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Abstract—Being aware of objects in the ambient provides

a new dimension of context awareness. Towards this goal, we
present a system that exploits powerful computer vision algo-
rithms in the cloud by collecting data through always-on cameras
on portable devices. To reduce comunication-energy costs, our
system allows client devices to continually analyze streams of
video and distill out frames that contain objects of interest.
Through a dedicated image-classification engine SAPPHIRE, we
show that if an object is found in 5% of all frames, we end up
selecting 30% of them to be able to detect the object 90% of
the time: 70% data reduction on the client device at a cost of
≤ 60mW of power (45nm ASIC). By doing so, we demonstrate
system-level energy reductions of ≥ 2×. Thanks to multiple levels
of pipelining and parallel vector-reduction stages, SAPPHIRE
consumes only 3.0 mJ/frame and 38 pJ/OP – estimated to be
lower by 11.4× than a 45 nm GPU – and a slightly higher level
of peak performance (29 vs. 20 GFLOPS). Further, compared to a
parallelized sofware implementation on a mobile CPU, it provides
a processing speed up of up to 235× (1.81 s vs. 7.7 ms/frame),
which is necessary to meet the real-time processing needs of an
always-on context-aware system.

Keywords—Always on, portable devices, computer vision, object
recognition, hardware acceleration, energy efficiency

I. Introduction

Emerging mobile applications require persistent context aware-
ness [1]. One important form of awareness is about what things
exist in the vicinity of a device. In this paper, we present
the end-to-end design of a system that provides this form
of context awareness. Devices can achieve ambient object-
awareness by analyzing data from embedded sensors. The most
promising of these is the camera. This is because, images
and video are richer in light-field information as compared to
other types of sensor data. Thus, keeping cameras always-on
allows portable devices to be constantly object-aware, which
can enable several interesting applications. For instance, if
flying drones can detect obstacles in their path, they would be
able to make use of robust navigation algorithms for efficient
delivery. If dashboard or rooftop cameras in automobiles can
detect pedestrians, traffic etc., they would allow the use of
complex decision algorithms, which are necessary for (semi)
autonomous navigation.

System-level challenges. Although they provide rich data,
always-on cameras on portable devices present several system-
level design challenges [2]. Most of these arise due to the lim-
ited energy and computational resources available on portable
devices. In the systems we consider, the eventual goal is
to achieve context awareness through image understanding.
This process thus requires the use of several computer vision
algorithms. Among these, the foremost are the ones that
are used for visual (object) recognition. In our work, we
focus on this specific task. Recent results have shown that

100.08 mW for OmniVision VGA sensor: OV7735; @MPEG 20 mW; 
* 45 nJ/bit for WiFi at 15Mbps 802.11a/g

Fig. 1. Traditional system models are limited by communication energy. We
propose to exploit light-weight local data filtering to overcome this limitation.

deep neural networks have the potential to provide state-of-
the-art accuracy in visual recognition [3]. These algorithms
employ dynamic decision models that require large memories,
high-bandwidth data links, and compute capacities of up to
several giga operations per second (OPS). With enormous
potential parallelism, such algorithms form ideal workloads
for acceleration in high-performance cloud clusters. Thus, they
enable the system model shown at the top in Fig. 1 for visual
object recognition. In this model, portable devices constantly
stream camera data over a wireless link to the cloud. This
approach, however, is undesirable due to the high energy cost
of communication [4]. To enable real-time ambient object-
awareness, there is thus a need to reduce the transmitted data
from portable devices to the cloud.

Our design approach. Data reduction on portable devices
can be achieved by either lowering the frame rate of always-
on cameras or by performing object recognition on the device
itself. Both of these approaches have their limitations. On
the one hand, naively reducing frame rates leads to a loss of
information, while modest capabilities disallow the use of local
object recognition on the other. In this paper, we propose an
improved system model shown at the bottom in Fig. 1, which
overcomes both of these limitations. We propose to perform
low-complexity image classification on the device, while ex-
ploiting the power of the cloud for full-scale object recognition.
Specifically, for the local computations, we employ a well-
known algorithm for binary image classification, which allows
substantial amounts of local data filtering with an energy cost
that is well within the capacity of portable devices [5].

We motivate our approach through results from a
well-known video-based object-recognition dataset shown in
Fig. 2(a) [6]. The figure shows that frames-of-interest (FoI)
(i.e., those that contain relevant objects) typically only com-
prise a small percentage of all frames. Thus, if we can use an
algorithm X to isolate those frames, we can achieve substantial
energy savings at the system level as long as the algorithm’s
energy [E f ilter(X)] is not very high. Fig. 2(b) illustrates two
such potential algorithms A and B. When compared to B,
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Fig. 2. (a) For most objects, FoI ≤ 5% and they stay in view for at least
4.4% of contiguous frames. (b) When E f ilter is low, FT ≥ FoI can give us
substantial energy savings at the system level.

algorithm A achieves better precision and recall at the cost
of higher processing energy. Suppose the FoI for a particular
object is 5%. Ideally, we would want the frames transmitted
(FT) to also equal 5%. Thanks to its high accuracy, suppose A
is able to achieve this goal. We see from the figure that since
E f ilter(A) is high, the overall energy savings we get are not
maximized. In fact, as E f ilter(A) increases, the energy savings
go down substantially. In this paper, we show how to bias a
low-energy algorithm B so that it has high recall at the cost
of a slightly lower precision. Thus, the resulting algorithm B*
allows us to obtain higher energy savings than A despite having
a higher FT percentage.

Given the short length of this paper, we restrict ourselves to
a few key aspects of the system. The following are the major
contributions we make:

• For the first time, we present a flexible system ar-
chitecture that enables general purpose visual (object)
recognition through always-on cameras on portable
devices. We demonstrate total system energy reduc-
tions of 2-4× (depending on FoI) by exploiting pow-
erful algorithms in the cloud along with locally run-
ning low-complexity classification algorithms on the
device.

• We present an efficient approach to build configurable
biased classifiers that achieve high (≥ 90%) recall and
modest (≥ 50%) precision in image classification. Our
system is thus able to achieve very high (≥ 92%) end-
to-end recognition accuracy [3].

• We present a novel hierarchically-pipelined hardware
architecture for image-classification that is able to
operate at 10-360 fps (depending on frame size/data
complexity), which is effectively 18-235× faster than
a parallelized software implementation on a mobile
CPU. We present synthesis results for the engine in
a 45nm SOI process, which shows an average energy
cost of 3.0 mJ/frame and 38 pJ/OP – lower by 11.4×
than a 45 nm GPU – and comparable level of FLOPS.

• We present a new 2d-barrel convolution engine as a
sub-component used in image-classification. This flex-
ible engine performs 2-level vector reductions through
a systolic array operation and can be configured for
different stride lengths, directions, and kernel matrices.
It also allows us to lower the memory bandwidth by
performing maximum data reuse within the computa-
tion engine.

The rest of the paper is organized as follows. In Sec. II, we
present related work. In Sec. III, we describe the classification
algorithm along with results from a software implementation
on a mobile CPU, which will motivate the need for the hard-
ware specialization of the algorithm. In Sec. IV, we present

the hardware architecture of SAPPHIRE, which is the low-
energy image-classification engine that we propose. In Sec. V,
we describe our experimental and evaluation methodology
followed by results at the system, architecture, and circuit level
in Sec. VI. Finally, we conclude in Sec. VII.

II. RelatedWork

Past research in this area has considered three distinct direc-
tions. The first addresses communication energy by exploiting
compression [7]. The second optimizes the sensing energy by
either designing low-energy image sensors [8], [9] or by tuning
quality parameters such as frequency and sampling rates of
existing sensors [10]. These set of directions attempt to trade
image quality for energy efficiency. The final set of approaches
avoid full-offloading of recognition to the cloud by performing
partial computations on the device [11]. This last set is the
most similar to our design model. In these systems, interme-
diate algorithmic variables (including features) are transmitted
to the cloud, where the rest of the algorithm is run to com-
pletion. In contrast to these approaches, SAPPHIRE leverages
the input data characteristics [low FoI, and high persistence
(presence of the object in the field of view): see Fig. 2(a)],
to completely eliminate continuous data transmission to the
cloud. Data is transmitted only sporadically. We next describe
details of the algorithm that enables SAPPHIRE to achieve
this characteristic.

III. Algorithm for Low-energy Image Classification

When selecting an algorithm for image classification, it is
important to note that our objective is to only use light-
weight operations that can help isolate (but not recognize
details of) potentially interesting frames. It is also useful if the
classifier is programmable to detect any object of interest. We
thus chose an algorithm that not only performed reasonably
well in the ILSVRC competition, but also that which had a
lower computational complexity [5]. The basic algorithm is
illustrated in Fig. 3. It comprises four major computational
blocks that we detail next.

Interest-point detection (IPD). This block helps identify
pixels in a frame that potentially contain informative features
such as edges, corner, blobs, ridges, etc. In our case, we
utilize the Harris-Noble algorithm that detects corners in an
image [12]. The algorithm iterates through every pixel in
the image and considers pixels within a small neighborhood
(e.g., 3×3) to determine an attribute score, called the corner
measure. This measure is obtained based on the computation
of trace and determinant of a covariance matrix that is derived
using the image gradients for all pixels in the window of inter-
est. A pixel is deemed a corner, if its measure is largest among
all abutting pixels and if it above a pre-specified threshold. This
process is called non-maximum suppression. This process is
computationally efficient and invariant to lighting, translation,
and rotation.

Feature extraction. The feature-extraction step extracts
low-level features from pixels around the interest points.
Typical classification algorithms use histogram-based feature-
extraction methods such as SIFT, HoG, GLOH, etc.. Since we
aim to have high-flexibility in the classifier, we chose the Daisy
feature-extraction algorithm, which allows us to adapt one
computation engine to represent most other feature-extraction
methods depending on tunable algorithmic parameters that can
be set at run-time [13]. As shown in Fig. 3, this algorithm
comprises four computation sub-blocks:

1492 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)



Fig. 3. Light-weight algorithm used for image-classification on the portable device.

• G-Block: The image patch is smoothed by convolving
it with a 2d-Gaussian filter.

• T-Block: At each pixel, gradients along both horizon-
tal and vertical directions are computed. The magni-
tude of the gradient vector is then apportioned into k
(equals 4 in T1 and 8 in T2 mode) bins resulting in
an output array of k feature maps, each of size P×P.

• S-Block: The feature maps from the T-block are then
pooled along a grid that is foveated (1r-6/8s, 2r-6/8s),
rectangular (rect), or polar. Each spatially pooled
section produces one scalar value. Thus, if there are
N points on the pooling grid, an N-dimensional vector
is produced for each T-block feature map. When
concatenated, these vectors thus lead to the final S-
block feature output of dimensionality D (= kN).

• N-Block: The S-block features are normalized (non)
iteratively using the l2 norm to produce the final daisy
feature vector of dimensionality D.

Feature representation. This block allows us to aggregate
feature-vectors from all image patches to produce a vector of
constant dimensionality. There are several algorithmic options
for high-level feature representation including the bag-of-
visual words, fisher vectors (FV), etc. [14]. We chose FV
representation since it provides better classification perfor-
mance, thanks to a richer Gaussian mixture model (GMM)-
based representation of the visual vocabulary. The GMM is
allowed to have K centroids each with a parameter set μ
σ, and π corresponding to the mean, standard deviation, and
proportion, respectively. The gradient of the log likelihood
is computed with respect to the parameters of the model
to represent every frame. The FV is the concatenation of
these partial derivatives and describes in which direction the
parameters of the model should be modified to best fit the data.
This block thus produces a global feature vector of size 2KD.

SVM classification. A simple margin-based classifier [an
support vector machine (SVM), in this case] is used to detect
relevant frames based on a model that is learnt offline using
training data. In SVMs, a set of vectors, called support vectors,
determine the decision boundary. During online classification,
the feature vector is used to compute a distance score that
represents the probability with which the input belongs to a
specific class. Modifying the decision boundary is thus key to
biasing the classifier towards high recall, which is necessary
for the reliable operation of SAPPHIRE.

A. Software implementation of the algorithm

We implemented a parallelized version of the algorithm in
C# using task parallel library (TPL) provided by the .NET
4.5 framework. We evaluated the algorithm using four popu-
lar object-recognition datasets: Caltech256 [15], NORB [16],
PASCAL VOC [17], and CamVid [6]. For these datasets, Fig. 4

Fig. 4. FT, which is ≥ FoI at higher coverage values, begins to approach
FoI as we relax the coverage constraints on the algorithm.

shows the trends in FT vs. FoI. The results are shown at two
levels of coverage, which is a term we use synonymously with
recall (the fraction of interesting frames that were detected).
The error bars shown in the figure represent the variance across
different objects of interest. The dotted line along the diagonal
indicates the ideal value of FT (= FoI) at 90% and 70%
coverage for the left and right sub-figures, respectively. We
observe that without no on-device classification, FT is always
100%. Further, with local classification, we are able to filter
out ∼70% of the frames (averaged over all datasets) at FoI =
5%. This is quite substantial as it will directly translate into
system level energy savings (as we show ahead in Sec. VI). We
bias the SVM classifier to achieve different levels of coverage.
This helps us explore the reduction in FT at lower levels of
coverage. From the figure, we see that at 70-90% coverage,
we are able to filter ∼73% of the frames at 5% FoI.

TABLE I. Software implementation of image classification incurs a large
processing delay that is unacceptable for real-time context-aware

applications.

Caltech256 NORB PASCAL CamVid
Image Size 640 × 480 96 × 96 640 × 480 720 × 960
MOPS 161 9 81 211

Time/frame (sec.) 3.5 0.33 1.6 4.5

Table I shows how the algorithm complexity varies depend-
ing on frame size, number of interest points, classifier model
size, etc.. Across all datasets, we find that the mean complexity
is quite low: ∼50 MOPS. However, the software run-time
on both a desktop (Core i7) and mobile CPU (Snapdragon
800) exceeds 1.8 sec./frame on average. This latency arises
because we are unable to fully exploit the inherent parallelism
in the algorithm. Since this latency is unacceptable for real-
time context-aware applications, we propose to accelerate the
image-classification algorithm through hardware specializa-
tion. We describe this approach next.

IV. SAPPHIRE: Hardware Architecture

In this section, we propose a hardware-specialized engine
for accelerating image classification on portable devices. We
exploit computation patterns of the algorithm to achieve sig-
nificant processing efficiency. A key feature of our microar-
chitecture is that it can be configured to obtain different power
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Fig. 5. Pipelining in SAPPHIRE. Fig. 6. Microarchitecture of (a) Daisy (b) FV and (c) SVM compute blocks.

and performance points for a given application. Thus, SAP-
PHIRE can be easily scaled to cater to both the performance
constraints of the application and the energy constraints of the
device. We next outline a few key architectural innovations in
SAPPHIRE.

A. Exploiting Data Parallelism

The image classification algorithm provides abundant oppor-
tunity for parallel processing. Since, SAPPHIRE operates
on a stream of frames, it is throughput limited. Thus, we
exploit the data-level parallelism through pipelining. However,
an interesting feature of the algorithm is that the pipelined
parallelism is not available at one given level, but rather buried
hierarchically across multiple levels of the design. To exploit
this parallelism, we develop a novel three-tiered, hierarchically
pipelined architecture shown in Figure 5. A brief description
of each level in the hierarchy is given below.

Inter-picture pipeline. The topmost tier is the inter-picture
pipeline, which exploits pipelined parallelism across succes-
sive input frames. As illustrated in Fig. 5, it comprises two
pipeline stages, namely feature computation and classification.
Feature computation includes the IPD, Daisy and FV blocks,
while classification block contains just the SVM. Thus, when
global features of frame i are being computed, frame i − 1 is
concurrently processed by the classifier.

Inter-patch pipeline. This second tier of pipeline exploits
parallelism within the feature computation stage of the inter-
picture pipeline. In this case, image patches around different
int erest points are processed concurrently in a pipeline, which
comprises the following four stages: IPD, Daisy-GTS, Daisy-
N, and FV. Interest points found by the IPD are pushed onto
a first-in first-out (FIFO) memory and are utilized by Daisy-
GTS to compute the S-block features. Daisy-N then normalizes
this output to obtain local Daisy feature-vectors at that interest
point. These vectors are consumed by the FV block, which
iteratively updates the global feature memory. This process
is repeated until the FIFO memory is emptied. Note that the
stages of the inter-patch pipeline cannot be merged with the
previous tier since global feature representation requires all
feature vectors (interest points) of the frame to be evaluated.
Due to this dependency, they must be independently operated
as a second tier of pipeline.

Inter-pixel pipeline. This is the innermost tier of the
hierarchy and is present within the DAISY-GTS block of the
inter-patch pipeline. It leverages the parallelism across pixels
in a patch by operating them in a pipeline. It contains 3 stages,

namely the G-, T-, and S- Block. These together compute the
S-Block feature output for each image patch in the frame.

To maximize throughput, it is imperative that we balance
execution cycles across all tiers of the pipeline. This, however,
requires careful analysis since the execution time of each
block significantly differs based on the input data and other
algorithmic parameters. For instance, the delay of the inter-
patch pipeline is proportional to the number of interest points,
which varies across frames. Thus, in our implementation, we
systematically optimize resource allocation for each block
based on their criticality to the overall throughput.

B. Microarchitecture of Processing Blocks

In addition to pipelining, the algorithm also allows fine-
grained parallel implementations within the various compu-
tation blocks of the pipeline. Many blocks involve a series of

vector reduction operations, where in any vector �A is reduced
using a set of of vectors B1, . . . Bm to produce an array of
scalar outputs s1, . . . sm. Each vector reduction involves an
operation between individual elements of the vector, followed
by accumulation [si = Σk f (Ai, Bjk)]. An example of this pattern
is the dot-product computation in 2-convolution (used in the
G-block), where a series of multiply-accumulate operations are
performed between an image patch and a convolution kernel
[see Fig. 6(a)]. In our design, we employ arrays of specialized
processing elements that are suitably interconnected to exploit
this computation pattern. We next describe some microarchi-
tectural details of the different blocks in SAPPHIRE.

1) Daisy Feature Computation Block: Daisy feature ex-
traction comprises three components, namely G-, T-, and S-
blocks, whose microarchitecture is shown in Fig. 6(a). For
image smoothing in the G-block, we use a 2d-systolic array
of vector-reduction processing elements that are connected to a
1d-array of accumulators located along the border. The vector
reduction process described above allows us to perform 2d
convolution along any direction, with varying stride lengths,
and kernel sizes. The T-block is a single processing element
that generates the T-block features sequentially. The patters for
spatial pooling in the S-block are stored in an on-chip memory
along the borders of the 2D-arrray. The spatially pooled S-
Block features are then produced at the output. The number
of rows and columns in the G-Block array and the number
of lanes in the S-Block array can be adjusted to achieve the
desired energy and throughput scalability.

2) Fisher-vector Representation Block: The microarchitec-
ture of the FV representation block is shown in Fig. 6(b).
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It comprises three specialized processing elements,namely Q-
compute, FV-compute and Q-norm compute. The Q and FV
computation elements are arranged in an array allowing us to
exploit parallelism across the GMM clusters. The μ, σ, and π
vectors of the GMM are stored in (on-chip) streaming memory
elements above the processing core. Feature vectors are fed in
from the left and are processed by the Q- and FV-compute
elements. After one round of processing the global feature
memory is updated. This process is repeated across all GMM
clusters. An important feature of this design is that the GMM
model is shared across successive local feature inputs in the
Q and FV-compute elements, thereby significantly reducing
memory bandwidth. The power and performance of the FV
representation block can be adjusted by varying the number of
lanes in the processing element array.

3) SVM Classification Block: Fig. 6(c) shows the mi-
croarchitecture of the SVM block. It comprises two types
of processing elements, namely the dot-product unit (DPU)
and the kernel-function unit (KFU). The support vectors are
stored in a streaming memory bank along the borders of the
DPU array. In the classification mode, DPUs perform vector
reduction to the global feature vector and the support vectors to
compute the dot products. Next, the dot products are scanned
out to the KFU, where the kernel function and the distance
score is computed (in the current design, we support linear and
polynomial kernels). Finally, the distance score is used by the
global-decision unit (GDU) to compute the classifier output.
The execution time of the SVM is directly proportional to the
number of DPU units (SVM lanes).

Thus, SAPPHIRE performs efficient image classification
using various specialized processing elements, parallel stages,
and multi-tiered pipelines. The ability to scale performance and
energy by adjusting the various microarchitectural parameters
is also a key attribute of the hardware.

V. ExperimentalMethodology

In this section, we describe our methodology and the bench-
marks we use to evaluate the performance and energy con-
sumption of SAPPHIRE.

Architecture-level evaluation. We implemented SAP-
PHIRE at the RTL level using Verilog HDL and synthesized
it to a 45 nm SOI technology node using Synopsys Design
Compiler. We used Synopsys Power Compiler and Primetime
to estimate the power consumption and delay of our design
at the gate level, respectively. The microarchitectural- and
circuit-level parameters that we use in our implementation are
shown in Table II. Since gate-level simulation of the entire
algorithm took a prohibitively long runtime, we developed
a cycle-accurate simulation model to help us estimate the
hardware performance. We computed the energy consumption
of SAPPHIRE as a product of the cycle count, operating
frequency, and the total power.

TABLE II. Microarchitectural- and circuit-level parameters used in
SAPPHIRE.

μArch. params Value Circuit Params Value
G-Blk Rows/Cols 3/8 Feature size 45 nm SOI
S-Blk Lanes 1 Area 0.5 mm2

FV Lanes 2 Power (lkg+act) 51.8 mW
SVM Lanes 4 Gate Count 150k
Peak GOPS 29

Frequency 250 MHz
(Daisy,FV,SVM) (18.5,6,2.5)

System-level energy modeling. To help us calibrate against
a baseline system, we consider the energy consumption of the

system model shown at the top in Fig. 1. We estimate the
baseline system-level energy as follows:

Ebaseline = Esense + Ecompress + Etransmit

where Esense, Ecompress, and Etransmit are the energies for
sensing, compression, and data transmission, respectively. We
estimate each of these energies by considering for following
choice of components: a low-power OmniVision VGA sensor
(100.08 mW) [9], MPEG encoder (20 mW and 5× compres-
sion) [8], and 802.11a/g WiFi transmitter (45 nJ/bit at 20
Mbps) [18]. We also assumed a frame rate of 10 fps. Further,
we estimate the energy of the proposed system model (shown
at the bottom in Fig. 1) as follows:

Eproposed = Esense + ES APPHIRE + (1 − α)
(
Ecompress + Etransmit

)

where α is the defined as the fraction of the filtered frames
(i.e., α = (100 − FT )/100, where FT is in percentage).

Application benchmarks. We evaluate the performance
and energy consumption of SAPPHIRE using four object-
recognition datasets. The first three (Caltech256, NORB, and
PASCAL VOC) are static image benchmarks, while CamVid
is a labeled video benchmark. Across these datasets, we design
SAPPHIRE to detect frame that contain one of 13 objects and
filter the rest.

GPU performance estimation. We follow a very simple
approach to estimate the GPU performance and power numbers
to a first order of accuracy. To keep the comparison fair, we
consider three mobile GPUs (all in the 45 nm technology
process): Apple A5 that run the PowerVR SGX 543MP2
from Imagination Technologies at 200 MHz, NVIDIA Tegra
3 that comprises a GeForce ULP GPU at 250 MHz, and the
Snapdragon S4 that uses the Adreno 225 GPU at 300 MHz. For
these GPUs, we use GFLOP values of 19.2, 18, and 19.2 and
power values of 520, 650, and 600 mW, respectively. These
numbers are obtained from the corresponding data sheets for
the GPUs. Using the OPS computed from our cycle accurate
simulation model, we estimate the power consumption and
performance of the GPUs.

VI. Results

In this section, we demonstrate the performance and energy
savings at the system level due to SAPPHIRE.

A. System-level Energy Benefits and Analysis

Fig. 7 shows the normalized energy consumption of SAP-
PHIRE compared to the baseline system. Results are shown
at different coverage levels assuming 5% FoI (representative
of many real-work always-on context-aware applications). The
figure shows that SAPPHIRE achieves a 1.43× - 3.04× (2.12×
on average) improvement in system energy, while capturing
over 90% of interesting frames in the datasets. This reduction
comes due to the filtering of a significant fraction of irrelevant
frames on the client device, which saves us valuable com-
munication energy. The benefits improve when the coverage
requirements are relaxed – 3.61× and 5.12× on an average at
70-90% and 50-70% coverages, respectively. The figure also
shows the energy overhead incurred due to SAPPHIRE as a
fraction of the total system energy. Compared to the baseline,
we see that SAPPHIRE only contributes to about 6% of the
overall system energy. This energy disproportionality between
identifying interesting data vs. completely transmitting them is
key to the applicability of SAPPHIRE. The energy contribu-
tions of SAPPHIRE increase to 28% at lower coverage levels
since the overall system energy is also significantly decreased.

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1495



Fig. 7. SAPPHIRE costs 6% overhead but lowers system energy by 2.16×.
An interesting point to note is that the energy benefits

provided by SAPPHIRE are bound by the maximum number
of frames that can be filtered (i.e., FoI). Fig. 8 shows that the
system-level energy savings provided by SAPPHIRE decrease
with increasing FoI: e.g. at ≥ 90% coverage, the savings reduce
from 2.16× to 1.3× as FoI goes from 5% to 70%. However, in
most context-aware applications, FoI is typically low (≤ 10%,
see Fig. 2(a)) and thus always-on systems can gain substantial
benefits from SAPPHIRE.

Fig. 8. SAPPHIRE saves more energy at lower FoI (typical of applications).

B. Runtime and Energy Breakdown

Based on the microarchitectural configuration of Table II,
Fig. 9 shows the normalized energy as well as the percentage
runtime and power consumption of the four compute blocks
in SAPPHIRE. Note that the sum of all runtimes does not
equal 100% since the hardware is pipelined and more than one
block may be concurrently active. Further, these proportions
depend on the complexity of the dataset. For instance, number
of interest points are high in Caltech256, leading to a higher
(∼90%) runtime for Daisy feature extraction. This is in contrast
with NORB, where the SVM classifier is active most of the
time. Thus, we observe that the microarchitectural parameters
of SAPPHIRE need to be tuned so that we can optimize the
energy consumption for different datasets and applications. We
explore this aspect next.

ESAPP 

Fig. 9. Runtime and energy breakdown of compute blocks in SAPPHIRE.

VII. Conclusions

Building persistent context-aware systems requires us to ag-
gregate data from always-on cameras on portable devices such
as mobile phones, wearables, etc. The amount of data that
these cameras generate costs communication overheads, which
are unmanageable by most energy-constrained devices. In this
paper, we proposed the design of a hybrid system that exploits
local, on-device image classification as a means to filter data
before transmission to the cloud, where advanced computer
vision algorithms are employed to perform full-scale object
recognition. Since, running image classification in software is
slow, we developed a hardware-specialized accelerator called
SAPPHIRE, which allowed us to perform classification 235×
faster than a CPU with a very low (3 mJ/frame) energy cost –

Fig. 10. We estimate that SAPPHIRE achieves a slightly higher performance
(29 GFLOPS vs. 20 GFLOPS) and 11.4× better energy efficiency than a GPU.
11.4× lower than a GPU (see Fig. 10). We showed how to ex-
ploit multiple levels of pipeling and parallelism that is inherent
in the algorithm to simultaneously achieve high performance
and better energy efficiency. Using well-vetted image/video
classification datasets, we showed that SAPPHIRE can bring
down the overall system energy costs by 2.16×. We also
observed that SAPPHIRE works well at low FoIs (typical in
most applications) and has energy-optimal microarchitectural
configurations that depend on the data at hand. Thus, thanks to
SAPPHIRE, cameras on portable devices can remain always-
on and enable a host of emerging context-aware applications
that rely on the diverse advances in computer vision.
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