K-Nearest Neighbor Temporal Aggregate Queries

Yu Sun† Jianzhong Qi† Yu Zheng‡ Rui Zhang†

†Department of Computing and Information Systems University of Melbourne

[‡]Microsoft Research, Beijing

March 26th 2015

Outline

- Motivation and Related Work
 - Motivating Examples
 - Previous Work
- Query kNNTA and Index TAR-tree
 - Definition of kNNTA
 - Structure and Usage of TAR-tree
- Entry Grouping Strategies
 - The Proposed Strategy
 - Analysis of Different Strategies
- Experiments and Conclusion

Motivation and Related Work

Query kNNTA and Index TAR-tree

- Find some walking-distance attractions
- Find a nearby club gathering lots of people now
- Find a good restaurant not far away and has few customers now

- Foursquare or Facebook: places nearby
- Flickr or Instagram: photos taken nearby having many Likes
- Urban computing

- Ranking locations on
 - Spatial distance
 - Temporal aggregate on visits or likes
- Range aggregate does not work

No Existing Algorithms or Indexes Can Efficiently Support Such Rankings

- Characteristics of such applications
 - Visits or likes arrive continuously
 - Interested periods range from hours to years
 - Explore results of different preferences

A Weighted Sum of the Spatial Distance and Temporal Aggregate

The ranking function

$$f(p) = \alpha d(p,q) + (1-\alpha)(1-g(p,\mathcal{I}_q))$$

 K-Nearest Neighbor Temporal Aggregate Queries (kNNTA): returns the k locations with the minimum ranking scores Motivation and Related Work

Query kNNTA and Index TAR-tree

	$t_0 \rightarrow$	$t_1 \rightarrow$	$t_2 \rightarrow$
а	1	1	0
e f	1 3	1 5	0 4
1	1	0	1

- Query: q, [t_0 , now], $\alpha = 0.3$, k = 1
- $f(e) = 0.3 \cdot \frac{2.24}{15.6} + (1 0.3) \cdot (1 \frac{2}{12}) = 0.626$
- $f(f) = 0.3 \cdot \frac{3}{15.6} + (1 0.3) \cdot (1 \frac{12}{12}) = 0.058$

A Straightforward Approach May Encounter Very High Cost

- Number of locations in Foursquare is 60 million
- Number of records for each location is 525, 600
- Much more for applications like Instagram or Twitter

c | g

A Brief Reminder of R-tree

Basic Structure of TAR-tree

kNNTA Query Processing using TAR-tree

Maintenance of TAR-tree

- Insert Visits or Likes
- Insert location
- Re-Insert
- Note split

- Insert Visits or Likes
- Insert location
- Re-Insert
- Note split

The Importance of Entry Grouping Strategy

Root, R₆, R₇, R₂

Four node accesses

The Importance of Entry Grouping Strategy

Root, R₆, R₇, R₂

Four node accesses

Root, R₆, R₃

Three node accesses

Properly Integrating the Spatial Distance and Temporal Aggregate

- Straightforward one: Use the spatial information
- Straightforward two: Use the aggregate distribution
 - \bullet (1, 0, 1) with (1, 1, 0)
 - (1,0,1) not with (10,8,9)
- Propose: 3D MBR in R*-tree
 - two spatial dimensions
 - third is the aggregate dimension
- Coordinate of the aggregate dimension

$$\widehat{\lambda}_p = \frac{1}{m} \sum_{i=1}^m v_i$$

• Example: $(1,0,1) \rightarrow 0.67$ and $(10,2,9,8) \rightarrow 7.25$

Power-law Distribution of the Aggregate Data

Roughly 80% of the visits are at 20% of the locations

Estimation of the Query Search Region and Number of Node Accesses

Conic shape search region

Estimation of the Query Search Region and Number of Node Accesses

Conic shape search region

Power-law like node extents

Bad Behavior of the Two Straightforward Strategies

Spatial grouping

Spatial grouping

Aggregate grouping

Experiment Set Up

Table: Data Set

Name	Time	Locations	Check-ins
NYC	05/2008-06/2011	72,626	237,784
LA	02/2009-07/2011	45,591	127,924
GW	02/2009-10/2010	1,280,969	6,442,803
GS	01/2011-07/2011	182,968	1,385,223

- Temporal index: Multi-version B-tree
- Desktop with 3.40GHz CPU and 16GB RAM
- Results are averaged over 1,000 queries
- By default k = 10 and $\alpha = 0.3$.

Performance of the TAR-tree

Motivation and Related Work

Query kNNTA and Index TAR-tree

0.5

 α_0

0.7

0.9

0.3

Motivation and Related Work

Conclusion

- The kNNTA query can provide highly customized location retrieval and has wide applications.
- The TAR-tree index efficiently processes the kNNTA query.

Questions?

