

Millimeter Wave Wireless Networks: Potentials and Challenges

Sundeep Rangan

Faculty Summit 2015

Millimeter Wave Wireless Networks: Potentials and Challenges

Sundeep Rangan, NYU-Poly
Joint work with Ted Rappaport, Elza Erkip

July 8, 2015 Microsoft Faculty Summit

5G Requirements

Limits will be reached. Current systems do not scale to requirements beyond 2020.

• From Nokia whitepaper, "Looking ahead to 5G. Building a virtual zero latency gigabit experience"

MmWave: The New Frontier for Cellular

- Massive increase in bandwidth
 - Up to 200x total over long-time
- Spatial degrees of freedom from large antenna arrays

From Khan, Pi "Millimeter Wave Mobile Broadband: Unleashing 3-300 GHz spectrum," 2011

Commercial 64 antenna element array

Key Challenges for Mobile Cellular

- All transmissions are directional:
 - Friis' Law: $\frac{P_r}{P_t} = G_t G_r \left(\frac{\lambda}{4\pi r}\right)^2 \Rightarrow \text{Path loss} \propto \lambda^{-2}$
 - Can be overcome with beamforming: G_t , $G_r \propto \lambda^{-2}$
 - But requires directional search, tracking to support mobility
- Shadowing
 - Mortar, brick, concrete > 150 dB
 - Human body: Up to 35 dB
 - NLOS propagation relies on reflections and scattering

Millimeter Wave Cellular Vision

Uday Mudoi, Electronic Design, 2012

http://www.miwaves.eu/

- Small cells
- Directional transmissions
- Relaying / mesh topology

NYC 28 and 73 GHz Measurements

- Focus on urban canyon environment
 - Likely initial use case
 - Mostly NLOS
 - "Worst-case" setting
- Measurements mimic microcell type deployment:
 - Rooftops 2-5 stories to street-level
- Distances up to 200m

All images here from Rappaport's measurements:

Azar et al, "28 GHz Propagation Measurements for Outdoor Cellular Communications Using Steerable Beam Antennas in New York City," ICC 2013

Isotropic Path Loss Comparison

- Isotropic NLOS path loss measured in NYC
 - ~ 20 25 dB worse than
 3GPP urban micro model
 for fc=2.5 GHz
- But beamforming will offset this loss.
- Bottom line:mmW has no effectiveincrease in path loss

Comparison to Current LTE

- Initial results show significant gain over LTE
 - Further gains with spatial mux, subband scheduling and wider bandwidths

System antenna	Duplex BW	fc (GHz)	Antenna	Cell throughput (Mbps/cell)		Cell edge rate (Mbps/user, 5%)	
				DL	UL	DL	UL
mmW	1 GHz TDD	28	4x4 UE 8x8 eNB	1514	1468	28.5	19.9
		73	8x8 UE 8x8 eNB	1435	1465	24.8	19.8
Current LTE	20+20 MHz FDD	2.5	(2x2 DL, 2x4 UL)	53.8	47.2	1.80	1.94

10 UEs per cell, ISD=200m, hex cell layout LTE capacity estimates from 36.814

~ 25x gain

~ 10x gain

A Big Question What is the killer app for mmWave?

- What applications can drive huge amounts of data?
 - Video?
 - Machine to machine?
 - Many users bursty vs. few users continuous?
- What will drive very low latency (e.g. $\sim 1 \text{ms}$)?
 - Network delays?
 - Mobile vs. cloud partition?
 - Where will data be located?
- Power, form factor, cost?

