Probabilistic programming languages

Noah D. Goodman
Stanford University

Microsoft Faculty Summit
July 9,2015

mailto:ndg@mit.edu

Probabilistic Models

Verb NP \P
| T |

Book Det Nominal Nominal

the Noun Noun

dinner ﬂjg]}[
.S —=> NPV
.S —> NP
. NP — N . ‘] = number of mixture components

. NP — NN .) | N number of observations

parameter of distribution of observation associated with component 2

. N — Fido . | - mixture weight, l.e., prior probability of a particular component 2
K -dimensional vector composed of all the individual ¢, x: must sum to 1
? | component of observation 7
2 \ — IS T,—1. n = observation ?
' probability distribution of an observation, parametrized on ¢
C-‘dle_’gul‘i('ill(([))
F(8.,)

. N — runs

® A powerful representation of uncertain knowledge
and reasoning.

® Specification is a heterogeneous mess of math,
english, dependence diagrams, etc.

Programming languages

A

e Uniform, universal specification of process, with
high-level abstractions.

® No intrinsic ability to represent and reason about
uncertainty.

Probabilistic programs

_ g - O ~ ;“ oy

- . > \ - = - _ T o

) . a X e 5 A T
g N -y’ / -

= = 4) =

) g~ S _ . Y
. -~ - U
- g” \
N ' - .
D A‘
Ny ~
N D

,
.
'S
))
\
3
\ P
A
/‘
LY
L,

b | i

YN “

) P

A
} ‘
"B ./'
A al
\\
CHEA /)
\J d
N ’
\ ' &
\\ '
D - A 4
\ A
!
/
V.,
, 4
'
d

Probabilistic programming languages

® Build a formal language for describing probabilistic
models starting from a universal programming language.

® Probabilistic programming language =
® Deterministic language +
® primitive distributions (ERPs) +
® sample and factor operators +

® marginal inference operators.

Probabilistic programming languages

/ I~} ;'/‘d '~ . Y \ Y o,) | /) -
webppl probabilistic programming for the web On Github

webppl is a small but feature-rich probabilistic programming
language embedded in Javascript.

print (
Enumerate(
function() {
var a = sample(bernoulliERP, [0.3])
var b = sample(bernoulliERP, [0.1])
factor(alb ? 0 : -100)
return a & b

})
)

webppl.org

http://webppl.org

Probabilistic programming languages

® See also:

® Church, IBAL, Figaro,Venture, Hansei, Anglican, Fun, etc.
® Infer.net, MLNs, BLOG, JAGS, Stan, Factorie, etc.

Probabilistic programming languages

® Deterministic language: a (purely functional) subset of Javascript
® primitive distributions: ERP objects can sample, score, etc.

® sample operator: draw random sample from an ERP

e factor operator: re-weight an execution (to encode observations, etc)

® marginal inference operators....
print (
Enumerate (

function(){
var a = sample(bernoulliERP, [0.3])

var b = sample(bernoulliERP, [0.1l])
factor(alb ? 0 : -100)
return a & b

')
)

Marginal inference

var foo
var erp

sample(...)
function() {..; return val}
Marginal (foo0)

o actorco
Q kQ

return val

® erp is the marginal distribution on val, weighted by factors.

P(UCLZ) X Z 5return:val H GGTP-SCOTB(CE) H e’

leaves sampled x factor(s)

® [nference: How do we explore the tree of executions!

Marginal inference

rint (
numerate (
function(){
var a = sample(bernoulliERP, [0.3])

var b = sample(bernoulliERP, [0.1])
factor(alb ? 0 : -100)

return a & b

® Enumeration (with caching)
® Sequential Monte Carlo

® Markov chain Monte Carlo
® Hamiltonian Monte Carlo

® Variational inference

See dippl.org for a tutorial on implementation.

http://dippl.org

Reference games

Speaker: Imagine you are talking to someone
and want to refer to the middle object.Would
you say “blue” or “circle™?

Listener: Someone uses the word “blue’ to refer
to one of these objects.Which object are they
talking about!?

Frank and Goodman (2012)

Recursive reasoning

var literallistener = function(property)
{ Enumerate(function(){
var object = refPrior(context)
factor (object[property]?20:-Infinity)
return object

1)}

Recursive reasoning

var literallistener = function(property)
{ Enumerate(function(){
var object = refPrior(context)
factor (object[property]?20:-Infinity)
return object

var speaker = function(object) {
Enumerate(function() {
var property = propPrior()
factor(object ==
sample(literallListener (property))

20:-Infinity)
return property “blue”
1)}

Recursive reasoning

var literallistener = function(property)
{ Enumerate(function(){
var object = refPrior(context)
factor (object[property]?20:-Infinity)
return object

var speaker = function(object) {
Enumerate(function() {
var property = propPrior()
factor(object ==
sample(literallistener (property))

var listener = function(property) {
Enumerate(function(){
var object = refPrior(context)
factor(utterance ==
sample (speaker(world))
?20:-Infinity)
return object

1)}

Experiment

Speaker (N=206)

Listener (N=263)
Prior (N=276)

Look at the following set of objects:

i H >

How many square objects are there?

How many blue objects are there?

Now imagine someone is talking to you and uses a word you don't know to refer to one of the objects.

Your job is to decide which object he is talking about. Imagine that you have $100. You should divide your money between the possible objects -- the
amount of money you bet on each option should correspond to how confident you are that it is correct. Bets must sum to 100!

Which object do you think he is talking about?

A: B: C:

Results

(9p)
e
)
O
e
C
©
o
O
=
-
(©
al

20 40 o0 80 100

e |istener
O speaker

20 40 60 30 100

0

Model predictions

® Model explains 98% of variance in data.

Probabilistic programming languages

® A formal language for describing probabilistic models
starting from a universal programming language.

® With universal inference algorithmes.

® Makes it easy to:

® prototype and explore probabilistic models
® evaluate different inference strategies

® make complexly structured models

