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Limits will be reached.
Current systems do not
scale to requirements
beyond 2020.
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5G Requirements
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MmWave: The New Frontier for Cellular

® Massive increase in bandwidth

* Up to 200x total over long—time

® Spatial degrees of freedom from large antenna arrays
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Key Challenges for Mobile Cellular

e All transmissions are directional:

P 2 \? _
® Friis’ Law: — = GG, (—) = Path loss ¢ 172
Pt 4Tt

* Can be overcome with beamforming: G, G X A4

® But requires directional search, tracking to support mobility

* Shadowing
® Mortar, brick, concrete > 150 dB
® Human body: Up to 35 dB

® NLOS propagation relies on reflections and scattering
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Uday Mudoi, Electronic Design, 2012

e Small cells
® Directional transmissions

° Relaying / mesh topology
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Millimeter Wave Cellular Vision

4G mmw
Macro Cell Rt Small Cell

http://www.miwaves.eu/
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® Focus on urban canyon

environment

° Likely initial use case
© Mostly NLOS

® “Worst-case” setting

® Measurements mimic microcell
type deployment:

* Rooftops 2-5 stories to street-level
® Distances up to 200m

All images here from Rappaport’s measurements:

/W - L Azar et al, “28 GHz Propagation Measurements for Outdoor
/N /f | )A( D Cellular Communications Using Steerable Beam ((.))
. Antennas in New York City,” ICC 2013
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Isotropic Path Loss Comparison
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* But beamforming will
offset this loss.

e Bottom line:

0. — 4 mmW has no effective
TX-RX separation (m)

increase in path loss
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Comparison to Current LTE

® Initial results show significant gain over LTE

* Further gains with spatial mux, subband scheduling and wider bandwidths

System fc Antenna | Cell throughput Cell edge rate
antenna (GHz) (Mbps/cell) (Mbps/user, 5%)
DL UL

DL UL

mmW 1 GHz 28 4x4 UE 1514 1468 28.5 19.9
TDD 8x8 eNB
73 8x8 UE 1435 1465 24.8 19.8
8x8 eNB
Current  20+20 2.5 (2x2 DL, 53.8 47.2 1.80 1.94
LTE MHz 2x4 UL)
FDD
10 UEs per cell, ISD=200m, | |
hex cell layout : :
LTE capacity estimates from 36.814 25x gain 10x gain ((.))
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A Big Question
What is the killer app for mmWave”?

e What applications can drive huge amounts of data?
® Video?
® Machine to machine?

® Many users bursty vs. few users continuous?

® What will drive very low latency (e.g. ~1ms)?
® Network delays?

* Mobile vs. cloud partition?
® Where will data be located?

® Power, form factor, cost? (( ))
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