Microsoft Research

Faculty Summit
ty2015

July 8-9, 2015

Microsoft




Executive summary

« Language design+implementation to help wrangle uncertainty
— PL concepts+tools are a huge help
— But also need to learn from statisticians
> Validate these claims with UW's approximate computing work

Acknowledgments: 9 co-authors [papers at end]
— Especially Adrian Sampson, Luis Ceze
— Including Kathryn and Todd



Background (1/2): PL bread-and-butter

Types for information flow Symbolic execution

int<H> x; zZ = X;

int<L> y; if (x!=0)

if (x) z = x*y;

y =17;

Type inference Function inlining/specialization
int f£(int x, int y){

let £ = A y. y+7 v return x*y;

let z = £ 9 N}

let q = z && true £(0,a)
f(3,b)
£(1,c)




Background (2/2): Approximation

Full bit-precision is unnecessary and wastes energy

Allowing probabilistic [in]correctness can work!
— Let ALUs and memory produce garbage with low-nonzero probability
— But most code/programmers want nothing to do with that...



Fner) (and EnerC) a la 2011

\y\ Information flow is exactly the right high-level abstraction

— Type qualifier for Qapprox @approx int x
27 ;

— Explicit endorse as needed
« (Convenient:

— Opt-in with precise default Qapprox int z = f(x);

— Overloaded operations and methods [ERH@RIJ EPPIENAEID)
- Strong guarantee: Approximate data has [ttt LAC I
no effect on precise data except via

endorse (classic non-interference theorem)



Ener) limitations

1. Only "best effort” semantics for approximate computation
— Encapsulated all the probability, and then ignored it!

"TFh,e ~ h',v =

T'Fh,e ~ h',©

2. No approximate control-flow (without endorse)

— Stronger limitation to ensure non-interference, no crashes, no
extra non-termination, ...



Adding probabilities (2015)

Address limitation #1 directly:

— @approx<p> int: static guarantee that at run-time value will be
correct with at least probability p

— Operator uses (e.g., +) also have correctness probability

 Ener)'s Gapprox is @approx<0.0>
* Precise is @approx<1.0>

« Natural subtyping: Rapprox<p> t <: Qapprox<g> t ifp >= q

[See also Mike's Rely and Chisel work (2014)]



Essential additions
Type inferenc

Function P
— Program Hputs, outputs)

Amer can provide

— Automatic
more anng

« Type inference
— Problem o

as possibl¢
— We use M

P as much energy

tive function

Great! Try lower | -
objective target



Essential additions

« Type inference, part 1:
— Programmer states probabilities at key points (inputs, outputs)

— Automatic solver fills in the rest, and/or programmer can provide
more annotations

- Type inference, part 2:

— Problem often under-constrained; goal is to save as much energy
as possible within constraints

— We use Microsoft's Z3 solver with a custom objective function
W4 Method specialization
— Up to k approximation settings for each method

« Opt-in dynamic tracking for loop-carried dependencies



Still not much statistics

« Additions are all “PL bread-and-butter”
« Uses only one trivial statistical fact:

@approx<pl> int x = ..;

Qapprox<p2> int y =
X + 3 Y // @approx<p1*p2*p3>

— Result type is precise if x, y, (and addition) are independent
— Result type is sound regardless of [in]dependence

« Other panelists all make much better use of statistics, like in our
probabilistic assertions work...



Probabilistic assertions (2014)

Much richer setting:
 Inputs/values can have arbitrary distributions, not just “Bernouilli failure”

2 Dependence tracked via symbolic execution, even through if-statements
and some loops

 Evaluate arbitrary probabilistic assertions:
passert(e,p,c)
Key insight:

« Data-structure produced by symbolic execution is an “expression
DAG" and a "Bayesian network”

« So apply compiler and statistical optimizations to it
— Followed by hypothesis testing



The limitation

« EnerJ and follow-on work gave static guarantees regardless of input

« Probabilistic assertions either revalidates for each input (testing) or
needs probabilistic assumptions (distributions) of inputs

« Need more research on;
— Bridging this gap

— Supporting unbounded loops by soundly trimming low-
probability paths



The big context

« "Early days”
— Excited by the panel's work, but many open questions...
— Technical questions: (loops, modularity, scale, ...)
— Tools questions, also with some preliminary work
« Debugging, profiling, monitoring
* Error messages

« Is "adding statistical properties” to modern language design The
True Way Forward or a local optimum to avoid?



To learn more

« Ener): Approximate Data Types for Safe and General Low-Power
Computation. Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen
Gnanapragasam, Luis Ceze, Dan Grossman. PLDI2011

« Expressing and Verifying Probabilistic Assertions. Adrian Sampson, Pavel
Panchekha, Todd Mytkowicz, Kathryn S. McKinley, Dan Grossman, Luis
Ceze. PLDI2014

* Probability Type Inference for Flexible Approximate Programming. Brett
Boston, Adrian Sampson, Dan Grossman, Luis Ceze. OOPSLA 2015



