AR & VR: Early Achievements, Remaining Problems Henry Fuchs UNC Chapel Hill 9 July 2015 Support gratefully acknowledged from CISCO, DARPA, NIH, NSF (IIS-1319567 & IIS-1423059), NVIDIA, and the BeingThere Int'l Research Centre, a collaboration of NTU Singapore, ETH Zurich, UNC Chapel Hill and Singapore's Media Development Authority-IDMPO | AR/VR
subsystems | 1968
Sutherland
System | 1970 Dream | Recent UNC
Work | Grade for
Current State
of the Art | Remaining Problems | |-----------------------|------------------------------|------------|--------------------|--|--------------------| | Display Device | | | | | | | Image
Generation | | | | | | | Head Tracking | | | | | | | Interaction | | | | | | | Content
Creation | | | | | 2 | #### FIRST AR / VR System: # Ivan E. Sutherland, A Head-Mounted Three-Dimensional Display, 1968 Fall Joint Computer Conference with wireless 6DOF tracking | AR/VR
subsystems | 1968
Sutherland
System | 1970 Dream | Recent UNC
Work | Grade for
Current State
of the Art | Remaining Problems | |-----------------------|--|--|--|--|--------------------| | Display Device | AR
see-through | eyeglasses
form factor &
field of view | Pinlights 100°AR
eyeglasses [SG'14]
w/NVIDIA | | | | Image
Generation | realtime
line-drawing | | | | | | Head Tracking | wirelesswired | | | | | | Interaction | 3 DOF
mechanical | | | | | | Content
Creation | manual | | | | 4 | ## "Pinlights" AR Eyeglasses LCD Edge-lighted acrylic sheet w/grid of tiny "lights" Maimone, A., D Lanman, K Rathinavel, K Keller, D Luebke, and H Fuchs. Pinlight Displays: Wide Field of View Augmented Reality Eyeglasses Using Defocused Point Light Sources, SIGGRAPH 2014 and SIGGRAPH 2014 Emerging Technologies Booth UNC & NVIDIA #### **Automatic 3D Scene Reconstruction (2014)** 10 Kinect color + depth cameras; prescan room & furniture with single Kinect Dou, M. and H. Fuchs. "Temporally Enhanced 3D Capture of Room-sized Dynamic Scene with Commodity Depth Cameras". IEEE VR2014. Best short paper | AR/VR
subsystems | 1968
Sutherland
System | 1970 Dream | Recent UNC
Work | Grade for
Current State
of the Art | Remaining Problems | |---------------------|--|--|---|--|---| | Display Device | AR
see-through | eyeglasses
form factor &
field of view | Pinlights 100°AR
eyeglasses [SG'14]
w/NVIDIA | VR: B AR: C- | AR: •eyeglass look & field of view • real/virtual occlusion | | Image
Generation | realtime
line-drawing | photo realism | Pixel-Planes 5
[Siggraph 1991]
2M polygons/sec | A+ | low power | | Head Tracking | wirelesswired | track
anywhere | 9ftx12ft tracked
area @1kHz
[demo SG'91] | C+ | track anywhere: uninstrumented spaces indoors & out | | Interaction | 3 DOF
mechanical | track hands
anywhere | 1995: AR breast
biopsy w/ live
u'sound & needle | C to B- | track bare hands anywhere (even if not looking at them) | | Content
Creation | manual | automatic | Room
reconstruction &
people [VR2014] | C | capture complex, dynamic scenes indoors & out without setup | #### Six Additional Problems & Opportunities - 6. Walking around in mass market immersive VR systems - Trip over cables, furniture; walk into walls? - Will showing the real environment with the virtual destroy the immersive experience? - 5. How walk around a VR space that is much bigger than the physical space - 4. How see other users when everyone is wearing VR headgear - 3. AR/VR experience difficult to convey to audiences: video inadequate Easy to "cheat" (FOV, latency) and hard to convey the immersion experience - 2. Haptics still too hard: sit in a virtual chair, pick up a virtual cup - 1. Biggest Research Opportunity: Cheap VR equipment removes financial barriers to great many applications, collaborations, early experiments community size growing from hundreds to MILLIONS 1968 ## Thank You | | AR/VR
subsystems | 1968
Sutherland
System | 1970
Dream | Recent
UNC Work | Current State of the | Remaining Problems | |--|---------------------|--|--|--|----------------------|---| | | Display
Device | AR see-
through | eyeglasses
form factor &
field of view | Pinlights 100°AR
eyeglasses [SG'14]
w/NVIDIA | VR: B
AR: C- | AR: •eyeglass look & field of view • real/virtual occlusion | | | Image
Generation | realtime
line-
drawing | photo
realism | Pixel-Planes 5
[Siggraph 1991]
2M polygons/sec | A+ | low power | | | Head
Tracking | wirelesswired | track
anywhere | 9ftx12ft tracked
area @1kHz
[demo SG'91] | C+ | track anywhere:
uninstrumented spaces
indoors & out | | | Interaction | 3 DOF
mechanical | track hands
anywhere | 1995: AR breast
biopsy w/ live
u'sound &
needle | C to B- | track bare hands anywhere (even if not looking at them) | | | Content
Creation | manual | automatic | Room
reconstruction &
people [VR2014] | C | capture complex, dynamic scenes indoors & out without setup |