Video Analysis

Video to Language, Highlight Detection, Video Classification

Joint work with Ting Yao and Yong Rui, MSR Asia Microsoft



Microsoft Project Oxford:
Adding Smart to Your Applications

A portfolio of REST APIs and SDKs which
enable developers to write applications
which understand the content within the
rapidly growing set of multimedia data




-asy to use

Project Oxford allows you to focus on your application by

easily including these services across platforms through
simple REST APlIs
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Video to Sentence

Microsoft



Video to Languag

- Video description (from individual concepts to natural sentence)
 Robotic vision

« Movie description for blind people
- Incident report for surveillance videos
» Video indexing
 Learning embedding models from language-video pairs



Image captioning competition

M ICrOSO _|: t C O C O cocodataset@outlook.com
Common Object

s in Context Home People Explore

O Overview ® Download ol Evaluate ~ i= Leaderboard ~ |* Challenges ~
Table-C5 Table-C40 Table-human Last update: June 8, 2015. Visit Codalab for the latest results.
CIDEr-D |5 Meteor ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4
[CVPR 2015 oral;
Google™ 0.943 0.254 0.53 0.713 0.542 0.407 0.309 arxiv @ 2014-11-17]
MSR Captivator™ 0.931 0.248 0.526 0.715 0.543 0.407 0.308 [arxiv @ 2015-05-07]
m-RNN3] 0.917 0.242 0.521 0.716 0.545 0.404 0.299 [arxiv @ 2015-04-25]
MSR® 0.912 0.247 0.519 0.695 0.526 0.391 0.291 [CVPR 2015 poster;
: : ' ' : ' ' arxiv @ 2014-11-18]
Nearest Neighbor!!! 0.886 0.237 0.507 0.697 0.521 0.382 0.28 [arxiv @ 2015-05-27]
. [NIPS 2014 workshop;
m-RNN (Baidu/ UCLA)'@  0.886 0.238 0.524 0.72 0.553 0.41 0.302 arxiv @ 2014-12-20]
[CVPR 2015 oral;
Berkeley LRCN® 0.869 0.242 0.517 0.702 0.528 0.384 0.277 arxiv @ 2014-11-17]
Humant! 0.854 0.252 0.484 0.663 0.469 0.321 0.217

Montreal/Torontol'®! 0.85 0.243 0513 0.689 0.515 0.372 0.268 [arxiv @ 2015-02-10]



Challenges tor video-to-sentence

 Video-to-sentence is still under-explored

- Learning video representation Fied
« visual objects (AlexNet, GooglLeNet, VGG) ?—I |
. - : | - i
temporal dynamics (C3D, optical flow) o s
audio (MFCC, Spectrum-SIFT) “JDCHN 3D ConvNet
« Deep neural network design g v
e I | ngn oo
- filter: 2D CNN/3D CNN W i pEL | D
: 0 [HH [HH] [HHHH  [HH]
multi-layer RNN (LSTM) " on0 oo 0nn
RNN

« Sequence learning
sequence vs. static frames (pooling/alignment)
semantic relationship between entire sentence and video content




How does video-to-sentence work?

+ Language template-based model (ut Austin'14, SUNY-Byffalo'15]

« SVO detection -> template-based sentence generation

[ I wI 1i| Y
A

Predicting the best words for describing:
Subject (S) - Verb (V) - Object (O)

~

Generating sentence using template:
“determiner (a/the) - Subject - Verb (tense) - Preposition
(optional) - determiner (a/the) - Object (optional)”

=

{ S: man, V: play, O: guitar ]

Sentence: “a man is
playing a guitar”

slice 0.1909
chop 0.1098
play 0.0856
speak 0.0000

factor graph model (FGM)



How does video-to-sentence work?

 RNN-based model [uc Berkeley'14'15, UdeM'15]
 decoding (temporal) video representation into sequence of words
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a group dancing

UC Berkeley’14: AlexNet + mean pooling + B

UdeM’15: (GooglLeNet + 3D CNN) + soft-attention + B

UC Berkeley’15: (VGG + Optical Flow) + sequence encoding-decoding
MSRA: (VGG 2D CNN + 3D CNN) + mean pooling + A + joint learningo



Our work: joint embedding and translating

+ Key Issues in sentence generation
- relevance: relationship between sentence (S, V, O) semantics and video content
* Coherence: sentence grammar

LSTM: a man is playing a guitar LSTM: a man is dancing
LSTM-E: a man is playing a piano LSTM-E: a group of people are dancing

» Joint learning: relevance + coherence
 Holistically looking at both entire sentence semantics and video content
 Learning powerful video representation: 2D CNN (visual) + C3D (motion)

"
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Fvaluations

- Dataset (MSR Video Description Corpus, a.k.a. YouTube2Text)

1,970 Youtube video snippets (1,200 training, 100 validation, 670 testing)

10-25 sec for each clip

~40 human-generated sentences for each clip (by AMT)
dictionary: 15,903 -> 7,000; 45 S-groups, 218 V-groups, 241 O-groups

« Training: 12 hrs in one single CPU; testing: ~5 sec per clip

Lhwn =

a man is petting a dog

a man is petting a tied up dog

a man pets a dog

a man is showing his dog to the camera
a boy is trying to see something to a dog

a man is playing the guitar

a men is playing instrument

a man plays a guitar

a man is singing and playing guitar
the boy played his guitar

ciawn S

a kitten is playing with his toy
a cat is playing on the floor

a kitten plays with a toy

a catis playing

a cat tries to get a ball

1.
2.
3.
4.
5.

a man is singing on stage

a man is singing into a microphone
a man sings into a microphone

a singer sings

the man sang on stage into the
microphone
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http://research.microsoft.com/en-us/downloads/38cf15fd-b8df-477e-a4e4-a4680caa75af/

Performance

The accuracy of S-V-O triplet prediction.

Model Team Subject% Verb% Object%
FGM UT Austin, COLING (2014/08) 76.42 21.34 12.39
CRF SUNY-Buffalo, AAAI (2015/01) 77.16 22.54 9.25
CCA Stanford, CVPR (2010/06) 77.16 21.04 10.99
JEM SUNY-Buffalo, AAAI (2015/01) 78.25 24.45 11.95
LSTM UC Berkeley, NAACL (2014/12) 71.19 19.40 9.70
LSTM-E MSRA, arxiv (2015/05) 80.45 29.85 13.88

The performance of sentence generation.

Model Team METEOR% BLEU@4%
LSTM UC Berkeley, NAACL (2014/12) 26.9 31.2
SA UdeM, arxiv (2015/02) 29.6 42.2
S2VT UC Berkeley, arxiv (2015/05) 29.8 --

LSTM-E MSRA, arxiv (2015/05) 31.0 45.3




Video-to-Sentence results (within You Tube? Text)

Human: a kitten is playing with his toy
LSTM: a cat is playing with a mirror
LSTM-E: a kitten is playing with a toy

Human: a group of people are dancing
LSTM: a man is dancing
LSTM-E: a group of people are dancing

Human: a man is talking on a cell phone
LSTM: a woman is talking
LSTM-E: a man is talking on a phone

Human: a man is singing on the stage
LSTM: a man is playing a flute
LSTM-E: a man is singing

Human: a person is playing a piano keyboard
LSTM: a man is playing a guitar
LSTM-E: a man is playing a piano

Human: a man is riding his motocycle
LSTM: a man is riding a car
LSTM-E: a man is riding a motorcycle
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Video-to-Sentence results (out of YouTube? Text)

A car is running A man is cutting a A man is performing
piece of meat on a stage

A man is singing A panda is walking A woman is riding a horse A manis flying in a field
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What it applying image captioning tech to video?

Video-to-sentence: Image-to-sentence (keyframe-based): http.//deeplearning.cs.toronto.edu/it

a group of people are jJumping up
on a stage look on a horse

LSTM-E: a group of people are dancing

the two people are standing in the
front of their heads

a group of people standing around
next to each other
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http://deeplearning.cs.toronto.edu/i2t

Highlight detection

Microsoft



Example: parkour (highlight + timelapse 4X + music)

Microsoft Confidential
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Example: GoPro video

0.9
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0.1

Microsoft Confidential



Video classification

Microsoft



Action recognition from video

« Examples of video categories (CCV-20)

i onaecs CCV
(20, 10K)




Action recognition

surfing:0.1114
swimming:0.0568
kayaking:0.0534

Microsoft Confidential



Framework

« Multi-granular spatiotemporal architecture
- deep feature learning representation for video

- multi-granular streams (frame + optical flow + clip + video)
- relative importance learning for each component
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Microsoft Confidential

THUMOS Challenge 2015

N c:orync:hon with C\/PR

Entry Runl Run? Run3 Rund Run5

U. of Tech., Sydney & CMU 0.7384 0.7157 0.7011 0.6913 0.647

MBSR Asia (MSM) 0.6861 0.6869 0.6878 0.6886 0.6897

Zhejiang University 0.6876 0.6643 0.6859 0.6809 0.5625

INRIA_LEAR 0.6814 0.6811 0.5395 0.6739 0.6793

CUHR & %iiﬂﬂ fnst Adv. ) 1g04 0.5746 0.6803 0.6576 0.6604
University of Amsterdam 0.6798 NA NA NA NA

Tianjin University 0.6666 0.6551 0.6324 0.5514 0.5357

USC & Tsinghua U. 0.6354 0.6398 0.6346 0.5639 0.6357

KATT TT7T Toal-srm N &1RG N a1 i a1 4 A= al i N Agas
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http://www.thumos.info/results.html
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