

Learning Generative Models of Sentences and Images

Richard Zemel

A woman with a Mohawk mask is in front of her.

A blonde woman with a colorful costume.

A female performer with a rainbow wig.

Faculty Summit 2015

Learning Generative Models of Sentences and Images

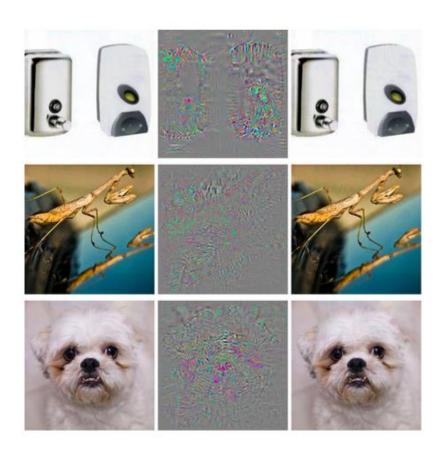
A woman with a Mohawk mask is in front of her.

A blonde woman with a colorful costume.

A female performer with a rainbow wig.

Richard Zemel

Microsoft Faculty Summit



Building Strong Models

Current successes of *deep networks*: classification problems (object recognition, speech recognition)

Standard supervised learning scenario with single correct response (class) for given input example

Current Models are Brittle

Szegedy, et al., ICLR, 2014

Building Strong Models

Current successes of deep networks: classification problems (object recognition, speech recognition)

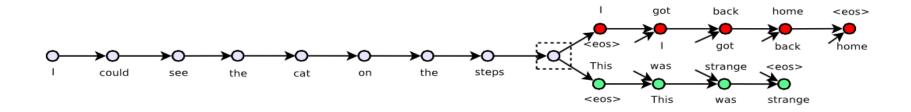
Key aim: learn high quality generic representations, of images and text

Devise new objectives, based on image/text statistics, cooccurrence

Objective 1: Predict Context

When input consists of pairs (sets) of items, a sensible objective is to predict one item from the other

Standard setup:


encoder maps first input to a vector

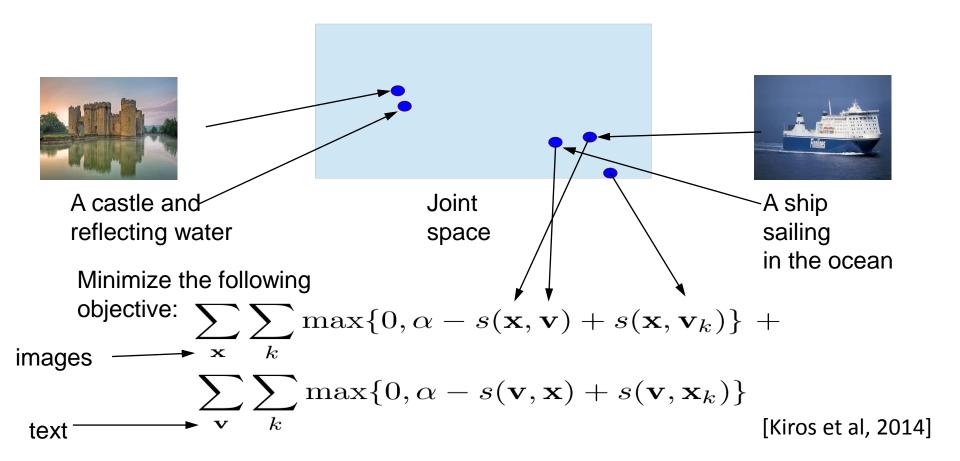
decoder maps vector to second input

Example: each word predicts the two words before and two words after it in a sentence (skip-gram [Mikolov et al., 2013])

Skip-Thought Vectors

Abstract the encoder-decoder model to whole sentences

Decode by predicting next word given generated words


Skip-Thought Vectors

Train on sentence triplets extracted from books

# of books	# of sentences	# of words	# of unique words	mean # of words per sentence
11,038	74,004,228	984,846,357	1,316,420	13

Demonstrate utility on 5 different NLP tasks (semantic relatedness, paraphrase detection)

Image Captioning as Context Prediction

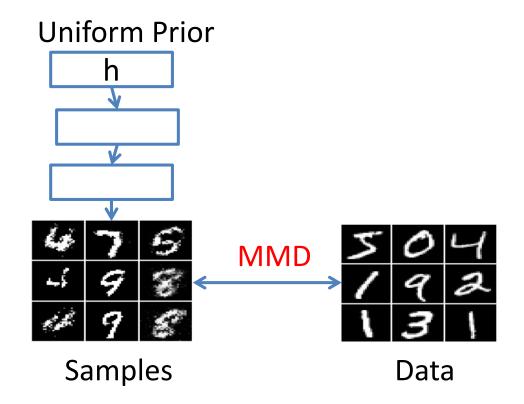
Objective 2: Learning Generative Models

Another objective is to construct a model that can generate realistic inputs – ideally generalize beyond the training set

Difficult to formulate: cannot just directly match the training examples (over-fitting)

Learning Adversarial Models

One recently popular option: train model to fool adversary


The adversary attempts to discriminate samples from the model from data samples

[MacKay 1995, 1996; Magdon-Ismail and Atiya, 1998; Goodfellow et al. Generative Adversarial Nets. 2014]

Problem: min-max formulation makes optimization difficult

Generative Moment Matching Networks

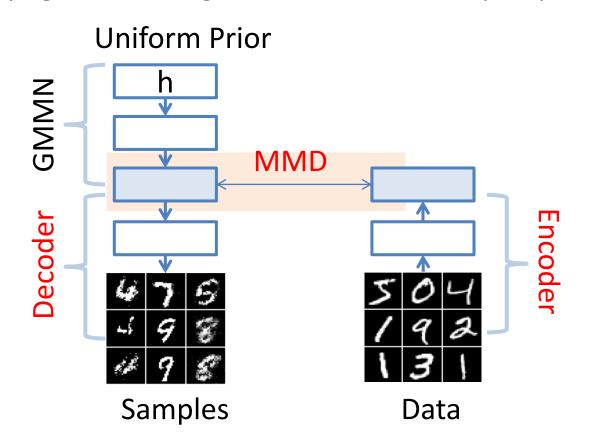
Make model codes close to data codes

[Li, Swersky, Zemel, 2015]

MMD

- Suppose we have access to samples from two probability distributions $X \sim P_A$ and $Y \sim P_B$, how can we tell if $P_A = P_B$?
- Maximum Mean Discrepancy (MMD) is a measure of distance between two distributions given only samples from each. [Gretton 2010]

$$\left\| \frac{1}{N} \sum_{n=1}^{N} \phi(X_n) - \frac{1}{M} \sum_{m=1}^{M} \phi(Y_m) \right\|^2$$


$$= \frac{1}{N^2} \sum_{n=1}^{N} \sum_{n'=1}^{N} \phi(X_n)^{\top} \phi(X_{n'}) + \frac{1}{M^2} \sum_{m=1}^{M} \sum_{m'=1}^{M} \phi(Y_m)^{\top} \phi(Y_{m'}) - \frac{2}{NM} \sum_{n=1}^{N} \sum_{m=1}^{M} \phi(X_n)^{\top} \phi(Y_m)$$

$$= \frac{1}{N^2} \sum_{n=1}^{N} \sum_{n'=1}^{N} \sum_{n'=1}^{N} k(X_n, X_{n'}) + \frac{1}{M^2} \sum_{m=1}^{M} \sum_{m'=1}^{M} k(Y_m, Y_{m'}) - \frac{2}{MN} \sum_{n=1}^{N} \sum_{m=1}^{N} k(X_n, Y_m)$$

- Our idea: learn to make two distributions indistinguishable
 - → small MMD!

Generative Moment Matching Networks

Direct backpropagation through MMD, no adversary required!

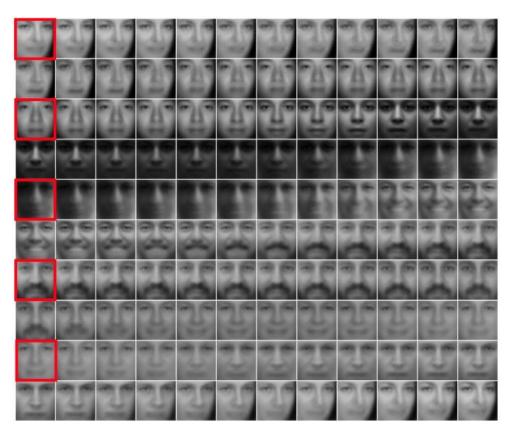
GMNN: Experiments

Model	MNIST	TFD
DBN	138 ± 2	1909 ± 66
Stacked CAE	121 ± 1.6	2110 ± 50
Deep GSN	214 ± 1.1	1890 ± 29
Adversarial nets	225 ± 2	2057 ± 26
GMMN	147 ± 2	2085 ± 25
GMMN+AE	$\textbf{282}\pm\textbf{2}$	$\textbf{2204}\pm\textbf{20}$

GMNN: Generalizing?

Independent Samples

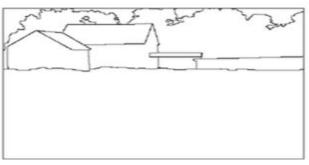
Generated faces vs. Nearest Neighbors in Training Set

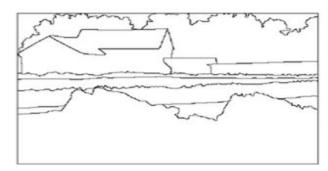

Exploring Latent Space

Interpolating between 5 random points (highlighted in red)

Exploring Latent Space

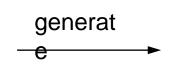
Interpolating between 5 random points (highlighted in red)




Objective 3: Learning One: Many Problems

Interesting tasks are often inherently ambiguous:

Segmenting image into coherent regions: What level of granularity?


Objective 3: Learning One: Many Problems

Interesting tasks are often inherently ambiguous:

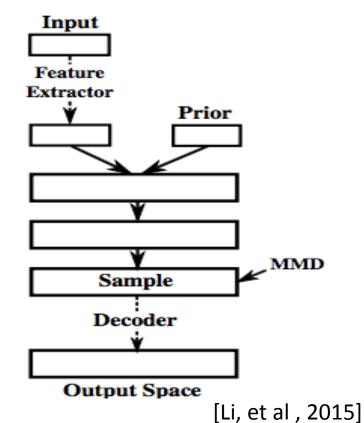
Segmenting image into coherent regions: What level of granularity?

Generating caption for an image: What is relevant content?

A car on a beach with a boat in the background.

Two hilly islands in the water.

Can think of problem as one of diversity – what is the appropriate level of diversity in one \rightarrow many mapping?

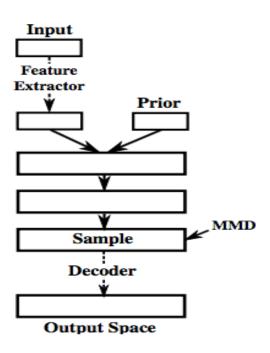

Luckily, data becoming available – can learn appropriate level of diversity for given input

Conditional Generative Moment Matching Networks

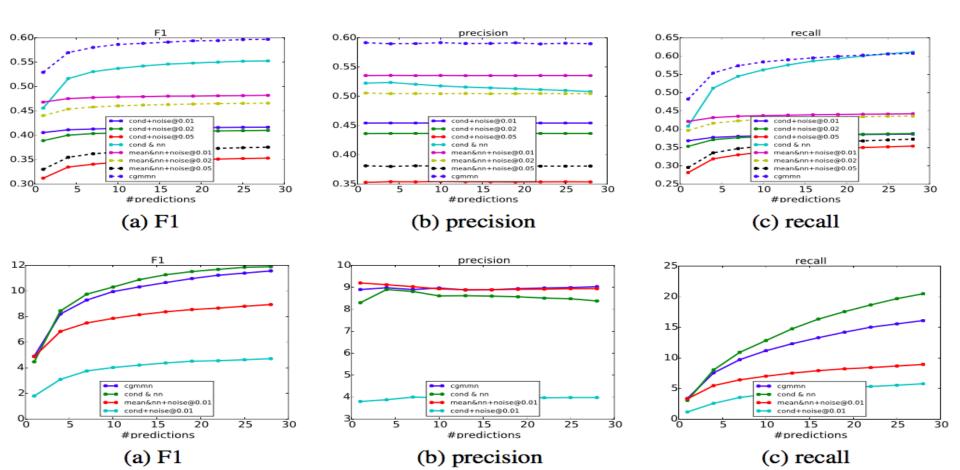
Include input as bias during generation

- Makes generation image-dependent
- Apply MMD on model/data samples per input

Idea: Generate outputs whose statistics match the statistics of multiple outputs for given input



Train joint embedding on Flickr8K dataset:


- 8000 images, 5 captions each
- 6000 training, 1000 each validate/test
- Images & sentences encoded in sentence space (skip-thought vectors)

Projected down to 300 dimensional space

- CGMMN: 10-256-256-1024-300
- Minimize multiple kernel MMD loss

Aim: capture multi-modal distribution in code space

Image	Method	Captions	
	CGMMN	A small dog chases a ball in a green yard. A small dog plays with a yellow ball ball. A brown dog plays with a ball on the green grass.	
	A black dog jumping to get a soccer ball. cond&nn a small dog with a blue color fetching a yellow ball A dog catching a tennis ball at sunset in a yard.		
	A brown dog chasing a red ball . Mathematical A brown dog chasing a ball . A brown dog chasing a ball .		
	cond+noise	Brown dog with orange ball over chasing chasing each other. Brown dog chasing after jumping to catch orange balls. Brown dog chasing after jumping in orange hoop	

П		A woman with a Mohawk mask is in front of her.	
mea	CGMMN	A blonde woman with a colorful costume.	
		A female performer with a rainbow wig .	
		an asian woman holds her fur scarf.	
	cond&nn	A person with face paint is staring at something from within a crowd.	
		A young women with a pink mask over her face.	
		A woman wears a red and white necklace, smile.	
	mean&nn+noise	A woman wears a red, black and white headscarf, scarves.	
		A woman dressed in a white dress and purple beads.	
		a woman with red hair and making makeup getting off.	
	cond+noise	Two women with red hair and a crowd.	
		Two woman with red hair and a crowd of them.	

	A man with a basketball player is about to make the back.
CGMMN	A basketball player takes a shot from the opposite team.
	A man playing a basketball, one has his arm around the number seven.
	A basketball player wearing a white uniform is dribbling the ball on the court.
cond&nn	A school basketball game is in progress.
	a basketball player wearing a red and white jersey while running down the court .
	An SMU basketball player in a white jersey dribbles the basketball.
mean&nn+noise	The basketball player dribbles the basketball in a Miami.
	The basketball player is dropping the basketball in a game.
	basketball player in uniform .
cond+noise	basketball player in uniform.
1	basketball player with arms turned .

Conclusions & Open Problems

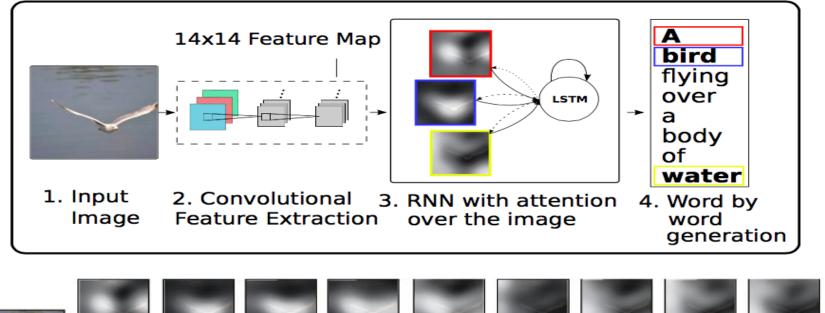
Claim: Strong representation is not only capable of recognizing objects and words, but can model inputs themselves and their context

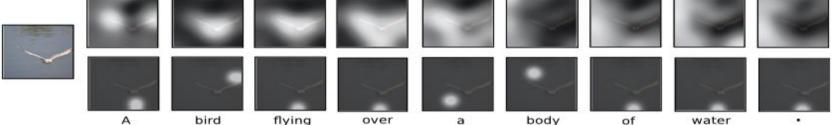
Developed 3 objectives for learning strong representations:

Predict context (sentence-sentence; sentence-image)

Generate distribution of images

Generate distribution of sentences, specific to an image


Leverage generative models?


Gain insight into model behavior

Improve standard classification tasks, esp. when labels scarce

Generalize beyond static images to video

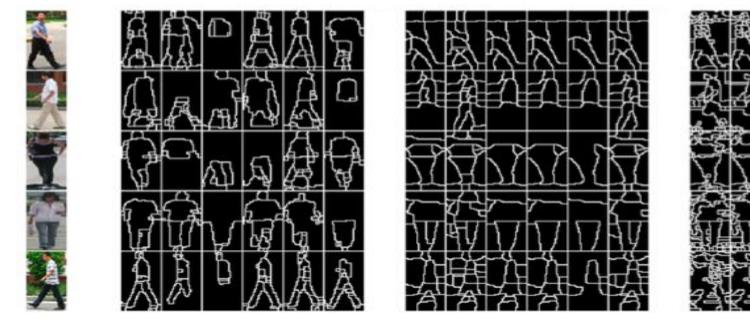
Generating Captions with Attention

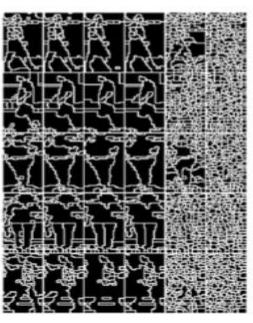
[Xu et al, 2015]

Thanks!

A woman with a Mohawk mask is in front of her.

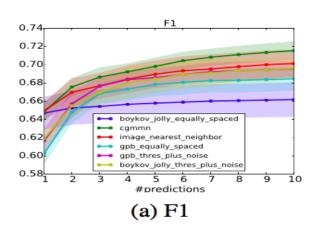
A blonde woman with a colorful costume.

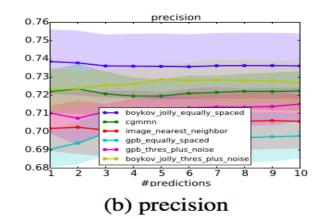

A female performer with a rainbow wig .

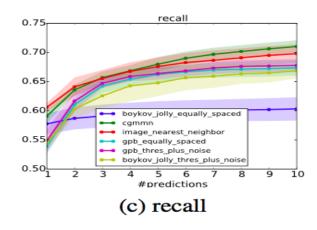

Extra Slides

- Ambiguity in segmentation important
 - Different attentional foci, granularity
 - Valuable in interactive setting: user can choose from candidate segmentations to suit need
- Formulate problem: generate edge maps
 - CGMMN produces distribution over edge maps, sample to get different maps
 - Post-processing system constructs region hierarchy, threshold to form output regions
- Compare to strong baselines that produce single edge map
 - sample to get diverse map, sampling distribution optimized
 - apply same post-processing

Image Ground-Truth Segmentations





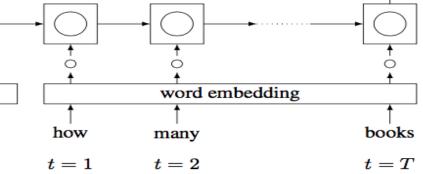

CGMMN

gPb

Boykov-Jolly

Image Q&A

linear map


CNN

Developed new Question/Answer dataset:

- Based on descriptions in COCO (COCO-QA)
- Use parse tree to make coherent questions
- Single word answers
- ~80K Q&A pairs (Object, Number, Colonian Location)

LSTM

Developed a variety of models, baselines

.21

one

.56

two

.01

bird

red

[Ren, Kiros, Zemel, 2015]

Image Q&A

COCOQA 4018

What is the color of the bowl?

Ground truth: blue

IMG+BOW: blue (0.49) 2-VIS+LSTM: blue (0.52)

BOW: white (0.45)

COCOQA 4018a

What is the color of the vest?

Ground truth: red

IMG+BOW: red (0.29)

2-VIS+LSTM: orange (0.37)

BOW: orange (0.57)

DAQUAR 1522

How many chairs are there?

Ground truth: two

IMG+BOW: four (0.24) 2-VIS+BLSTM: one (0.29)

LSTM: four (0.19)

DAQUAR 1520

How many shelves are there?

Ground truth: three

IMG+BOW: three (0.25) 2-VIS+BLSTM: two (0.48)

LSTM: two (0.21)

Image Q&A

COCOQA 14855

Where are the ripe bananas sitting?

Ground truth: basket

IMG+BOW: basket (0.97)

2-VIS+BLSTM: basket (0.58)

BOW: bowl (0.48)

COCOQA 14855a

What are in the basket?

Ground truth: bananas

IMG+BOW: bananas (0.98)

2-VIS+BLSTM: bananas (0.68)

BOW: bananas (0.14)

DAQUAR 585

What is the object on the chair?

Ground truth: pillow

IMG+BOW: clothes (0.37) 2-VIS+BLSTM: pillow (0.65)

LSTM: clothes (0.40)

DAQUAR 585a

Where is the pillow found?

Ground truth: chair

IMG+BOW: bed (0.13)

2-VIS+BLSTM: chair (0.17)

LSTM: cabinet (0.79)

Multiple Ground Truths: Caption Generation

Reference Sentences

R1: A bicyclist makes a gesture as he rides along

R2: A cyclist posing on his bicycle while riding it.

R3: A disabled biker rides on the road.

R4: A man in racing gear riding a bike and making a funny face.

R5: The man is riding his bike on the street.

R6: A man riding his bike outside.

R7: A man riding his bike.

Candidate Sentences

C1: A man rides a bike with one hand.

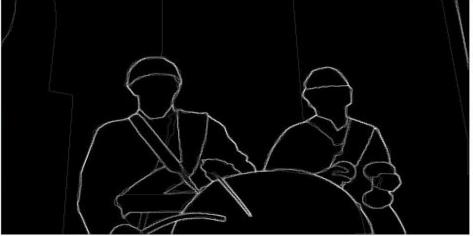
C2: A male biker dressed in white rides on pavement with a landscape of tree and grass behind him.

Triplet Annotation

Which of the sentences, B or C, is more similar to sentence A?

Sentence A: Anyone from R1 to R50

Sentence B : C1


Sentence C: C2

Multiple Ground Truths: Image Segmentation

Berkeley Segmentation Dataset: Test Image #229036 [color]

7 Color Segmentations

Multiple Ground Truths: Image Segmentation

