevance feedback for query expansion. Expansion-
based techniques improve performance even for the Markov random
field network-based models discussed in the previous chapter. Also,
expansion using multiple data sources has been shown to be comple-
mentary and hence effective. Finally, we observed that query expansion

6.7. Summary 83

becomes further effective when the user pro-actively provides guidance
in the form of relevant reference documents.
Suggested Further Reading: [Bailey et al., 2010]: Adding a cate-
gory label from ODP to queries using query logs; [Balog et al., 2008]:
Expansion using user-supplied query-specific sample reference docu-
ments; [Bendersky et al., 2011b]: Expansion by modeling dependencies
between concepts between query words and also latent concepts; [Ku-
maran and Allan, 2008]: Efficient and effective user interaction for
query expansion.

7
Query Reformulation for Verbose Queries

7.1 Introduction

So far we have discussed query reduction, query weighting and query
expansion mechanisms to deal with verbose queries. While, as shown
in previous chapters, these methods can significantly boost retrieval
performance they have one major drawback. These methods almost
completely ignore user interaction with these queries, as can be ev-
idenced from search logs, or other sources. Such interactions can be
especially powerful in the context of web search and community ques-
tion answering, which provide abundant sources of information on how
users formulate and re-formulate the same information needs in differ-
ent ways.

These reformulations can have vast differences in retrieval perfor-
mance, which can be leveraged by various query log mining methods
to boost the retrieval performance of the worst performing queries.
For instance, QRU-1, a public dataset that contains reformulations of
TREC queries as available in query logs1 demonstrates that query per-

1http://ciir.cs.umass.edu/sigir2011/qru/

84

http://ciir.cs.umass.edu/sigir2011/qru/

7.2. Reformulation using Translation-based Language Model 85

formance (in terms of NDCG) can be improved by more than 60%, if
the best query formulation is used for each query.

A definition of query reformulation is quite general, and includes,
among others, abbreviation induction, term expansion, term substi-
tution, term reduction and URL or source suggestion (e.g., adding
a relevant URL or source to a query). Query reformulation can also
apply several of these transformations. For instance for a query like
“Find information about Mitchell College in Connecticut", possible re-
formulations are (based on the QRU-1 dataset):

• “mitchell college new london” – expansion and reduction applied

• “mitchell college new london ct” – abbreviation induction applied

• “mitchell college mitchell.edu” – relevant URL added

As these examples demonstrate, query reformulation can be viewed
as a generalization of the techniques discussed in the previous sections.
However, as mentioned above, it often requires rich sources of implicit
feedback, and might not be applicable in domains where such sources
are unavailable.

While query reformulation can be applied to keyword queries as
well, it can be especially helpful for verbose queries that can be rewrit-
ten in a more succinct way, or in which the query vocabulary is very
different from the corpus vocabulary. Therefore, in this chapter, we
discuss various query reformulation techniques using translation-based
language models (§7.2), random walks on term-query and query-URL
click graphs (§7.3), query logs (§7.4) and anchor text (§7.5).

7.2 Reformulation using Translation-based Language Model

Consider the queries asked on various community question answering
platforms. Such questions are usually quite long and verbose in nature.
In a Wondir2 collection with roughly 1 million question-answer pairs,
the average length for the question part and the answer part is 27 words
and 28 words respectively. Given a new question, an interesting problem

2Wondir was a community based Q&A service, popular in 2004.

86 Query Reformulation for Verbose Queries

is to find a matching question from the Question-answer archives. In
this case, one can treat the question as a verbose query. While there
are a large number of papers dealing with this problem, we discuss the
basic framework here as described in detail in [Xue et al., 2008].

The proposed retrieval model combines a word-to-word translation-
based language model for the question part with a query likelihood
approach for the answer part. The major problem is that there is a
word mismatch between the user’s question and the question-answer
pairs in the archive. For example, “what is francis scott key best known
for?” and “who wrote the star spangle banner?” are two very similar
questions, but they have no words in common.

Assuming independence between the query words, probability of
generating the user query qu given the question-answer corpus (q, a)
can be written as follows.

P (qu|(q, a)) =
∏
qi∈qu

P (qi|(q, a)) (7.1)

where the smoothed probability of observing a query word qi given a
question answer pair (q, a) can be expressed as follows.

P (qi|(q, a)) = |(q, a)|
|(q, a)|+ λ

Pmx(qi|(q, a)) + λ

|(q, a)|+ λ
Pml(qi|C) (7.2)

Here Pml(qi|C) is the ratio of number of times the word qi appears in
the collection C to the total size of C. Note that Pmx(qi|q, a) does not
depend only on exact word match but can also incorporate translations
as follows.

Pmx(qi|(q, a)) = (1− β)Pml(qi|q) + β
∑
t∈q

P (qi|t)Pml(t|q) (7.3)

Here P (qi|t) is the translation probability. Incorporating the answer
part, this can be rewritten as follows.

Pmx(qi|(q, a)) = αPml(qi|q) + β
∑
t∈q

P (qi|t)Pml(t|q) + γPml(qi|a) (7.4)

where α+ β + γ = 1.
The next challenge is to learn the word-word translation proba-

bility P (qi|t). Consider a scenario of translation from English word

7.3. Reformulation using Random Walks 87

e to French word f . Given a English-French parallel corpus: S =
{(e1, f1), (e2, f2), . . . , (en, fn)}, EM algorithm works as follows. In the
first step, traslation probability estimates are computed as follows.

P (f |e) = λ−1
e

N∑
i=1

c(f |e; fi, ei) (7.5)

where λe is a normalization factor across all f ’s. In the second step,
the counts are updated as follows using the translation probability es-
timates computed in the previous step.

c(f |e; fi, ei) = P (f |e)
P (f |e1) + . . .+ P (f |el)

#(f,fi)#(e, ei) (7.6)

For Q&A archives, either question or answer could be the source and
target leading to P (A|Q) or P (Q|A). The two models could then be
combined in the following two ways.

• Linear: This model computes the final translation probability as
a linear combination of the two models.

Plin(wi|wj) = (1− δ)P (wi, Q|wj , A) + δP (wi, A|wj , Q) (7.7)

• Pooling: In this model, the dataset is expanded
to incorporate both (q, a) and (a, q) pairs as
(q, a)1, . . . , (q, a)n, (a, q)1, . . . , (a, q)n. This expanded dataset
is then used with EM to compute Ppool(wi|wj).

Xue et al. [2008] found that Ppool performed better than P (A|Q),
P (Q|A) as well as Plin in terms of the word-word translation accuracy.
They also found that TransLM+QL is better than both LM-Comb and
TransLM. Note that LM-Comb combines the LM for questions with
the LM for answers without any translation term. Also, TransLM is
the approach that does not consider the answer part when performing
translation, while TransLM+QL does.

7.3 Reformulation using Random Walks

In this section, we discuss two methods which use random walks on
term-query graph and click graph to compute query reformulations.

88 Query Reformulation for Verbose Queries

7.3.1 Query Log-based Term-Query Graph

Bonchi et al. [2011] present a method for performing query reformula-
tion using random walks on a term-query graph. A term-query graph
consists of terms and queries. A term is linked to a query if it ap-
pears in the query. A query q2 is linked from q1 iff the likelihood of
query q2 appearing after q1 is not null. Query suggestions for a query
q = {t1, . . . , tm} are generated as follows.

• Compute m random walks from each term in q.

• Compute Hadamard product of thesem vectors to get a resultant
score for every other query in the graph.

• Return top ranking queries as query reformulations.

For example, for the query “menu restaurant design”, the following
query reformulations were generated: “free restaurant design software”,
“free restaurant kitchen layout and design”, “restaurant menu design”,
“restaurant menu design software”, “restaurant menu design samples”.

7.3.2 LambdaMerge with Click Graph

LambdaMerge, proposed by Sheldon et al. [2011], is a supervised merg-
ing method to merge results from several reformulations generated by
random walks on a click graph. It directly optimizes a retrieval metric
using features that describe both the reformulations and the documents
they return.

For query q, let q(1), q(2), . . . , q(K) be the different reformulations
and let D(1), D(2), . . . , D(K) be the corresponding result lists. Let
NormScore(q(k), d) be the relevance score of d for q(k) between 0 and 1.
Consider two merging strategies: CombSum and CombRW as follows.

CombSum(d) =
∑

k:d∈D(k)

NormScore(q(k), d) (7.8)

CombRW (d) =
∑

k:d∈D(k)

NormScore(q(k), d)×W (D(k)) (7.9)

7.3. Reformulation using Random Walks 89

Search

q(1)

Search

q(2)

Results D(1)

Results D(2)

x
(1)
d x

(2)
d

Scoring Net

f

Scoring Net

f
θ

d

+

sd

z(1) z(2)

Gating Net
g

π

α1

α2

Figure 1: The architecture of λ-Merge for blending
the results of multiple query reformulations.

work is also likely to work, which we suggest for future ex-
periments.

The final ranker score sd for the document is given by

weighting the individual reformulation scores f(x
(k)
d ;θ) by

the mixing weights from the gating network:

sd =
∑

k

αk · f(x
(k)
d ;θ). (4)

The scoring function f can be implemented by any differ-
entiable function, such as a linear function, a neural network,
or a set of boosted decision trees. The function should be
flexible enough to normalize scores from the different refor-
mulations so that they share a common scale suitable for
combination. We choose f to be a fully connected two-layer
neural network with four hidden units, each having a tanh
activation function, and with an output that is a linear com-
bination of the hidden units.

Related Architectures. The λ-Merge ranking function is
a mixture of scoring functions. This is related to mixture
of experts architectures [14], where the experts are neural
networks [25]. Traditionally, each expert is specialized to
handle a different part of the same input space; whereas
we employ a single scoring function that receives different
inputs (based on different reformulations).

Training. The scoring parameters θ and gating weights π
of λ-Merge are trained to optimize NDCG using a method
based on LambdaRank [4]. Alternatively, the method can
optimize Precision@k, MAP, or ERR. A key feature of all
these retrieval metrics is that they depend on the ranks of
documents, which are discontinuous with respect to the doc-
ument scores computed by retrieval systems. (The ranks are
obtained by sorting the scores.) Hence, gradient-based op-
timization is challenging. LambdaRank sidesteps this prob-

lem by using a smoothed version of the objective. It has
empirically been proven to reach optima of NDCG success-
fully [12].

Denote the smoothed objective by C. To use LambdaRank,
it is sufficient to implement its gradients with respect to
score and gating parameters, namely ∂C/∂θ` and ∂C/∂πm.
By the chain rule, these can be decomposed, for example,
∂C/∂θ` =

∑
d(∂C/∂sd) · (∂sd/∂θ`). For NDCG, MAP, and

some other IR metrics, LambdaRank derivatives are

∂C/∂sd =
∑

e

|∆de| (Id�e − 1/(1 + exp(se − sd))). (5)

Here, |∆de| is the absolute change in the metric if items d
and e were swapped in the current ranking. For NDCG, this
change is |2ld−2le ||1/ log2(rd+1)−1/ log2(re+1)|/DCGmax

for relevance labels ld and le, and ranks rd and re, respec-
tively. DCGmax is the DCG value achived by an ideal rank-
ing for the query. The indicator Id�e is 1 when document
d is judged more relevant than e, and 0 otherwise. See also
Section 6.2 of [4].

The remaining derivatives are computed by doing back-
propagation separately in each of the scoring and gating net-
works, where the calculation for either network requires only
the current output values from the other network. Mathe-
matically, this is because differentiating (4) yields

∂sd
∂θ`

=
∑

k

αk · ∂
∂θ`

f(x
(k)
d ;θ),

∂sd
∂πm

=
∑

k

∂αk
∂πm

·f(x
(k)
d ;θ).

Hence, the scoring function parameters θ are updated by us-

ing standard backprop to compute ∂
∂θ`

f(x
(k)
d ;θ). The gat-

ing net parameters π are updated by backprop through the
softmax function. Let βk = exp(πTz(k)), so that αk =
βk/

∑
p βp. Then

∂αk
∂πm

=
(∑

p

βp
)−2

(
βkz

(k)
m ·

∑

p

βp − βk ·
∑

p

βpz
(p)
m

)
.

We train by stochastic gradient descent and consider queries
in random order during each training epoch. We batch pa-
rameter updates by query for faster training [4]. In all ex-
periments, we fix a step size of 10−3 and train for 25 epochs.

4. EXPERIMENTS
We conduct our primary experiments using ranking scores,

query logs, and click data from the Bing search engine. Our
techniques can use any source of reformulation candidates;
here we have generated reformulations via a two-step ran-
dom walk on a click graph based on several months of query
logs. At least one random walk reformulation is generated
for roughly 40% of all queries in the search engine’s work-
load.1 From this subset, we sample 4552 queries and split
them into a training set (2303 queries) and a testing set
(2249 queries).

Unless otherwise specified, we only consider one reformu-
lation candidate for each query. The top-ranked random-
walk reformulation candidates are diverse; 24% have words
removed, 26% have words added, and 48% have words both
added and removed.2 We compare the retrieval effectiveness

1Coverage may improve by using a larger query log, or a
longer random walk.
2The remaining 2% have the original words in a different
order, for example ‘movies 2008’ and ‘2008 movies’.

799

Figure 7.1: LambdaMerge Architecture [Sheldon et al., 2011]

where W (D(k)) is the probability assigned to q(k) by a random walk in
the query-URL graph starting at q.

LambdaMerge provides a flexible class of gated neural-network
score-combination functions that (1) utilize multiple query-document
features instead of just the retrieval score, (2) weigh contributions from
each reformulation according to multiple features, such as those pre-
dicting list quality and query drift, so that contributions vary depend-
ing on the query and reformulation, and (3) are trained to optimize a
retrieval metric. The following two types of features are used.

• Query-document features

– Score: The original search engine ranking score.

– Rank: The position of d in the ranked list D(k).

– NormScore[0,1]: The score normalized using min-max nor-
malization.

90 Query Reformulation for Verbose Queries

– NormScoreN (0,1): The score normalized to fit a standard
Gaussian.

– IsTopN: A binary feature to indicate if the document is
within top 1, 3, 5, 10.

• Gating features that describe the quality of reformulation and its
results list.

– IsRewrite: A binary flag to distinguish between the original
query and the reformulation.

– RewriteScore: Random walk-based query reformulation
score.

– RewriteRank: 0 for the original query, then n for the n-th
random walk reformulation as sorted by the random walk
probability.

– ListMean, ListStd, ListSkew: Respectively, mean, standard
deviation and skew of raw ranking scores over each result
list.

– RewriteLen: Number of words in the reformulation.

– Clarity: KL divergence between the query language model
(over top 10 snippets) and the collection model.

– Overlap@N: Overlap in the top 10 documents for the orig-
inal query versus the reformulated query.

– RAPP: This is computed as the linear regression model
score trained to predict NDCG using the above features.

Let x(k)
d be a vector of query-document features for document d and

kth query reformulation q(k). Let f(x; θ) be a scoring function with
parameters θ. Let z(k) be a vector of gating features for reformulation
q(k) which describe the qualities of the kth reformulation and its result

7.4. Reformulation using Query Logs 91

listD(k). Gating network determines contribution of each reformulation
to final score. The weight for the kth result list is computed as follows.

αk = softmax(z(1), z(2), . . . , z(k);π) = exp(πT z(k))∑
p
exp(πT z(p))

(7.10)

Mixing weights are normalized to sum to 1. Final score sd for document
d is given by the following equation.

sd =
∑
k

αk.f(x(k)
d ; θ) (7.11)

f could be any differentiable function like a linear function, a neural
network, or a set of boosted decision trees. They use a two layer neural
network with tanh activation functions. Scoring parameters θ and π

are trained to optimize NDCG.
LambdaMerge was found to be better than CombSUM, Com-

bRW, RAPP-L (linear regression trained to predict ∆NDCG), and
RAPP-Ω (oracle that chooses a single reformulation that gives high-
est NDCG@5). Performance gains were found to be higher for Lamb-
daMerge with five reformulations compared to a single reformulation.
RAPP, RewriteScore, RewriteRank, isRewrite, overlap@* and Over-
lap@1 were the most important features.

7.4 Reformulation using Query Logs

There are multiple ways in which query logs can be used for query
reformulation.

Wang and Zhai [2008] extract term associations based on their con-
text distribution in queries in the query log. For a new query, the
method decides whether to substitute a term with one of its “simi-
lar” words based on whether this new word matches the context of the
query better than the original term. Context sensitive stemming based
on query logs is another type of query reformulation [Peng et al., 2007].

Xue et al. [2012] mine 5w1h question reformulation patterns from
query logs. 5w1h questions are queries starting with where, why, what,
when, who and how. For example, alternative expressions for the orig-
inal question: “how far is it from Boston to Seattle” are “how many

92 Query Reformulation for Verbose Queries

miles is it from Boston to Seattle”, “distance from Boston to Seattle”,
“Boston to Seattle”, “how long does it take to drive from Boston to
Seattle”. Also here are three question reformulation patterns generated
for the query pair (“how far is it from Boston to Seattle”, “distance
from Boston to Seattle”).

• S1=Boston:(“how far is it from X1 to Seattle”, “distance from
X1 to Seattle”).

• S2=Seattle:(“how far is it from Boston to X1”, “distance from
Boston to X1”).

• S3=Boston, Seattle:(“how far is it fromX1 toX2”, “distance from
X1 to X2”).

Xue et al. [2012] propose the following method. They extract query
pairs (q, qr) from the query log such that they are issued by the same
user one after the other within a certain time period, and q is a 5w1h
query. Patterns P = {(p, pr)} are then extracted from pairs with many
common words and that occur with a high frequency. Given a new
query qnew the algorithm picks the best question pattern p∗ according
to the number of prefix words and the total number of matching words
in pattern. Query reformulations patterns containing p∗ are ranked by
frequency.

P (pr|p∗) = f(p∗, pr)∑
p′r

f(p∗, p′r)
(7.12)

Finally these reformulation patterns are used in the retrieval model as
follows.

score(qnew, D) = λ logP (qnew|D)

+(1− λ)
k∑
i=1

P (pri |p∗) logP (qnewri |D) (7.13)

where {qnewr } are the k reformulations. They observed that using the
question reformulations can significantly improve the retrieval perfor-
mance of natural language questions.

7.5. Reformulation using Anchor Text 93

7.5 Reformulation using Anchor Text

In absence of query logs, anchor text is a good approximation. Dang
and Croft [2010] present a method which is very similar to [Wang and
Zhai, 2008] but uses anchor text instead of query logs.

Here is a sketch of the approach proposed by Wang and Zhai [2008].
First, they estimate the context distribution for all words in the anchor
stream or the query log as follows. Let countw(ci) be the number of
times word ci occurs in context of w. Given a term w, the smoothed
probability distribution of its context words can be written as follows.

P̃C(ci|w) = countw(ci) + µP (ci|θ)∑
cj∈C(w)

countw(cj) + µ
(7.14)

where C(w) is the set of context words for w. They learn a translation
model to translate from one word to another based on their distribu-
tional similarity.

t(s|w) = e−D(PC(.|w)||P̃C(.|s))∑
u
e−D(PC(.|w)||P̃C(.|u))

(7.15)

where the KL divergence term can be written as follows.

D(PC(.|w)||P̃C(.|s)) =
∑

c∈C(w)
P (c|w) log P (c|w)

P̃C(c|s)
(7.16)

A substitution model is built on top of the translation model.

P (wi → s|q) ∝ t(s|wi)× P (w1 . . . wi−1wi+1 . . . wn|s) (7.17)

where P (w1 . . . wi−1wi+1 . . . wn|s) can be considered as the probability
that the new term s fits into the context of the query and is computed
as follows.

P (w1 . . . wi−1wi+1 . . . wn|s)
= ˜PL2(wi−2|s)× ˜PL1(wi−1|s)× ˜PR1(wi+1|s)× ˜PR2(wi+2|s) (7.18)

Given a query term and a query context, substitution model decides
whether to make a substitution, and if so, which candidates among

94 Query Reformulation for Verbose Queries

those suggested by the translation model should be used. For each wi
in the query, try to replace each one of them. Consider only top M

translation candidates si sorted by t(si|wi). Remove all si that have
NMI(si, wi) < τ where NMI(s, w) = MI(s,w)

MI(w,w) and MI is computed
over query log sessions. Substitutions are made if P (wi→si|q)

P (wi→wi|q) > 1.
Besides substitution one could also do expansion. Dang and Croft

[2010] observed that query substitution for long queries provided fa-
vorable results compared to the language modeling (LM) baseline and
only a little worse compared to using the MSN query log. On the other
hand, for query expansion, using anchors was better than both the LM
baseline as well as using the MSN query log.

7.6 Summary

Query reformulation is a useful way of handling verbose queries espe-
cially when there is a mismatch between the original verbose query
and the corpus vocabulary. There are various ways of deriving high
confidence reformulation signals. We discussed four main sources of
generating query reformulations: translation probabilities learned from
the corpus itself, random walks on term-query and query-URL graphs,
query logs and anchor text. Depending on the data source available, all
these forms of reformulations could be effective. Since all of them con-
tain complementary signals, a combination of reformulations generated
by these techniques would surely be more useful. It has been shown that
such reformulations help bridge the vocabulary gap effectively.
Suggested Further Reading: [Xue et al., 2008]: Reformulating ques-
tions to perform search on question-answer archives; [Bonchi et al.,
2011]: Reformulation using random walks on a term-query graph; [Shel-
don et al., 2011]: Reformulation using random walks on a click
graph; [Xue et al., 2012]: 5w1h question reformulation patterns from
query logs; [Dang and Croft, 2010]: Reformulation using Anchor Text.

8
Query Segmentation for Verbose Queries

8.1 Introduction

A verbose query often contains multiple concepts or pieces of informa-
tion. Rather than reducing, expanding or reformulating the query as a
whole, it might be helpful to first split the query into multiple segments
and then process each segment separately.

Query segmentation can be formally defined as follows. Consider a
query Q = q1, q2, . . . , qn consisting of n query tokens. Segmentation is
a mapping S : Q→ y ∈ Yn, where y is a segmentation from the set Yn.
Since we can either have or not have a segmentation break at each of
the n− 1 spaces between n tokens, |Yn| = 2n−1.

Query segmentation can be used to increase query recall by breaking
the query into meaningful concepts. For instance, Parikh et al. [2013]
observed that a verbose product description query, like “new ac adapter
and battery charger for hp pavilion notebook” often suffers from zero-
recall on eBay. But breaking the query into meaningful phrases, such
as {new|ac adapter|and|battery charger|for|hp pavilion notebook} helps
in reformulating the query as “new battery charger hp pavilion”. This
shortened query retrieves more than four thousand products.

95

96 Query Segmentation for Verbose Queries

In addition to increasing recall, correct query segmentation can also
help with ambiguity resolution and query understanding. For instance,
consider the query “new york times square”. While segmentation like
{new york times|square} is theoretically possible, the segmentation
{new york|times square} is much more likely to express the true query
intent.

This last example demonstrates that simple greedy query segmen-
tation based on term co-occurrence will not always yield the optimal
results. Therefore, in this chapter, we cover four kinds of more ad-
vanced methods for segmenting long queries: statistical (§8.2), super-
vised (§8.3), generative (§8.4) and NLP-based (§8.5).

8.2 Statistical Methods

These methods are term frequency-based or based on mutual informa-
tion between terms. An approach proposed by Jones et al. [2006] uses
mutual information (MI) between pairs of tokens as the sole factor in
deciding on segmentation breaks. If the MI is above a threshold (opti-
mized on a small training set), the pair of tokens is joined in a segment.
Otherwise, a segmentation break is made. Risvik et al. [2003] proposed
a method which combines the frequency count of a segment and mu-
tual information between pairs of words in the segment in a heuristic
scoring function. Mishra et al. [2011] use the bag of words model as the
null model, and use this null model to find the probability of a multi-
word expression (MWE) w to be a phrase. Given a set of n queries
where each query contains each of the words of w, the method finds
the number of queries m in this set that contain the MWE. MWE
score is computed as − log δ where δ is Hoeffding’s upper bound on
the probability that using the null model ≥ m queries may contain w
as an MWE.

Parikh et al. [2013] proposed QSegment which focuses on domain-
specific segmentation of e-commerce queries using frequency data from
query log and product titles. Recent segmentation efforts use Wikipedia
titles to find noun phrases and then perform segmentation. But this
cannot be used for e-commerce (for new products, or products without

8.3. Supervised Methods 97

a wiki page). Also, different phrases in a query are permuted more often
in an e-commerce query versus web query making e-commerce query
segmentation difficult.

Parikh et al. [2013] use a query segmentation which is similar to
the one proposed by Hagen et al. [2010]. In this model, the score of a
segmentation S depends on the length of each segment and also on the
frequency of each segment.

score(S) =


∑

s∈S,|s|≥2
|s||s|.freq(s), if freq(s) > 0 for all s ∈ S, |s| ≥ 2

−1, otherwise

They observed that QSegment performed much better compared
to the MWE approach [Mishra et al., 2011] and the MI baselines. As
mentioned before, the MI baseline computes MI at different segment
boundaries and based on that finds the best segmentation.

8.3 Supervised Methods

Given a query x withN terms, whether to partition at position i (where
0 < i < N) can be modeled as a binary classification problem. Bergsma
and Wang [2007] proposed a supervised approach using SVMs. For a
position i, features are generated from tokens up to three positions
to the left and to the right of the decision location i. That is for a
decision between xL0 and xR0 , features are extracted from a window
of six tokens in the query: {. . . , xL2 , xL1 , xL0 , xR0 , xR1 , xR2 , . . .}. The
following three types of feature sets are considered.

• Decision boundary features

– Indicator features: This set includes the following fea-
tures. is-the-L0 (token xL0=“the”), is-the-R0 (token
xR0=“the”), is-free-L0 (token xL0=“free”), is-free-R0 (to-
ken xR0=“free”), POS-tags (Part-of-speech tags of pair xL0

and xR0), fwd-pos (position from beginning, i), rev-pos (po-
sition from end N−i)

98 Query Segmentation for Verbose Queries

– Statistical features: This set includes the following features.
web-count (count of x on the web), pair-count (web count
of “w x′′), definite (web count of “the w x”), collapsed (web
count of “wx′′ (one word)), and-count (web count of “w and
x”), genitive (web count of “w’s x”), Qcount-1 (count of x
in the query database), Qcounts-2 (count of “w x′′ in the
query database).

• Context features: This set includes features to indicate what parts
of the size-6 window are available. This also includes token-level,
pair-wise, tri-gram and four-gram counts for all sub-sequences in
the size-6 window.

• Dependency features: Pairwise counts of xL0 and xR1 ; and of xL1

and xR0 . The intuition is to check, for example if the token xL0

is more likely to modify a later token, such as xR1 .

They found that using all the features provides better segmenta-
tion decision accuracy as well as better query segmentation accuracy
compared to Jones et al. [2006]’s MI approach, as well as compared to
approaches with less number of feature sets.

8.4 Generative Methods

Tan and Peng [2008] presented an unsupervised approach which uses
a generative query model to recover a query’s underlying concepts
that compose its original segmented form. They assume that queries
are made up of unigrams where rather than word unigrams they con-
sider ‘concept’ unigrams. They compute the parameters of the unigram
model (i.e., probability of these concepts) as follows. Given a huge web
crawl, they compute frequencies of all possible n-grams up to a certain
length (n = 1, 2, . . . , 5) that occur at least once in the corpus. Let V
be the vocabulary of all concepts. Then the probability of a concept x
is computed as follows.

PC(x) = #x∑
x′∈V

#x′ (8.1)

8.4. Generative Methods 99

Probability of a segmentation is then computed as follows.

P (SQ) =
∏

si∈SQ
PC(si) (8.2)

where si is the ith segment in SQ. Probability of a query can be written
as follows.

P (Q) =
∑
SQ

P (SQ) (8.3)

where SQ is one of the 2n−1 different segmentations and n is the num-
ber of query words. Top k segmentations from among all possible seg-
mentations can be evaluated using a dynamic programming algorithm
in O(nkm log(km)) time where m is the maximum allowed segment
length.

However, there are two problems with the above computation of
concept probabilities. (1) It is unclear how to set V . One way is to limit
V to n-grams up to a certain length, e.g., 5. But it is hard to justify why
the higher order n-grams should be excluded from the normalization.
(2) Concept probability should describe how likely the n-gram is to ap-
pear in a piece of text as an independent concept, which is not captured
by raw frequencies. For example, PC(“York times”) will be ≥ PC(“new
York times”) which is incorrect. Hence, they propose another method to
estimate the concept probabilities using an expectation-maximization
(EM) algorithm, optimizing the minimum description length objective
function on a partial corpus that is specific to the query. In the E
step, the top K documents matching the query are segmented using
the current set of estimated parameter values. In theM step, new set of
parameter values (concept probabilities) are calculated to maximize the
complete likelihood of the data which is augmented with segmentation
information. To ensure that the output segments are well-formed con-
cepts and not just frequent patterns, they incorporate evidence from
Wikipedia titles. Tan and Peng [2008] observed that EM+Wiki pro-
vides better Segment F1 compared to baselines like MI, LM (Language
modeling), EM and LM+Wiki.

100 Query Segmentation for Verbose Queries

8.5 NLP-based Methods

Bendersky et al. [2011a] exploited the dependency between different un-
supervised text annotations to improve the accuracy of the entire set
of annotations. Specifically, they leveraged the information about esti-
mated parts-of-speech tags and capitalization of query terms to improve
the accuracy of query segmentation. They worked with the following
set of annotations ZQ = {CAP,TAG,SEG}.

For example, here are the annotations for the query “who won the
2004 kentucky derby”. Note that the capitalization label could be L:
lowercase or C: otherwise; the POS labels could be N: noun, V: verb,
or X: otherwise; and the segmentation label could be B/I: beginning
of/inside the chunk.

• CAP: who (L), won (L), the (L), 2004 (L), kentucky (C), derby
(C)

• TAG: who (X), won (V), the (X), 2004 (X), kentucky (N), derby
(N)

• SEQ: who (B), won (I), the (B), 2004 (B), kentucky (B), derby
(I)

The algorithm starts with an initial set of independently computed
annotations Z∗(I)Q . Given Z∗(I)Q , the algorithm computes an annotation
set Z∗(J)

Q which jointly optimizes the probability of all annotations as
follows.

Z
∗(J)
Q = arg max

ZQ

p(ZQ|Z∗(I)Q) (8.4)

This method of joint query annotation is basically a stacked classifi-
cation in which a second, more effective, classifier is trained using the
labels inferred by the first classifier as features.

Let zQ = (ζ1, ζ2, . . . , ζn) be an annotation in the set ZQ. For the
first step of independent query annotations, the following two methods
could be used.

• Query-based estimation: Use large n-gram corpus to estimate
p(ζi|qi) for annotating query with capitalization and segmenta-

8.6. Summary 101

tion markup, and a standard POS tagger for POS tagging. Fi-
nally, for each zQ ∈ ZQ, the best annotation could be computed
as follows.

z
∗(QRY)
Q = arg max

(ζ1,...,ζn)

∏
i∈(1,....,n)

p(ζi|qi) (8.5)

• PRF-based estimation: zQ can be computed based on the set of
top R sentences matching Q. p(ζi|qi) is a smoothed estimator
that combines the information from the retrieved sentence r ∈ R
with the information about unigrams (for capitalization and POS
tagging) and bigrams (for segmentation) from a large n-gram
corpus.

p(zQ|Q) ≈
∑
r∈R

p(zQ|r)p(r|Q) (8.6)

Intuitively, this equation models the query as a mixture of top k
retrieved sentences, where each sentence is weighted by its rele-
vance to the query. Finally, for each zQ ∈ ZQ, the best annotation
could be computed as follows.

z
∗(PRF)
Q = arg max

(ζ1,...,ζn)

∑
r∈R

∏
i∈(1,...,n)

p(ζi|r)p(r|Q) (8.7)

Bendersky et al. [2011a] compared this method with two other
methods: SEG-1 and SEG-2. SEG-1 is [Hagen et al., 2010] which was
also used by Parikh et al. [2013]. SEG-2 is [Bergsma and Wang, 2007]
which is based on supervised segmentation using a large number of
features. Let i denote the independent approach and j denote a joint
approach. They observed that j−PRF is better than i−QRY , j−QRY
and i−PRF . Also j−PRF was found to be 6.7% and 0.6% better than
SEG1 and SEG2 respectively in terms of F1.

8.6 Summary

Segmentation is a critical component for handling verbose queries.
Other transformations like reduction or weighting can be further ap-
plied on segmented queries. In this chapter, we discussed four main

102 Query Segmentation for Verbose Queries

approaches to segmentation of verbose queries: statistical, supervised,
generative and NLP-based. Statistical approaches are heavily depen-
dent on corpus statistics, and cannot model dependencies beyond pair
of words. While supervised approaches do not depend much on corpus
statistics and can also model complex dependencies, they need a large
amount of training data and well-designed domain dependent features.
Generative and NLP-based methods help avoid such drawbacks and
perform better than both statistical and supervised methods.
Suggested Further Reading: [Parikh et al., 2013]: QSegment for sta-
tistical segmentation using category-wise n-gram frequencies; [Bergsma
and Wang, 2007]: Supervised Segmentation using decision-boundary,
context and dependency features; [Tan and Peng, 2008]: Unsupervised
segmentation using generative language models and Wikipedia; [Ben-
dersky et al., 2011a]: Performing segmentation jointly with parts-of-
speech tagging and capitalization.

9
Sources and Treatment of Verbose Queries

In this chapter, we will discuss a few domains where verbose queries
are commonly found. While most of the verbose queries are explicitly
asked by the users, some of them are implicit. Users ask verbose queries
explicitly in a large number of scenarios. Advanced users searching for
exhaustive list of relevant documents in medical literature, patents or
legal documents often use verbose comprehensive queries. Naïve users
like children or the elderly are not trained to ask short queries to search
engines and hence end up using full sentence queries. Sometimes users
end up firing long queries implicitly. For example, to find a relevant im-
age for a paragraph in a textbook, one may fire the entire paragraph as
a query to the search engine. In this chapter, we discuss these applica-
tions which have benefited significantly from verbose query processing
techniques discussed in §3 to §8).

9.1 Finding Images for Books

The following problem is a direct application of reducing verbose
queries to short sub-queries. Given chapter text from a book, get a

103

104 Sources and Treatment of Verbose Queries

Science Physics History Economics accountsPolitical

science

SociologyBusiness

studies

Overall

87%

93%
93%

77%

77%

100%
85%

86%
80%

94%

97%
97%

94%

86%

100%
100%

86%
80%

Figure 5: Performance of our system. The first bars correspond

to the Liberal and the second to the Conservative definition of

majority. The numbers above the bar give the corresponding

helpfulness index.

Conservative requires that an image has a clear helpful major-
ity. Liberal breaks ties in the favor of helpfulness. We can thus
have two definitions of helpfulness index. By default, we use the
Conservative.

Note that the helpfulness index is analogous to the notion of pre-

cision used in information retrieval. One could similarly define a
measure analogous to recall in terms of the number of images for
which a helpfulness decision could be made. This measure turns
out to be 100% in our case as there was no image on which all
judges were undecided.

4.2 Main Results
Fig. 5 shows the performance of our system, both at the ag-

gregate level (“overall”) as well as at the individual subject level.
These results were produced by the ENSEMBLE algorithm.

The results are quite encouraging. We see that when we use Con-

servative definition of the majority of judgments, the judges con-
sidered 87% of the images assigned to various textbook sections to
be helpful. This number increases to 94% under the Liberal defini-
tion. We can also see that the performance is maintained across all
the subjects.

We also manually inspected the results. We discuss next some
anecdotal examples.

Anecdotal Examples

Fig. 6(a) shows some examples where ENSEMBLE performed well.
We show top five images produced by ENSEMBLE for three differ-
ent sections from three different subjects. We can see that the im-
ages are quite relevant. We discuss the first example in more depth.
This example shows the proposed augmentations for the section on
how organisms create exact copies of themselves, appearing in the
eighth chapter titled ‘How do organisms reproduce’ in the grade X
Science book. This section discusses three main points: (1) due to
evolution, organisms are similar in their blueprint; (2) DNA repli-
cates to pass on genetic material; and (3) DNA copying during re-
production should be consistent so that the organism is well ad-
justed to its ecosystem. We observe that proposed images convey
related information. The image on Phylogenetic tree captures the
evolutionary relationships among biological species. The two im-
ages of DNA (chemical and physical structure) are illustrative of
how the DNA can be easily replicated by breaking its double He-
lix structure. The section describes the consistency requirement of
DNA copying using bacteria as the example organism. The images
of RecBCD pathway in E. coli bacterium are complementary as it

Grade XII History 7: Rayas, Nayaks and Sultans

Lord Rama breaking

Grade X Science 8: Do Organisms Create Exact Copies of Themselves?

Molecular model

for the RecBCD

pathway of

recombination.

The chemical

structure of DNA
Beginning of the

RecBCD pathway

Phylogenetic tree

DNA,

molecular basis

for inheritance

Poetic inscription

by Vijayanagara

poet Manjaraja

(1398 CE)

Bijapur Sultanate

territories under

Ibrahim II in

1620 CE

Lord Rama breaking

Shiva's bow in

Hazare Rama

Temple at Hampi.

Rashtrakuta

Empire in 800

CE, 915 CE.

Western

Chalukya Empire

in 1121 CE

Grade XII Economics 6: Foreign Exchange Market

A gold-standard

1928 one-dollar bill. Reserves of

SDR, forex and

gold in 2006

Gold standard

widely adopted

Yearly Forex

turn over Exchange

rate display

(a) Examples where ENSEMBLE performed well

Grade XII Sociology 4: Understanding Capitalism as a Social System

U.S. Navy

F/A-18

breaking the

sound

barrier

Grade IX Science 12: Structure of the Human Ear

In a drum, sound is

produced when its

membrane vibrates
Sinusoidal waves of

various frequencies

Flowchart of

sound passage -

inner ear

Flowchart of

sound passage -

middle ear

An Industrial

Workers of

the World

poster (1911)

The twofold nature

of the production

for exchange

purposes.

Karl Marx

Supply and demand

curves in terms of

labor values.

A Soviet anti-

capitalist poster

(1920)

(b) Examples where ENSEMBLE did not perform well

Figure 6: Anecdotal examples

Science Physics History Economics accountsPolitical

science

SociologyBusiness

studies

%
 o

f
im

a
g

e
 d

u
p

li
ca

ti
o

n
 a

cr
o

ss
 s

e
ct

io
n

s

Figure 7: Chapter level duplication in images for AFFINITY and

COMITY

1853

Figure 9.1: Queries with Ranked Images [Agrawal et al., 2011]

9.2. Finding Related Videos 105

ranked list of top k images. Agrawal et al. [2011] propose two algo-
rithms to solve this problem: Affinity and Comity.

Affinity works as follows. It obtains key concept phrases from the
chapter text using the linguistic pattern A∗N+ where A denotes an
adjective, and N denotes a noun. Next, it gets images from articles with
high document similarity to the chapter text. Relevance score for an
image is then computed by analyzing the overlap between the concept
phrases and the cumulative metadata associated with the various copies
of the image present in the narrowed set of articles.

Comity works as follows. It obtains up to top c concept phrases
from the chapter text. It then forms queries consisting of two or three
concept phrases each (

(c
2
)

+
(c
3
)
queries in total). Next, it obtains up to

top t image search results for each of the queries from e different search
engines. Finally, it aggregates over (potentially e×

[(c
2
)

+
(c
3
)]
) lists of

images, to obtain relevance score values for each image and returns the
top k images.

Agrawal et al. [2011] observed that for some categories of queries
Affinity is better while Comity is better for other query categories.
Overall, an ensemble of Comity and Affinity worked better than either
of the two. Figure 9.1 shows a few queries along with the discovered
images.

9.2 Finding Related Videos

While watching television, people increasingly consume additional con-
tent related to what they are watching. Odijk et al. [2015] consider the
task of finding video content related to a live television broadcast for
which they leverage the textual stream of subtitles associated with the
broadcast. They model this task as a Markov decision process and pro-
pose a method that uses reinforcement learning to directly optimize the
retrieval effectiveness of queries generated from the stream of subtitles.
Their retrieval model consists of four parts as follows.

• Incrementally update a list of candidate query words that are
obtained from the textual stream of subtitles.

106 Sources and Treatment of Verbose Queries

• Compute a score for each word with a weighted sum of static and
dynamic word features.

• Generate a query from the scored query word candidates. The
generated queries are complex, consisting of many weighted query
words, and they are selected from the highest scoring query word
candidates.

• Retrieve the results.

The retrieval model defines a set of hyperparameters w = wd∪ws∪
wf ∪wn∪we that each alter the retrieval process. The hyperparameters
wd and ws can be construed as (dynamic and static) feature weights
and wf as field weights, while hyperparameters wn and we alter the
number of selected query words and the decay of query word candi-
date scores respectively. They use a set of word features that are either
static for the word or updated dynamically with the stream of text.
The static features are computed once for each new query word can-
didate in the stream. The dynamic features are updated in each new
state for all query word candidates. The dynamic features are com-
puted with information from the textual stream. They include the (1)
term frequency TF (w), (2) augmented term frequency, intended to pre-
vent a bias towards longer documents, (3) TF.IDF (w) computed using
the target collection, and (4) Capitalized(w) that indicates whether a
word appeared capitalized in the stream, ignoring the beginning of a
sentence. The static features are similar to the statistical features as de-
scribed in §3.4. Hyperparameter we governs the decay rate. Concretely,
the weighted sum of features is multiplied with e−we.i, where i is the
relative age of word w in the stream thus far. This relative age ranges
from 0 to 1 and is 0 for the current chunk and 1 for the first chunk
in the stream. From the ranked query term candidates complex query
is generated using the top n terms, where n is based on a hyperpa-
rameter wn. The query is further extended with learned field weights,
allowing the model to learn to attribute more importance to specific
fields, such as the title of a video. The field weights wf are also exposed
as hyperparameters.

9.3. Question Answering 107

The learning approach considers the retrieval model as a black box
that defines a set of hyperparameters, altering the retrieval process
in a complex manner. A new state occurs when a new chunk of sub-
titles presents itself. The action of generating a query is optimized
based on the feedback in terms of retrieval effectiveness. This feedback
is obtained by generating search results through the retrieval model
that is governed by the set of hyperparameters. Offline relevance as-
sessments are used for feedback. Also, the Dueling Bandits Gradient
Descent (DBGD) algorithm is used to learn an optimal policy.

They found that carefully weighting terms and decaying these
weights based on recency significantly improves effectiveness.

9.3 Question Answering

Question answering platforms often face verbose queries. Huston and
Croft [2010] use stop structure identification (as discussed in §3.5.5)
and stopword removal for reducing the verbose query to a single sub-
query. Some examples of query reduction in query answering are as
follows.

• “please tell me why the sky is blue” → “sky blue”.

• “for a year ive been getting some tightening from within my chest”
→ “tightening chest”.

An interesting problem in search on question answering platforms
is to find the best matching already existing question for a new ques-
tion. Xue et al. [2008] use translation-based language models for ques-
tion reformulation. We discussed solution to this problem in detail in §7.

Here are examples of top five retrieved questions for two queries.
Top five retrieved questions for the query: “who is the leader of

india?”

• Who is the prime minister of india?

• Who is current vice prime minister of india?

• Who is the army chief of india?

108 Sources and Treatment of Verbose Queries

• Who is the finance minister of india?

• Who is the first prime minister of india?

Top five retrieved questions for the query: “who made the first air-
plane that could fly?”

• What is the oldest aiirline that still fly airplane?

• Who was the first one who fly with plane?

• Who was the first person to fly a plane?

• Who the first one fly to the space?

• Who the first one who fly to sky?

9.4 Searching for Medical Information

Bader and Theofanos [2003] analyzed three months of cancer queries on
Ask.com. They found a large number of different types of verbose can-
cer related queries. The eagerness to know more makes users to write
long queries. Also most of such users are novices and hence ask ques-
tions using whole sentences and keywords, often mis-spelt words. Types
of queries were as follows: Cancer (78.37%), General Research (10.26%),
Treatment (5.04%), Diagnosis and Testing (4.36%), Cause/Risk/Link
(1.64%), Coping (0.33%). Here are a few examples of such queries.

• “Where can I find information about breast cancer?”

• “Where can I find a Web site with information on using high
protein food to fight Breast cancer?”

• “How do antioxidants prevent cancer that may be caused by free
radicals?”

• “where can I have an ultra fast CT scan done”

• “When do people who have pancreatic cancer know that they
have the disease?”

9.5. Fact Verification 109

9.5 Fact Verification

Fact verification is an area where users enter long fact queries like the
following to verify the contained fact. “In 1981, Obama transferred
to Columbia University in New York City, where he majored in po-
litical science with a specialty in international relations”. This could
be very useful for automatically identifying supporting documents for
statements on Wikipedia.

Given a factual statement, the system, proposed by Leong and
Cucerzan [2012], first transforms it into a set of semantic terms (likely
to occur in the supporting document) by using boosted decision trees
with multiple syntactic, encyclopedic and heuristic features (as dis-
cussed in §3.4). To further refine the set of words without hurting recall,
it employs a quasi-random strategy for selecting subsets of the semantic
terms according to topical likelihood. These semantic terms are used to
construct queries. Retrieved documents are aggregated and re-ranked
by employing additional measures of their suitability to support the
factual statement.

Leong and Cucerzan [2012] specifically focused on Wikipedia which
has in-sentence and end-of-sentence citations. The sentences (or their
parts) are facts and the references serve as fact verification documents.
They observed that verbatim query resulted in top 1 precision of 1.36;
95.67% results were not in top 50. After removing stop words, top 1 pre-
cision was 3.48; 90.08% were not in top 50. The oracle approach (which
identifies matching documents by considering only the words that are
shared between the statement and the true referenced document) had
top 1 precision of 8.48%; 71.67% were not in top 50.

Let t be a term and S be the verbose query (or the fact). They used
the following set of features.

• Offset(t,S): Backward distance (measured in semantic terms)
from the end of the statement (the citation marker in Wikipedia).

• TermCount(S): The number of unique semantic terms.

110 Sources and Treatment of Verbose Queries

• Keyphraseness(t): Nsd(t)
Ns(t) , where Nsd(t) is the number of times t is

an overlapping term, Ns(t) is the number of statements in which
t occurs in training.

• WikitextFreq(t): The term’s frequency in the associated
Wikipedia article (or, generally, the article where the term is
found).

• POS(t, S): The part-of-speech tag (Penn Treebank) of the term
in the statement.

• TF-IDF(t, S): The product of the term’s frequency in factual
statement and its IDF derived from two corpora, BNC and NYT.

• Multiword(t): A binary value indicating whether the semantic
term is a multi-word compound.

To drop terms further and select only best k, one method is to drop
terms randomly. A smarter way is to use Pachinko Allocation model
to compute similarity between the term and the fact in topic space.
Probability of a term being dropped depends on this topic match score.
Multiple such size k queries are fired. Results from multiple searches
are combined and re-ranked using the following score for a document
d.

Score(d) = 1
minRank(d) × cos(d, S)× PageRank(d) (9.1)

where S is the fact andminRank(d) is the minimum rank for document
d across multiple lists.

They observed that their system (drop-k PAM) is better than other
baselines: Verbatim without stop words, using classifier but no drop-
ping, drop-k uniform and also the oracle (which searches based on
overlapping words only). Drop-k PAM achieved 9.96% top 1 precision,
21.4% top 10 precision and 28.96% top 50 precision. Fact verification
URLs generated by Drop-k PAM were found to have 71% quality, 74.7%
ease of effort, and were 88.7% trustworthy.

9.6. Natural Language Interface for Databases 111

9.6 Natural Language Interface for Databases

XML databases need users to write structured queries in XQuery.
Hence, it is non-trivial to handle an arbitrary English language sentence
as query input, which can include aggregation, nesting, and value joins,
among other things, and convert it to a structured query. NaLIX [Li
et al., 2006] is a generic interactive natural language query interface to
an XML database. It translates the query, potentially after reformula-
tion, into an XQuery expression that can be evaluated against an XML
database. The translation is done through mapping grammatical prox-
imity of natural language parsed tokens to proximity of corresponding
elements in the result XML. Query Translation consists of the following
three phases.

• Parse tree classification: Identifies words/phrases in parse tree of
original sentence that can be mapped into XQuery components
or not.

• Parse tree validation: Checks if the parse tree is mappable to an
XQuery. Checks if element/attribute names or values contained
in user query can be found in the database.

• Parse tree translation: Utilizes the structure of the NL construc-
tions as reflected in the parse tree to generate an appropriate
structure in XQuery expression.

This method can be treated as a specific form of verbose query
processing which uses query segmentation and query reformulation ap-
proaches, along with domain-specific signals.

9.7 E-Commerce

A large number of queries on e-commerce portals are long. Parikh
et al. [2013] observed that a long query, like “new ac adapter and bat-
tery charger for hp pavilion notebook” often suffers from zero-recall on
eBay. But breaking the query into meaningful phrases, such as {new|ac
adapter|and|battery charger|for|hp pavilion notebook} helps in refor-
mulating the query as “new battery charger hp pavilion”. This short-

112 Sources and Treatment of Verbose Queries

ened query retrieves more than four thousand products. They proposed
an algorithm called QSegment that uses frequency data from past query
logs and product titles for domain-specific segmentation of such long
queries. We discussed this algorithm in detail in §8.

Besides segmentation, query reduction can also be helpful for e-
commerce queries. Yang et al. [2014] experimented with reducing
queries by single term deletion and found that accurate prediction of
term deletion can potentially help users recover from poor search re-
sults and improve shopping experience. For example, “small carry on
bag for air plane” results in no search results while the query “carry on
bag” leads to many relevant items. They perform single term deletion
by learning domain-specific classifiers using multiple term-dependent
and query-dependent features as described in §3.

9.8 Search Queries from Children

Query length is an indicator of the complexity of the query and the dif-
ficulty of the user to express information needs using keywords. Torres
et al. [2010] experimented with the AOL query log and found that the
average query length for the kids, teens and mature teens were 3.8, 3.4
and 3.2 words, respectively. The overall average query length was 2.5
words. These studies suggest that query reduction and query segmen-
tation techniques can be particularly beneficial for children content
queries. Similarly query reformulation techniques based on morpho-
logical and syntactical features of the queries can improve the search
process by mapping phrases to concepts and keywords. Torres et al.
[2010] found that compared to adults, kids look at a much larger set
of results and fire new queries far less often. It should be noted that in
a more recent study, Gossen et al. [2011] found contradictory results.
Using query logs of three German search engines targeted towards chil-
dren, they found that children queries are shorter in length compared
to adult queries.

9.9. Music Search 113

9.9 Music Search

Lee [2010] discuss a large number and type of examples of verbose
queries in music search. People often first encounter new music from
various media (e.g., a movie, TV commercial, radio) without ever know-
ing the artist name and song title, or they often forget the information
over the course of time. This brings challenges to known-item searches
for music as those users must attempt to describe the sought music
other than using the bibliographic information. People who had no for-
mal music education or people who seek music from different cultures
or music in non-native languages can experience difficulties describing
the music they seek. Here is an example query: “I heard this song by
a female singer in an ARBY’s. I believe it is from the 70s or early 80s.
The main chorus of the song says, “over and over again.” Kind of a sad,
slow, easy listening love song.”

Types of music related queries include the following.

• Identification: Questions asking for assistance in identifying in-
formation objects

• Location: Questions asking about the location of a specific infor-
mation object and/or source

• Verification: Questions asking for assistance in verifying some in-
formation the user has

• Recommendation: Questions asking for a list of music related
information objects

• Evaluation: Questions asking for an evaluative discussion of a
particular subject (e.g., review)

• Ready reference: Questions asking for simple, factual answers
(e.g., birth/death date of an artist, record label)

• Reproduction: Questions asking for text, taken directly from an
information source and unchanged (e.g., lyrics)

114 Sources and Treatment of Verbose Queries

• Description: Questions asking for a description of something (e.g.,
description of artist, album)

• Research: Questions asking for involved answers requiring some
effort and wide use of information sources to formulate.

Some examples of music queries are as follows.

• It has a female voice similar to Lora Logic or Linder Sterling from
Ludus (I always thought this was a song by Ludus but now I have
their complete discography and it isn’t there).

• Sounds like the Temptations or some band from the 1960s.

• The whole thing sounds a little John Mayersque. In that genre,
with Jack Johnson, Jason Mraz, etc.

• They were the sort of hyper skinny 26 year old white guys you
think of when you think of Red Hot chili peppers . . . sort of a
repetitive pop song in the spirit of, say, FatBoy Slims “wonderful
night”.

Many users also seem to search for music based on information from
other people, especially when they are searching for lullabies or folk
songs. For example, they heard a song repeatedly from a family member
when they were younger and later they try to search for the right song
often based on the fuzzy memory they have from their childhood (e.g.,
“My grandfather, who was born in 1899, used to sing me to sleep with
this song and I can’t remember the words”). This type of search can
turn out to be quite difficult because often the information that was
relayed to them in the first place might not be precise or accurate,
and secondly these queries are quite long. Such queries clearly need
processing using techniques described in this book.

9.10 Queries from User Selected Text

People browsing the web or reading a document may see text passages
that describe a topic of interest, and want to know more about it by

9.10. Queries from User Selected Text 115

searching. They could select a piece of such text and may want to get
relevant insights. To retrieve insights, the system needs to generate
effective queries from the content of an arbitrary user selected text
passage.

For example, consider the following text segment: “Knee joint re-
placement may be recommended for: Severe arthritis (osteoarthritis
or rheumatoid arthritis) of the knee that has not gotten better with
medicine, injections, and physical therapy after 6 months or more of
treatment. Your doctor may recommend knee replacement for these
problems: Inability to sleep through the night because of knee pain.
Knee pain that has not improved with other treatment. Knee pain that
limits or keeps you from being able to do your normal activities, espe-
cially your daily activities such as bathing, preparing meals, household
chores, and other things. Some tumors that affect the knee.”

The following text chunks could be extracted from the above
text segment. “household chores, knee replacement, knee pain, Se-
vere arthritis, osteoarthritis, rheumatoid arthritis, injections, tumors,
joint replacement, bathing, Inability, physical therapy, normal activi-
ties, knee, meals, daily activities, other treatment, medicine, treatment,
6 months”.

These text chunks could be combined in various ways to form a
query. Lee and Croft [2012] use CRF-perf model (proposed by Xue
et al. [2010]) with rich features to identify discriminative phrases or
words which could form the query. They also tried various ways of
weighting query terms – ones that incorporate the number of results
from search API, CRF probability scores, removing stop words to ob-
tain high retrieval performance for such verbose queries.

Another example of queries from user selected text is for the entity
linking applications where the mention text (or the user selected text)
is large in size. For example, given a user highlighted event mention
from a cricket match report, Gupta [2015] solve the problem of linking
it to a relevant set of balls from the corresponding match commentary.
Here the event mention could often times be an entire sentence, and
the problem is to find matching “ball” documents from the ball-by-
ball commentaries. The problem is solved by reducing the mention to a

116 Sources and Treatment of Verbose Queries

short query containing important entities like player name and country
name and then using it to query the ball-by-ball corpus.

9.11 Summary

Verbose queries are frequent in multiple applications. In some applica-
tions, verbose queries are fired by the users explicitly, while in other
applications they are implicit. We discussed examples from various do-
mains like finding images for books, finding related videos, question
answering, cancer search portals, fact verification, natural language
interfaces for databases, e-commerce, children search engines, music
search, queries from user selected text, etc. Implementations of all such
systems need to have a module that can convert the verbose query to
a short one, and then optionally a reformulated query. The variety of
applications where verbose queries are frequent and the rate at which
such scenarios are increasing make verbose query handling a critical
topic.
Suggested Further Reading: [Agrawal et al., 2011]: Finding images
for books; [Odijk et al., 2015]: Finding related videos for a streaming
video; [Xue et al., 2008]: Finding related questions given a new question
from question-answer archives; [Bader and Theofanos, 2003]: Cancer-
related search queries; [Leong and Cucerzan, 2012]: Fact verification
on Wikipedia using syntactic, encyclopedic and heuristic features; [Li
et al., 2006]: Natural language interface for XML databases; [Parikh
et al., 2013]: Long queries on e-commerce portals; [Torres et al., 2010]:
Analysis of search queries from children; [Lee, 2010]: Verbose queries
in music search; [Lee and Croft, 2012]: Implicit verbose queries from
user-selected text; [Gupta, 2015]: Implicit verbose queries from cricket
match reports.

10
Summary and Research Directions

With the advent of various new ways of querying, there is a strong need
to solve the problem of “answering verbose queries” more effectively.
We discussed six main ways of handling verbose queries – query re-
duction to a single sub-query, query reduction to multiple sub-queries,
query weighting, query expansion, query reformulation, and query seg-
mentation. We also discussed various applications where supporting
search for verbose queries can make a significant difference.

This survey shows that the work on information retrieval with ver-
bose queries has already produced many valuable insights and signif-
icant improvements in the state-of-the-art of the current information
retrieval models. However, much remains to be done, and many exciting
research directions are still in their infancy or completely unexplored.
In the remainder of this chapter, we will examine some of these research
directions in depth.

117

118 Summary and Research Directions

10.1 Towards a Unified Verbose Query Processing Frame-
work

In this survey, we discussed multiple methods for query reduction,
weighting, expansion, segmentation and reformulation. Each of these
methods was shown to be effective on its own, in certain scenarios.
However, the researchers have yet to find a principled way to unify all
these transformations into a joint query processing framework. Clearly,
simply performing all possible combinations of query transformations
leads to an exponential explosion of candidate transformations that
could be considered and is infeasible. Therefore, there is a need for a
principled model for effective and efficient selection of candidate trans-
formations for a given verbose query.

As an interesting step in this direction, Guo et al. [2008] propose
a unified model for query refinement based on Conditional Random
Fields (CRF). They consider a number of tasks such as spelling error
correction, word splitting, word merging, phrase segmentation, word
stemming, and acronym expansion as “refinement operations”, and in-
tegrate them into a single graphical model, CRF-QR, which encodes
the joint dependency of the refined query on both the input query words
and the refinement operations. Guo et al. [2008] demonstrate that the
CRF-QR model can improve upon existing cascade models that simply
apply the query transformations in sequence.

However, this query refinement approach mostly deals with mis-
spelled, or poorly specified queries, and will have little to no effect on
well-formed grammatically correct verbose queries, since it applies no
weighting to the terms and concepts in the refined queries. To this end,
an interesting direction for future work is incorporating query refine-
ment into an existing weighting framework, for instance the query hy-
pergraphs, proposed by Bendersky and Croft [2012] (see §5 for details).
Such an integration will make the current work on concept weighting
for verbose queries more applicable in realistic search scenarios where
the input verbose queries may contain typos and grammatical errors.

Another promising direction towards a unified query processing
framework is incorporating query transformations into current state-
of-the-art learning-to-rank algorithms [Cao et al., 2007]. These algo-

10.2. Multi-modal Verbose Query Processing 119

rithms mostly treat the query-document pairs as numerical features.
Specifically linear ranking functions – used in many IR applications due
to their effectiveness and efficiency – learn the same ranking function
across all queries. Therefore, methods for query-dependent transforma-
tion that will encode information about all possible query reductions,
weightings, expansions and reformulations as numerical features that
can be effectively used by all learning-to-rank methods, including the
linear ones, is an important research problem.

Better understanding of how learning-to-rank and query transfor-
mations can be combined is a very fruitful direction for future research,
as evidenced by some recent work by Iyyer et al. [2014] that employs
deep learning for question answering. Thus far, information retrieval
approaches to this problem have been relatively simplistic. For ex-
ample, Dang et al. [2013] propose a two-stage solution, where query
concept weighting is done at the retrieval stage, and the resulting doc-
uments are re-ranked using a standard learning-to-rank method.

10.2 Multi-modal Verbose Query Processing

As mobile computing becomes ubiquitous, verbose search queries are of-
ten spoken, rather than written. However, with the voice-based search,
Automatic Speech Recognition can have errors leading to “incorrect”
queries. One interesting direction for future research is understanding
what is the most effective way to simultaneously auto-correct errors in
Automatic Speech Recognition and perform query processing simulta-
neously. Right now, in most systems these functionalities are decou-
pled, which leads to an error propagation and amplification between
the speech recognition and the information retrieval systems.

In addition to single-modality queries, we can imagine a scenario
where queried information has multiple modalities. For example, a user
can ask the search engine: “What is the name of the blue flower in this
photo?”, while taking a photo with her mobile device. In this case, a
query consists of both spoken and visual modalities, and the search
engine needs to both understand the visual representation of the “blue
flower” concept in the taken picture, as well as find occurrences of this

120 Summary and Research Directions

visual representation on the web, and finally map this visual represen-
tation back into the concept “iris” for providing the right answer. While
this scenario seems futuristic at the time of writing, current research
suggests that we will see a lot of progress in this area in the few coming
years [Socher et al., 2011].

10.3 Search Personalization

Search personalization and user modeling is an important research
topic. One of the key observations in search personalization is that
an individual’s search history can be effectively utilized for improving
search relevance [Bennett et al., 2012]. For instance, one simplistic way
to model a user, in the context of search personalization, is a weighted
combination of its search queries.

While user modeling is a well-established research field, to the best
of our knowledge the techniques described in this survey, such as query
expansion, query weighting and query reformulation, have not yet been
applied in the context of user search history, even if a new user query
was not directly observed in user history. For example, query expan-
sion algorithms can take into account prior user queries in addition
to other information sources. Similarly query weighting can be biased
towards concepts which are known to be important to a specific user.
Data sparsity in such applications (e.g., for users with few queries in
their history) can be addressed by either user or query clustering (e.g.,
dimensionality reduction methods such as topic models or word em-
beddings).

10.4 Natural Language Query Understanding

The techniques described in this survey apply only basic morphologi-
cal and syntactic processing to documents and user queries. However,
in many cases, natural language processing (NLP) techniques such
as part-of-speech tagging, dependency parsing, summarization, senti-
ment analysis, coreference resolution, entity and relation extraction,
can prove highly beneficial if synthesized with more traditional infor-
mation retrieval techniques.

10.4. Natural Language Query Understanding 121

NLP and IR synthesis has the potential to revolutionize search in
many domains, from the web to the enterprise. It will help search en-
gines to tackle complex queries with location and temporal features and
enable retrieval based on entities and relations, rather than keyword
matching. For example, consider queries such as “companies that spe-
cialize in IR or NLP in Cambridge, MA”, or “most influential academic
papers related to information retrieval published in the last five years”
that would be difficult to answer precisely with the current information
retrieval systems.

There have been some successful attempts of such synthesis within
a restricted domain (for example, IBM’s Watson DeepQA system [Fer-
rucci et al., 2010] winning Jeopardy!). However, a general theoretical
framework – one that can be applied to all types of information retrieval
tasks and can efficiently handle large-scale corpora on web scale – is
yet to emerge. Making progress towards such a framework, based on
our current understanding of verbose search queries, will significantly
advance both IR and NLP research, and will undoubtedly inspire a
large number of commercially viable applications for individual users,
enterprises and governments.

Acknowledgements

We are indebted to many people for making this survey possible. We
thank Mark Sanderson and Doug Oard for reviewing our first version
and helping us produce a significantly improved final version. We thank
the anonymous reviewers for their insightful detailed comments. We
thank our families for being patient, and for their constant support
and encouragement. Finally, we thank our employers Microsoft and
Google respectively for their support.

122

Appendices

A
Basic Information Retrieval Concepts

In this chapter, we will discuss the following basic information retrieval
concepts: language modeling, the query likelihood model, the diver-
gence from randomness framework, singular value decomposition, and
pseudo-relevance feedback.

A.1 Language Modeling

A statistical language model assigns a probability to a sequence of m
words P (q1, . . . , qm) by means of a probability distribution. It reflects
how frequently the set of words appear as a sequence in a reference
collection of documents C or a single document. Language models are
used in information retrieval in the query likelihood model.

In a unigram language model, probability of a sequence is computed
as follows.

P (q1, . . . , qm) =
m∏
i=1

P (qi) (A.1)

where P (qi) is computed as count(qi)
|C| where count(qi) is the number of

times qi appears in C and |C| is the size of C in number of words.

124

A.2. Query Likelihood Model 125

In a n-gram language model, probability of a sequence is computed
as follows.

P (q1, . . . , qm) =
m∏
i=1

P (qi | qi−(n−1), . . . , qi−1) (A.2)

where P (qi | qi−(n−1), . . . , qi−1) is computed as count(qi−(n−1),...,qi−1,qi)
count(qi−(n−1),...,qi−1) .

Language models are usually used with some form of smoothing.

A.2 Query Likelihood Model

Query likelihood model [Ponte and Croft, 1998] is a basic method for
using language models in IR. Our goal is to rank documents by P (d|q),
where the probability of a document is interpreted as the likelihood that
it is relevant to the query. Using Bayes’ rule, the probability P (d|q) of
a document d, given a query q can be written as follows.

P (d|q) = P (q|d)P (d)
P (q) (A.3)

Since the probability of the query P (q) is the same for all documents,
this can be ignored. Further, it is typical to assume that the probability
of documents is uniform. Thus, P (d) is also ignored leading to the
following.

P (d|q) ∝ P (q|d) (A.4)

Documents are then ranked by the probability that a query is observed
as a random sample from the document model.

P (q|d) ∝
n∏
i=1

P (qi|d) (A.5)

A.3 Pseudo-Relevance Feedback

The idea behind relevance feedback in IR systems is to take the results
that are initially returned from a given query and to use information
about whether or not those results are relevant to perform a new query.
Pseudo-relevance feedback automates the process of feedback. The pro-
cedure is as follows.

126 Basic Information Retrieval Concepts

• Take the results returned by initial query as relevant results (only
top k with k being between 10 to 50 in most experiments).

• Select top few terms from these documents using for instance the
TF-IDF weights.

• Do query expansion, add these terms to query, find relevant doc-
uments for this query and finally return the most relevant docu-
ments.

Pseudo-relevance feedback is frequently used for query expansion.
Relevance feedback is often implemented using the Rocchio Algorithm.

A.4 Divergence from Randomness Framework

Divergence from randomness is one type of probabilistic model. The
DFR models are based on this simple idea: “The more the divergence
of the within-document term-frequency from its frequency within the
collection, the more the information carried by the word t in the doc-
ument d”. In other words the term-weight is inversely related to the
probability of term-frequency within the document d obtained by a
model M of randomness.

weight(t|d) ∝ − log PM (t ∈ d|Collection) (A.6)

where the subscript M stands for the type of model of randomness
employed to compute the probability. In order to choose the appropri-
ate model M of randomness, we can use different models. There are
many ways to choose M , each of these provides a basic DFR model.
The basic DFR models are Divergence approximation of the binomial,
Approximation of the binomial, Bose-Einstein distribution, Geomet-
ric approximation of the Bose-Einstein, Inverse Document Frequency
model, Inverse Term Frequency model, and the Inverse Expected Doc-
ument Frequency model.

A.5 Singular Value Decomposition

Singular value decomposition of an m × n real or complex matrix M
is a factorization of the form M = UΣV T , where U is an m ×m real

A.6. Metrics 127

or complex unitary matrix, Σ is an m× n rectangular diagonal matrix
with non-negative real numbers on the diagonal, and V T (the conjugate
transpose of V , or simply the transpose of V if V is real) is an n×n real
or complex unitary matrix. The diagonal entries Σi,i of Σ are known
as the singular values of M . The m columns of U and the n columns of
V are called the left-singular vectors and right-singular vectors of M ,
respectively.

A.6 Metrics

In this section, we discuss various metrics that are popularly used to
evaluate the performance of information retrieval systems.

A.6.1 Precision@K

Precision is the fraction of retrieved documents that are relevant to the
query.

precision = |{relevant documents} ∩ {retrieved documents}|
|{retrieved documents}| (A.7)

When precision is evaluated at a given cut-off rank, considering
only the topmost results returned by the system, it is called precision
at k or P@k.

A.6.2 Normalized Discounted Cumulative Gain (NDCG)

Cumulative Gain (CG) is the sum of the graded relevance values of all
results in a search result list. The CG at a particular rank position p
is defined as follows.

CGp =
p∑
i=1

reli (A.8)

where reli is the graded relevance of the result at position i. The value
computed with the CG function is unaffected by changes in the ordering
of search results.

The premise of Discounted Cumulative Gain (DCG) is that highly
relevant documents appearing lower in a search result list should be

128 Basic Information Retrieval Concepts

penalized as the graded relevance value is reduced logarithmically pro-
portional to the position of the result. The discounted CG accumulated
at a particular rank position p is defined as follows.

DCGp =
p∑
i=1

2reli − 1
log2(i+ 1) (A.9)

Sorting the documents of a result list by relevance produces the
maximum possible DCG till position p, also called Ideal DCG (IDCG)
till that position. For a query, the normalized discounted cumulative
gain, or NDCG, is computed as follows.

NDCGp = DCGp
IDCGp

(A.10)

The NDCG values for all queries can be averaged to obtain a mea-
sure of the average performance of a search engine’s ranking algorithm.
Note that in a perfect ranking algorithm, the DCGp will be the same
as the IDCGp producing an NDCG of 1.0. All NDCG calculations
are then relative values on the interval 0.0 to 1.0.

A.6.3 Mean Average Precision (MAP)

Average precision at n is computed as follows.

AP =
∑n
k=1(P (k)× rel(k))

number of relevant documents (A.11)

where rel(k) is an indicator function equaling 1 if the item at rank k is
a relevant document, zero otherwise. Also, n is the number of retrieved
documents.

Note that the average is over all relevant documents and the relevant
documents not retrieved get a precision score of zero. Mean average
precision for a set of queries is the mean of the average precision scores
for each query.

MAP =
∑Q
q=1 AP(q)
Q

(A.12)

where Q is the number of queries.

A.6. Metrics 129

A.6.4 Mean Reciprocal Rank (MRR)

The reciprocal rank of a query response is the multiplicative inverse of
the rank of the first correct answer. The mean reciprocal rank is the
average of the reciprocal ranks of results for a sample of queries Q

MRR = 1
|Q|

|Q|∑
i=1

1
ranki

. (A.13)

The reciprocal value of the mean reciprocal rank corresponds to the
harmonic mean of the ranks.

B
Graphical Models: MRFs and CRFs

In this chapter, we provide a basic introduction to two graphical mod-
els: Markov Random Fields (MRFs) and Conditional Random Fields
(CRFs).

B.1 Markov Random Fields (MRFs)

A Markov random field (MRF) is a set of random variables having a
Markov property described by an undirected graph. A Markov random
field is similar to a Bayesian network in its representation of depen-
dencies; the differences being that Bayesian networks are directed and
acyclic, whereas Markov networks are undirected and may be cyclic.

Given an undirected graph G = (V,E), a set of random variables
X form a Markov random field with respect to G if they satisfy the
local Markov properties: (1) Pairwise Markov property: Any two non-
adjacent variables are conditionally independent given all other vari-
ables. (2) Local Markov property: A variable is conditionally indepen-
dent of all other variables given its neighbors. (3) Global Markov prop-
erty: Any two subsets of variables are conditionally independent given
a separating subset.

130

B.2. Conditional Random Fields (CRFs) 131

As the Markov properties of an arbitrary probability distribution
can be difficult to establish, a commonly used class of Markov random
fields are those that can be factorized according to the cliques of the
graph.

Given a set of random variables X, let P (X = x) be the probability
of X taking on the particular value x. Because X is a set, the prob-
ability of x should be understood to be taken with respect to a joint
distribution of the variables in X. If this joint density can be factor-
ized over the cliques of G, P (X = x) =

∏
c∈C(G) φc(xc) then X forms a

Markov random field with respect to G. Here, C(G) is the set of cliques
of G. The functions φc are sometimes referred to as factor potentials
or clique potentials.

B.2 Conditional Random Fields (CRFs)

One notable variant of a Markov random field is a Conditional random
field, in which each random variable may also be conditioned upon a
set of global observations x. Conditional random fields are graphical
models that can capture such dependencies among the input. A CRF
over observations X and hidden labels Y is a conditional distribution
P (y|x) where y ∈ Y and x ∈ X. CRF is an undirected graphical model
in which each vertex represents a random variable whose distribution
is to be inferred, and each edge represents a dependency between two
random variables. The observation x can be dependent on the current
hidden label y, previous n hidden labels and on any of the other ob-
servations in a n order CRF. Sutton and McCallum [2006] provide an
excellent tutorial on CRFs. CRFs have been shown to outperform other
probabilistic graphical models like Hidden Markov Models (HMMs) and
Maximum Entropy Markov Models (MeMMs).

For a typical CRF, the distribution over labels y is given by the
following equation.

P (y|x) =
exp

[
K∑
k=1

λkfk(x, y)
]

Z(x) (B.1)

132 Graphical Models: MRFs and CRFs

where the partition function Z(x) is computed as follows.

Z(x) =
∑
y∈Y

exp

[
K∑
k=1

λkfk(x, y)
]

(B.2)

Here, fk are the feature functions, and λk is the weight of the kth
feature.

For general graphs, the problem of exact inference in CRFs is in-
tractable. The inference problem for a CRF is basically the same as for
an MRF. However there exist special cases for which exact inference is
feasible. If exact inference is impossible, several algorithms like loopy
belief propagation can be used to obtain approximate solutions.

C
Dependency Parsing

Dependency is the notion that linguistic units, e.g. words, are connected
to each other by directed links. The (finite) verb is taken to be the
structural center of clause structure. All other syntactic units (words)
are either directly or indirectly connected to the verb in terms of the
directed links, which are called dependencies. Dependency parsers cap-
ture such linguistic dependencies between words and output directed
dependency trees over words: each word in the tree has exactly one
incoming edge, which comes from its ‘parent’, except the root word
which has no incoming edges.

Dependency parse trees help to illustrate the binary dependencies
existing between various query words as shown in Figure 3.2.

Synchronous grammars, originally proposed for machine transla-
tion, jointly generate trees of a source and target sentence. Words in a
source tree (e.g., in a document) are not always translated into a tar-
get tree (e.g., a query) with the same syntactic structure. Some source
words may be translated into one target word, and others may be match
more than one word or a phrase. To solve these disagreements in source
and target languages, a quasi-synchronous model allows words in a tar-
get sentence, which are aligned with a words in a parent-child depen-

133

134 Dependency Parsing

dency relation in a source sentence, to have a different relationship to
each other.

Various kinds of relationships between nodes can be considered by
the quasi-synchronous grammars. Some of these relations are parent-
child, ancestor-descendant, siblings and c-commanding as shown in Fig-
ure 3.3. A node A c-commands a node B if and only if (a) neither A
nor B dominate the other, and (b) the lowest branching node that
dominates A also dominates B. If a node A dominates a node B, A
appears above B in the tree. Note that c-command is not necessarily a
symmetric relation. In other words, a node A can c-command a node
B without B c-commanding A. For example, in Figure 3.3, “chemical”
c-commands “weapons” but not vice-versa.

References

Elena Agapie, Gene Golovchinsky, and Pernilla Qvarfordt. Leading People to
Longer Queries. In Proc. of the SIGCHI Conf. on Human Factors in Com-
puting Systems (SIGCHI), pages 3019–3022, New York, NY, USA, 2013.
ACM.

Rakesh Agrawal, Sreenivas Gollapudi, Anitha Kannan, and Krishnaram Ken-
thapadi. Enriching Textbooks with Images. In Proc. of the 20th ACM Intl.
Conf. on Information and Knowledge Management (CIKM), pages 1847–
1856, New York, NY, USA, 2011. ACM.

James Allan, Jamie Callan, W Bruce Croft, Lisa Ballesteros, John Broglio,
Jinxi Xu, and Hongming Shu. INQUERY at TREC-5. In Proc. of the 5th

Text REtrieval Conference (TREC), pages 119–132. NIST, 1996.
Giambattista Amati. Probability Models for Information Retrieval based on

Divergence From Randomness. PhD thesis, University of Glasgow, 2003.
Giambattista Amati, Claudio Carpineto, and Giovanni Romano. Query Diffi-

culty, Robustness, and Selective Application of Query Expansion. In Proc.
of the 25th European Conf. on Information Retrieval (ECIR), pages 127–
137, Berlin, Heidelberg, 2004. Springer-Verlag.

Avi Arampatzis and Jaap Kamps. A Study of Query Length. In Proc. of
the 31st Annual Intl. ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR), pages 811–812, New York, NY, USA, 2008.
ACM.

Judith L Bader and Mary Frances Theofanos. Searching for Cancer Informa-
tion on the Internet: Analyzing Natural Language Search Queries. Journal
of Medical Internet Research, 5(4):e31, 2003.

135

136 References

Peter Bailey, Ryen W White, Han Liu, and Giridhar Kumaran. Mining His-
toric Query Trails to Label Long and Rare Search Engine Queries. ACM
Transactions on the Web (TWEB), 4(4):15, 2010.

Niranjan Balasubramanian, Giridhar Kumaran, and Vitor R Carvalho. Ex-
ploring Reductions for Long Web Queries. In Proc. of the 33rd Intl. ACM
SIGIR Conf. on Research and Development in Information Retrieval (SI-
GIR), pages 571–578, New York, NY, USA, 2010. ACM.

Krisztian Balog, Wouter Weerkamp, and Maarten de Rijke. A Few Examples
go a Long Way: Constructing Query Models from Elaborate Query Formu-
lations. In Proc. of the 31st Annual Intl. ACM SIGIR Conf. on Research
and Development in Information Retrieval (SIGIR), pages 371–378. ACM,
2008.

Michael Bendersky. Information Retrieval with Query Hypegraphs. Ir, Uni-
versity of Massachusetts Amherst, July, 2012.

Michael Bendersky and W Bruce Croft. Discovering Key Concepts in Verbose
Queries. In Proc. of the 31st Annual Intl. ACM SIGIR Conf. on Research
and Development in Information Retrieval (SIGIR), pages 491–498, New
York, NY, USA, 2008. ACM.

Michael Bendersky and W Bruce Croft. Analysis of Long Queries in a Large
Scale Search Log. In Proc. of the 2009 Workshop on Web Search Click Data
(WSCD), pages 8–14, New York, NY, USA, 2009. ACM.

Michael Bendersky and W Bruce Croft. Modeling Higher-Order Term Depen-
dencies in Information Retrieval using Query Hypergraphs. In Proc. of the
35th Intl. ACM SIGIR Conf. on Research and Development in Information
Retrieval (SIGIR), pages 941–950, New York, NY, USA, 2012. ACM.

Michael Bendersky, Donald Metzler, and W Bruce Croft. Learning Concept
Importance using a Weighted Dependence Model. In Proc. of the 3rd ACM
Intl. Conf. on Web Search and Data Mining (WSDM), pages 31–40, New
York, NY, USA, 2010. ACM.

Michael Bendersky, W Bruce Croft, and David A Smith. Joint Annotation
of Search Queries. In Proc. of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language Technologies (HLT),
pages 102–111, Stroudsburg, PA, USA, 2011a. Association for Computa-
tional Linguistics.

Michael Bendersky, Donald Metzler, and W Bruce Croft. Parameterized Con-
cept Weighting in Verbose Queries. In Proc. of the 34th Intl. ACM SIGIR
Conf. on Research and Development in Information Retrieval (SIGIR),
pages 605–614, New York, NY, USA, 2011b. ACM.

References 137

Michael Bendersky, Donald Metzler, and W Bruce Croft. Effective Query
Formulation with Multiple Information Sources. In Proc. of the 5th ACM
Intl. Conf. on Web Search and Data Mining (WSDM), pages 443–452, New
York, NY, USA, 2012. ACM.

Paul N. Bennett, Ryen W. White, Wei Chu, Susan T. Dumais, Peter Bailey,
Fedor Borisyuk, and Xiaoyuan Cui. Modeling the Impact of Short- and
Long-term Behavior on Search Personalization. In Proc. of the 35th Intl.
ACM SIGIR Conf. on Research and Development in Information Retrieval
(SIGIR), pages 185–194, New York, NY, USA, 2012.

Shane Bergsma and Qin Iris Wang. Learning Noun Phrase Query Segmen-
tation. In Proc. of the 2007 Joint Conf. on Empirical Methods in Nat-
ural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), volume 7, pages 819–826, Prague, Czech Republic, 2007.
Association for Computational Linguistics.

Francesco Bonchi, Raffaele Perego, Fabrizio Silvestri, Hossein Vahabi, and
Rossano Venturini. Recommendations for the Long Tail by Term-Query
Graph. In Proc. of the 20th Intl. Conf. Companion on World Wide Web
(WWW), pages 15–16, New York, NY, USA, 2011. ACM.

Thorsten Brants and Alex Franz. Web 1T 5-gram Version 1. https:
//catalog.ldc.upenn.edu/LDC2006T13, 2006.

Andrei Z Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason
Zien. Efficient query evaluation using a two-level retrieval process. In Pro-
ceedings of the 12th International Conference on Information and Knowl-
edge Management, pages 426–434. ACM, 2003.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to
Rank: From Pairwise Approach to Listwise Approach. In Proc. of the 24th

Intl. Conf. on Machine Learning (ICML), pages 129–136, New York, NY,
USA, 2007. ACM.

Yan Chen and Yan-Qing Zhang. A Query Substitution-Search Result Re-
finement Approach for Long Query Web Searches. In Proc. of the 2009
IEEE/WIC/ACM Intl. Joint Conf. on Web Intelligence and Intelligent
Agent Technology-Volume 01 (WI-IAT), pages 245–251, Washington, DC,
USA, 2009. IEEE Computer Society.

Sungbin Choi, Jinwook Choi, Sooyoung Yoo, Heechun Kim, and Youngho
Lee. Semantic concept-enriched dependence model for medical information
retrieval. Journal of Biomedical Informatics, 47(0):18 – 27, 2014.

Kenneth Church and William Gale. Inverse Document Frequency (idf): A
Measure of Deviations from Poisson. In Natural Language Processing using
Very Large Corpora, pages 283–295. Springer, 1999.

https://catalog.ldc.upenn.edu/LDC2006T13
https://catalog.ldc.upenn.edu/LDC2006T13

138 References

Fabio Crestani and Heather Du. Written versus Spoken Queries: A Qualitative
and Quantitative Comparative Analysis. Journal of the American Society
for Information Science and Technology (JASIST), 57(7):881–890, 2006.

Ronan Cummins, Mounia Lalmas, Colm O’Riordan, and Joemon M Jose.
Navigating the User Query Space. In Proc. of the 18th Intl. Symposium
on String Processing and Information Retrieval (SPIRE), pages 380–385,
Berlin, Heidelberg, 2011. Springer-Verlag.

Ronan Cummins, Jiaul H. Paik, and Yuanhua Lv. A Pólya Urn Document
Language Model for Improved Information Retrieval. ACM Transactions
on Information Systems (TOIS), 33(4):21:1–21:34, May 2015.

Van Dang and Bruce W Croft. Query Reformulation using Anchor Text. In
Proc. of the 3rd ACM Intl. Conf. on Web Search and Data Mining (WSDM),
pages 41–50, New York, NY, USA, 2010. ACM.

Van Dang, Michael Bendersky, and W. Bruce Croft. Two-Stage Learning to
Rank for Information Retrieval. In Proc. of the 35th European Conf. on
Advances in Information Retrieval (ECIR), pages 423–434, Berlin, Heidel-
berg, 2013. Springer-Verlag.

Sudip Datta and Vasudeva Varma. Tossing Coins to Trim Long Queries. In
Proc. of the 34th Intl. ACM SIGIR Conf. on Research and Development
in Information Retrieval (SIGIR), pages 1255–1256, New York, NY, USA,
2011. ACM.

David A. Ferrucci, Eric W. Brown, Jennifer Chu-Carroll, James Fan, David
Gondek, Aditya Kalyanpur, Adam Lally, J. William Murdock, Eric Ny-
berg, John M. Prager, Nico Schlaefer, and Christopher A. Welty. Building
Watson: An Overview of the DeepQA Project. AI Magazine, 31:59–79,
2010.

Kristofer Franzen and Jussi Karlgren. Verbosity and Interface Design. Tech-
nical Report T2000:04, Swedish Institute of Computer Science, 2000.

Tatiana Gossen, Thomas Low, and Andreas Nürnberger. What are the Real
Differences of Children’s and Adults’ Web Search. In Proc. of the 34th An-
nual Intl. ACM SIGIR Conf. on Research and Development in Information
Retrieval (SIGIR), pages 1115–1116. ACM, 2011.

Jiafeng Guo, Gu Xu, Hang Li, and Xueqi Cheng. A Unified and Discrim-
inative Model for Query Refinement. In Proc. of the 31st Annual Intl.
ACM SIGIR Conf. on Research and Development in Information Retrieval
(SIGIR), pages 379–386, New York, NY, USA, 2008. ACM.

References 139

Manish Gupta. CricketLinking: Linking Event Mentions from Cricket Match
Reports to Ball Entities in Commentaries. In Proc. of the 38th Annual Intl.
ACM SIGIR Conf. on Research and Development in Information Retrieval
(SIGIR), New York, NY, USA, 2015. ACM.

Matthias Hagen, Martin Potthast, Benno Stein, and Christof Braeutigam.
The Power of Naïve Query Segmentation. In Proc. of the 33rd Annual Intl.
ACM SIGIR Conf. on Research and Development in Information Retrieval
(SIGIR), pages 797–798, New York, NY, USA, 2010. ACM.

Samuel Huston and W Bruce Croft. Evaluating Verbose Query Processing
Techniques. In Proc. of the 33rd Intl. ACM SIGIR Conf. on Research and
Development in Information Retrieval (SIGIR), pages 291–298, New York,
NY, USA, 2010. ACM.

Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher, and
Hal Daumé III. A Neural Network for Factoid Question Answering over
Paragraphs. In Proc. of the 2014 Intl. Conf. on Empirical Methods in
Natural Language Processing (EMNLP), 2014.

Jing Jiang and Chengxiang Zhai. An Empirical Study of Tokenization Strate-
gies for Biomedical Information Retrieval. Information Retrieval, 10(4-5):
341–363, 2007.

Rosie Jones and Daniel C Fain. Query Word Deletion Prediction. In Proc. of
the 26th Annual Intl. ACM SIGIR Conf. on Research and Development in
Informaion Retrieval (SIGIR), pages 435–436, New York, NY, USA, 2003.
ACM.

Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner. Generating
Query Substitutions. In Proc. of the 15th Intl. Conf. on World Wide Web
(WWW), pages 387–396, New York, NY, USA, 2006. ACM.

Ron Kohavi and George H John. Wrappers for feature subset selection. Ar-
tificial intelligence, 97(1):273–324, 1997.

Giridhar Kumaran and James Allan. A Case For Shorter Queries, and Helping
Users Create Them. In Proc. of the Human Language Technologies: The
Annual Conference of the North American Chapter of the Association for
Computational Linguistics (HLT-NAACL), pages 220–227, Stroudsburg,
PA, USA, 2007. The Association for Computational Linguistics.

Giridhar Kumaran and James Allan. Effective and Efficient User Interaction
for Long Queries. In Proc. of the 31st Annual Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval (SIGIR), pages 11–18,
New York, NY, USA, 2008. ACM.

140 References

Giridhar Kumaran and Vitor R Carvalho. Reducing Long Queries using Query
Quality Predictors. In Proc. of the 32nd Intl. ACM SIGIR Conf. on Re-
search and Development in Information Retrieval (SIGIR), pages 564–571,
New York, NY, USA, 2009. ACM.

Tessa Lau and Eric Horvitz. Patterns of Search: Analyzing and Modeling Web
Query Refinement. In Proc. of the 7th Intl. Conf. on User Modeling (UM),
pages 119–128, Secaucus, NJ, USA, 1999. Springer-Verlag New York, Inc.

Victor Lavrenko and W Bruce Croft. Relevance Models in Information Re-
trieval. In Language Modeling for Information Retrieval, pages 11–56.
Springer, Netherlands, 2003.

Matthew Lease. An Improved Markov Random Field Model for Supporting
Verbose Queries. In Proc. of the 32nd Intl. ACM SIGIR Conf. on Research
and Development in Information Retrieval (SIGIR), pages 476–483, New
York, NY, USA, 2009. ACM.

Matthew Lease, James Allan, and W Bruce Croft. Regression Rank: Learning
to Meet the Opportunity of Descriptive Queries. In Proc. of the 31th Euro-
pean Conf. on IR Research on Advances in Information Retrieval (ECIR),
pages 90–101, Berlin, Heidelberg, 2009. Springer-Verlag.

Chia-Jung Lee and W Bruce Croft. Generating Queries from User-Selected
Text. In Proc. of the 4th Symposium on Information Interaction in Context
(IIiX), pages 100–109, New York, NY, USA, 2012. ACM.

Chia-Jung Lee, Ruey-Cheng Chen, Shao-Hang Kao, and Pu-Jen Cheng. A
Term Dependency-based Approach for Query Terms Ranking. In Proc. of
the 18th ACM Conf. on Information and Knowledge Management (CIKM),
pages 1267–1276, New York, NY, USA, 2009a. ACM.

Chia-Jung Lee, Yi-Chun Lin, Ruey-Cheng Chen, and Pu-Jen Cheng. Selecting
Effective Terms for Query Formulation. In Proc. of the 5th Asia Information
Retrieval Symposium on Information Retrieval Technology (AIRS), pages
168–180, Berlin, Heidelberg, 2009b. Springer-Verlag.

Jin Ha Lee. Analysis of User Needs and Information Features in Natural Lan-
guage Queries seeking Music Information. Journal of the American Society
for Information Science and Technology (JASIST), 61(5):1025–1045, 2010.

Chee Wee Leong and Silviu Cucerzan. Supporting Factual Statements with
Evidence from the Web. In Proc. of the 21st ACM Intl. Conf. on Infor-
mation and Knowledge Management (CIKM), pages 1153–1162, New York,
NY, USA, 2012. ACM.

References 141

Yunyao Li, Huahai Yang, and HV Jagadish. Constructing a Generic Natural
Language Interface for an XML Database. In Proc. of the 2006 Conf. on
Advances in Database Technology (EDBT), pages 737–754, Berlin, Heidel-
berg, 2006. Springer-Verlag.

Christina Lioma and Iadh Ounis. A Syntactically-based Query Reformulation
Technique for Information Retrieval. Information processing & manage-
ment (IPM), 44(1):143–162, 2008.

K Tamsin Maxwell and W Bruce Croft. Compact Query Term Selection using
Topically Related Text. In Proc. of the 36th Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval (SIGIR), pages 583–
592, New York, NY, USA, 2013. ACM.

Donald Metzler and W. Bruce Croft. A Markov Random Field Model for
Term Dependencies. In Proc. of the 28th Annual Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval (SIGIR), pages 472–
479, New York, NY, USA, 2005. ACM.

Nikita Mishra, Rishiraj Saha Roy, Niloy Ganguly, Srivatsan Laxman, and
Monojit Choudhury. Unsupervised Query Segmentation using Only Query
Logs. In Proc. of the 20th Intl. Conf. on World Wide Web (WWW), pages
91–92, New York, NY, USA, 2011. ACM.

Liqiang Nie, Shuicheng Yan, Meng Wang, Richang Hong, and Tat-Seng Chua.
Harvesting visual concepts for image search with complex queries. In Pro-
ceedings of the 20th ACM International Conference on Multimedia, MM ’12,
pages 59–68, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1089-5.
. URL http://doi.acm.org/10.1145/2393347.2393363.

Daan Odijk, Edgar Meij, Isaac Sijaranamual, and Maarten de Rijke. Dynamic
Query Modeling for Related Content Finding. In Proc. of the 38th Annual
Intl. ACM SIGIR Conf. on Research and Development in Information Re-
trieval (SIGIR). ACM, 2015.

Jiaul H. Paik and Douglas W. Oard. A Fixed-Point Method for Weighting
Terms in Verbose Informational Queries. In Proc. of the 23rd ACM Conf.
on Information and Knowledge Management (CIKM), pages 131–140, New
York, NY, USA, 2014. ACM.

Nish Parikh, Prasad Sriram, and Mohammad Al Hasan. On Segmentation of
E-Commerce Queries. In Proc. of the 22nd ACM Intl. Conf. on Information
and Knowledge Management (CIKM), pages 1137–1146, New York, NY,
USA, 2013. ACM.

http://doi.acm.org/10.1145/2393347.2393363

142 References

Jae Hyun Park and W Bruce Croft. Query Term Ranking based on De-
pendency Parsing of Verbose Queries. In Proc. of the 33rd Intl. ACM
SIGIR Conf. on Research and Development in Information Retrieval (SI-
GIR), pages 829–830, New York, NY, USA, 2010. ACM.

Jae Hyun Park, W Bruce Croft, and David A Smith. A Quasi-Synchronous
Dependence Model for Information Retrieval. In Proc. of the 20th ACM
Intl. Conf. on Information and Knowledge Management (CIKM), pages
17–26, New York, NY, USA, 2011. ACM.

Fuchun Peng, Nawaaz Ahmed, Xin Li, and Yumao Lu. Context Sensitive
Stemming for Web Search. In Proc. of the 30th Annual Intl. ACM SI-
GIR Conf. on Research and Development in Information Retrieval (SI-
GIR), pages 639–646, New York, NY, USA, 2007. ACM.

Nina Phan, Peter Bailey, and Ross Wilkinson. Understanding the Relation-
ship of Information Need Specificity to Search Query Length. In Proc. of
the 30th Annual Intl. ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR), pages 709–710, New York, NY, USA, 2007.
ACM.

Jay M Ponte and W Bruce Croft. A Language Modeling Approach to Infor-
mation Retrieval. In Proc. of the 21st Annual Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval (SIGIR), pages 275–
281, New York, NY, USA, 1998. ACM.

Knut Magne Risvik, Tomasz Mikolajewski, and Peter Boros. Query Segmen-
tation for Web Search. In Proc. of the 12th Intl. Conf. on World Wide Web
(WWW), New York, NY, USA, 2003. ACM.

Daniel Sheldon, Milad Shokouhi, Martin Szummer, and Nick Craswell. Lamb-
daMerge: Merging the Results of Query Reformulations. In Proc. of the 4th

ACM Intl. Conf. on Web Search and Data Mining (WSDM), pages 795–804,
New York, NY, USA, 2011. ACM.

Gyanit Singh, Nish Parikh, and Neel Sundaresan. Rewriting Null E-Commerce
Queries to Recommend Products. In Proc. of the 21st Intl. Conf. Compan-
ion on World Wide Web (WWW), pages 73–82, New York, NY, USA, 2012.
ACM.

Mark D Smucker and James Allan. Lightening the Load of Document Smooth-
ing for Better Language Modeling Retrieval. In Proc. of the 29th Annual
Intl. ACM SIGIR Conf. on Research and Development in Information Re-
trieval (SIGIR), pages 699–700. ACM, 2006.

Richard Socher, Cliff C. Lin, Andrew Y. Ng, and Christopher D. Manning.
Parsing Natural Scenes and Natural Language with Recursive Neural Net-
works. In Proc. of the 26th Intl. Conf. on Machine Learning (ICML), 2011.

References 143

Charles Sutton and Andrew McCallum. Introduction to Conditional Random
Fields for Relational Learning. In Lise Getoor and Ben Taskar, editors,
Introduction to Statistical Relational Learning. MIT Press, 2006.

Krysta M. Svore, Pallika H. Kanani, and Nazan Khan. How Good is a Span
of Terms?: Exploiting Proximity to Improve Web Retrieval. In Proc. of
the 33rd Annual Intl. ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR), pages 154–161, New York, NY, USA, 2010.
ACM.

Bin Tan and Fuchun Peng. Unsupervised Query Segmentation using Gen-
erative Language Models and Wikipedia. In Proc. of the 17th Intl. Conf.
on World Wide Web (WWW), pages 347–356, New York, NY, USA, 2008.
ACM.

Sergio D. Torres, Djoerd Hiemstra, and Pavel Serdyukov. An Analysis of
Queries Intended to Search Information for Children. In Proc. of the 3rd

Symposium on Information Interaction in Context (IIiX), pages 235–244,
New York, NY, USA, 2010. ACM.

Manos Tsagkias, Maarten De Rijke, and Wouter Weerkamp. Hypergeometric
Language Models for Republished Article Finding. In Proc. of the 34th Intl.
ACM SIGIR Conf. on Research and Development in Information Retrieval
(SIGIR), pages 485–494. ACM, 2011.

Xuanhui Wang and ChengXiang Zhai. Mining Term Association Patterns
from Search Logs for Effective Query Reformulation. In Proc. of the 17th

ACM Conf. on Information and Knowledge Management (CIKM), pages
479–488, New York, NY, USA, 2008. ACM.

Xiaobing Xue and W Bruce Croft. Modeling Subset Distributions for Verbose
Queries. In Proc. of the 34th Intl. ACM SIGIR Conf. on Research and De-
velopment in Information Retrieval (SIGIR), pages 1133–1134, New York,
NY, USA, 2011. ACM.

Xiaobing Xue and W Bruce Croft. Generating Reformulation Trees for Com-
plex Queries. In Proc. of the 35th Intl. ACM SIGIR Conf. on Research and
Development in Information Retrieval (SIGIR), pages 525–534, New York,
NY, USA, 2012. ACM.

Xiaobing Xue, Jiwoon Jeon, and W. Bruce Croft. Retrieval Models for Ques-
tion and Answer Archives. In Proc. of the 31st Annual Intl. ACM SIGIR
Conf. on Research and Development in Information Retrieval (SIGIR),
pages 475–482, New York, NY, USA, 2008. ACM.

144 References

Xiaobing Xue, Samuel Huston, and W Bruce Croft. Improving Verbose
Queries using Subset Distribution. In Proc. of the 19th ACM Intl. Conf. on
Information and Knowledge Management (CIKM), pages 1059–1068, New
York, NY, USA, 2010. ACM.

Xiaobing Xue, Yu Tao, Daxin Jiang, and Hang Li. Automatically Min-
ing Question Reformulation Patterns from Search Log Data. In Proc. of
the 50th Annual Meeting of the Association for Computational Linguistics
(ACL), pages 187–192, Stroudsburg, PA, USA, 2012. Association for Com-
putational Linguistics.

Bishan Yang, Nish Parikh, Gyanit Singh, and Neel Sundaresan. A Study
of Query Term Deletion Using Large-Scale E-commerce Search Logs. In
Proc. of the 36th European Conf. on Information Retrieval (ECIR), pages
235–246, Berlin, Heidelberg, 2014. Springer-Verlag.

Yin Yang, Nilesh Bansal, Wisam Dakka, Panagiotis Ipeirotis, Nick Koudas,
and Dimitris Papadias. Query by Document. In Proc. of the 2nd ACM Intl.
Conf. on Web Search and Data Mining (WSDM), pages 34–43, New York,
NY, USA, 2009. ACM.

Jeonghe Yi and Farzin Maghoul. Mobile Search Pattern Evolution: The Trend
and the Impact of Voice Queries. In Proc. of the 20th Intl. Conf. Companion
on World Wide Web (WWW), pages 165–166, New York, NY, USA, 2011.
ACM.

Wen-tau Yih, Joshua Goodman, and Vitor R Carvalho. Finding Advertising
Keywords on Web Pages. In Proc. of the 15th Intl. Conf. on World Wide
Web (WWW), pages 213–222, New York, NY, USA, 2006. ACM.

Chengxiang Zhai and John Lafferty. A Study of Smoothing Methods for
Language Models applied to Ad hoc Information Retrieval. In Proc. of
the 24th Annual Intl. ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR), pages 334–342, New York, NY, USA, 2001.
ACM.

Chengxiang Zhai and John Lafferty. A Study of Smoothing Methods for
Language Models applied to Information Retrieval. ACM Transactions on
Information Systems (TOIS), 22(2):179–214, 2004.

Le Zhao and Jamie Callan. Term Necessity Prediction. In Proc. of the 19th

ACM Intl. Conf. on Information and Knowledge Management (CIKM),
pages 259–268, New York, NY, USA, 2010. ACM.

Index

5w1h Question Reformulation Patterns, 91

Affinity Algorithm, 105
Aggregated Labeled Query Trails, 78
Average Precision, 128

Binary Dependencies, 31

c-commanding, 32, 63, 134
Cancer Queries, 108
Centrality, 57
CERC, 8
Chi Square Statistic, 34
Children Queries, 112
Clarity, 90
Click Graph, 88
Clique, 60
ClueWeb-09-Cat-B, 8
Comity Algorithm, 105
Conditional Distribution, 131
Conditional Random Fields, 131
Coordinate Ascent, 68, 70, 72
Core Term Identification, 37
CRF, 118, 131
CRF-perf, 47, 48
Cumulative Gain, 127

Dependencies, 56, 133
Dependency Parsing, 63, 133
DFR, 126
Difference Prediction, 42
Dirichlet Prior Method, 16
Discounted Cumulative Gain, 127
Divergence from Randomness Framework, 126
DM+SubQL, 49

E-Commerce, 111

Endogenous Features, 66
Exogenous Features, 66

Fact Verification, 109
Fixed-Point Method, 57
Full Dependence Model, 60
Full Independence Model, 60

Global Hyperedge, 71
GOV2, 8

Head Queries, 5
Hidden Markov Models, 131
Higher Order Term Dependencies, 70
HMM, 131
Hyperedges, 70
Hypergraphs, 70

Ideal DCG, 128
Ideal Discounted Cumulative Gain, 128
Independent Prediction, 42
Info, 76
Info_Bo2, 76
Information Need Specificity, 19
Interactive Query Expansion, 44, 82
Interactive Query Reduction, 44, 82

Joint Query Annotation, 100

KC, 39
Key Concept Discovery, 39

LambdaMerge, 88
Language Modeling, 124
LCE, 68
ListNet, 47, 50

145

146 Index

Local Hyperedges, 71
Log Likelihood Ratio, 35
Loopy Belief Propagation, 132

MAP, 9, 128
Markov Random Field, 130
Maximum Entropy Markov Models, 131
Mean Average Precision, 128
Mean Reciprocal Rank, 129
MeMM, 131
MLE, 56
MRF, 60, 130
MRR, 9, 129
MSF, 69
Multi-modal Verbose Query Processing, 119
Multi-word Expression, 96
Multiple Source Formulation, 69
Music Search, 113
Mutual Information, 29, 34, 96

N-Gram Language Model, 125
NaLIX, 111
NDCG, 9, 127
NLP, 120
Normalized Discounted Cumulative Gain, 127
NTCIR, 9
Null Queries, 5

ODP, 78
Open Directory Project, 78

Pachinko Allocation Model, 110
PAM, 110
Parameterized Latent Concept Expansion, 79
Parameterized Query Expansion Model, 66
Parse Tree, 64
PhRank, 40
POS Blocks, 26
Potential Function, 60
Power Law, 6
PQE, 66, 79
Precision@K, 9, 127
Pseudo-Relevance Feedback, 56, 125

QL+SubQL, 49
QSD, 63
QSegment, 96, 112
Quasi-sync. Dependency Lang. Model, 63
Quasi-synchronous Dependencies, 32
Quasi-synchronous Model, 133
Query Clarity, 35
Query Drift, 36
Query Expansion, 75
Query Hypergraphs, 70, 118
Query Likelihood Model, 125
Query Reduction, 22, 46
Query Reformulation, 84
Query Scope, 35
Query Segmentation, 95

Query Specificity, 7
Query Transformations, 118
Query Weighting, 55
Question Answering, 107

Rank SVM, 50
RAPP, 90
Rareness, 59
Reformulation Trees, 47, 50
Regression Rank, 59
Repetition Factor, 18
Replaceability, 59
Residual IDF, 28
Rewrite Rank, 90
RM, 68
ROBUST04, 8

SCQ Score, 28
SD, 60
Search Personalization, 120
Searchonyms, 58
Sequential Dependence Model, 60
Sim. Collection/Query-based Score, 28
Simplified Clarity Score, 28
Singular Value Decomposition, 126
SRank, 50
Stop Structure, 40
Sub-query Candidates, 25
Sub-query Distributions, 47
SubDM, 49
SubQL, 48
SVD, 58, 126
Synchronous Grammars, 133
Synonymy, 58
Syntactic Configurations, 63

Tail Queries, 5
Term Redundancy, 7
Term-Query Graph, 88
Topic Centrality, 58
Translation-based Language Model, 85
TransLM+QL, 87
TREC, 8
TREC123, 8

Unigram Language Model, 124
User Modeling, 120

Verbose Queries, 2, 6
Voice Queries, 6

W10g, 8
Weighted Information Gain, 35
Weighted Sequential Dependence Model, 64
Word Necessity, 58
WSD, 64

XQuery, 111

	Preface
	Introduction
	Null Queries
	Verbose Queries are Frequent
	Search Engine Performance for Verbose Queries
	Datasets
	Metrics
	Organization of the Survey
	Summary

	Properties of Verbose Queries
	Performance for Verbose Queries
	Categories of Verbose Queries
	Query Log Traffic Representation
	Other Properties
	Summary

	Query Reduction to a Single Sub-Query
	Introduction
	Will Query Reduction help?
	Candidates for Sub-queries
	Features to Extract a Single Sub-query
	Methods to Combine the Features for Query Reduction
	Efficiency Aspect of Query Reduction Methods
	Ask for User Input to Guide Query Reduction
	Summary

	Query Reduction by Choosing Multiple Sub-Queries
	Introduction
	Sub-query Distributions using CRF-perf
	Sub-query Distributions using ListNet
	Reformulation Trees Method
	Summary

	Weighting Query Words and Query Concepts
	Introduction
	A Fixed-Point Method
	Word Necessity Prediction using Regression
	Regression Rank
	Sequential Dependence (SD) Model using Markov Random Fields
	Integrating Regression Rank with Markov Random Fields (MRFs)
	Quasi-synchronous Dependency (QSD) Language Model
	Weighted Sequential Dependence (WSD) Model
	Parameterized Query Expansion (PQE) Model
	Multiple Source Formulation (MSF)
	Query Hypergraphs
	Summary

	Query Expansion by Including Related Concepts
	Introduction
	When Could Query Expansion Help?
	Adding a Category Label to Queries
	Parameterized Latent Concept Expansion
	Expansion using User-supplied Reference Documents
	Selective Interactive Reduction and Expansion
	Summary

	Query Reformulation for Verbose Queries
	Introduction
	Reformulation using Translation-based Language Model
	Reformulation using Random Walks
	Reformulation using Query Logs
	Reformulation using Anchor Text
	Summary

	Query Segmentation for Verbose Queries
	Introduction
	Statistical Methods
	Supervised Methods
	Generative Methods
	NLP-based Methods
	Summary

	Sources and Treatment of Verbose Queries
	Finding Images for Books
	Finding Related Videos
	Question Answering
	Searching for Medical Information
	Fact Verification
	Natural Language Interface for Databases
	E-Commerce
	Search Queries from Children
	Music Search
	Queries from User Selected Text
	Summary

	Summary and Research Directions
	Towards a Unified Verbose Query Processing Framework
	Multi-modal Verbose Query Processing
	Search Personalization
	Natural Language Query Understanding

	Acknowledgements
	Appendices
	Basic Information Retrieval Concepts
	Language Modeling
	Query Likelihood Model
	Pseudo-Relevance Feedback
	Divergence from Randomness Framework
	Singular Value Decomposition
	Metrics

	Graphical Models: MRFs and CRFs
	Markov Random Fields (MRFs)
	Conditional Random Fields (CRFs)

	Dependency Parsing
	References
	Index

