A Language-Based Approach to Network Verification and Synthesis

Nate Foster Cornell University

Microsoft Research Faculty Summit 2015

Challenges

Networks are a critical part of our computing infrastructure...

...they have grown dramatically in size and complexity...

... and are quickly becoming unwieldy for operators to manage!

Network Management

Operators use a variety of techniques to keep networks running such as:

- Generating low-level configurations from high-level policies
- Scraping configurations using command-line interfaces
- Diagnosing errors using **ping** and **traceroute**

Toward Design Automation

1. Design high-level languages that model essential network features

2. Develop semantics that enables reasoning precisely about behavior

3. Build tools to synthesize low-level implementations automatically

A machine model describes behavior in terms of concepts like pipelines of hardware lookup tables

Match	Actions
ethTyp=0x800, ipProto=0x06, tcpDstPort=22, ethSrc=00:00:00:00:01	Drop
ethTyp=0x800, ipProto=0x06, tcpDstPort=22, ethSrc=00:00:00:00:02	Drop
ethTyp=0x800, ipProto=0x06, tcpDstPort=22,	Inport
ethTyp=0x800, ipProto=0x06	Inport
ethType=0x800	Inport
*	Inport

A machine model describes behavior in terms of concepts like pipelines of hardware lookup tables

Match	Actions
ethTyp=0x800, ipProto=0x06, tcpDstPort=22, ethSrc=00:00:00:00:01	Drop
ethTyp=0x800, ipProto=0x06, tcpDstPort=22, ethSrc=00:00:00:00:02	Drop
ethTyp=0x800, ipProto=0x06, tcpDstPort=22,	Inport
ethTyp=0x800, ipProto=0x06	Inport
ethType=0x800	Inport
*	Inport

anguage

A programming model describes behavior in terms of concepts like mathematical functions on packets

What should a network programming language provide?

Two essential features:

- Packet classifiers
- Forwarding paths

```
pol ::= false
          true
         field = val
         pol_1 + pol_2
         pol<sub>1</sub>; pol<sub>2</sub>
         !pol
         pol*
         field := val
```

```
pol ::= false
          true
         field = val
         pol_1 + pol_2
         pol<sub>1</sub>; pol<sub>2</sub>
          !pol
          pol*
         field := val
```

Boolean Algebra

```
pol ::= false
          true
          field = val
         pol_1 + pol_2
          pol<sub>1</sub>; pol<sub>2</sub>
          !pol
          pol*
         field := val
```

Boolean Algebra +

Kleene Algebra

```
pol ::= false
         true
         field = val
         pol_1 + pol_2
         pol<sub>1</sub>; pol<sub>2</sub>
         !pol
         pol*
         field := val
         S
```

```
Boolean
Algebra
 Kleene
Algebra
 Packet
```

Primitives

KAT

[Kozen '96]

```
pol ::= false
                                   Boolean
                                   Algebra
         true
         field = val
         pol_1 + pol_2
                                    Kleene
         pol<sub>1</sub>; pol<sub>2</sub>
                                    Algebra
         !pol
         pol*
         field := val
                                    Packet
                                   Primitives
```

```
pol ::= false
          true
         field = val
         pol_1 + pol_2
         pol<sub>1</sub>; pol<sub>2</sub>
          !pol
          pol*
         field := val
```


if p_1 then p_2 else $p_3 \triangleq (p_1; p_2) + (!p_1; p_3)$


```
pol ::= false
| true
| field = val
| pol₁ + pol₂
| pol₁; pol₂
| !pol
| pol*
| field := val
| S⇒T
```


Sequential composition pol₁; pol₂ runs the input through pol₁ and then runs every output through pol₂

Encodings

Switch forwarding tables and network topologies can be represented in NetKAT using simple encodings

Pattern	Actions		
dstport=22	Drop		
srcip=10.0.0.1	Forward 1		
*	Forward 2		

if dstport=22 then false
else if srcip=10.0.0.1 then port := 1
else port := 2

Networks

The behavior of an entire network can be encoded in NetKAT by interleaving steps of processions by switches and topology

Reachability

Given a network, want to be able to answer questions like:

"Does the network forward from ingress to egress?

Can reduce this question (and many others) to equivalence

in; (policy; topo)*; policy; out ≡ in; out

Reachability

Can reduce this question (and many others) to equivalence

```
in; (policy; topo)*; policy; out ≡ in; out
```

Kleene Algebra Axioms

```
p + (q + r) \equiv (p + q) + r
p + q = q + p
p + false = p
p + p \equiv p
p; (q; r) = (p; q); r
p; (q + r) = p; q + p; r
(p + q); r = p; r + q; r
true; p = p
p = p; true
false; p = false
p; false = false
true + p; p^* = p^*
true + p^*; p = p^*
p + q; r + r \equiv r \Rightarrow p^*; q + r \equiv r
p + q; r + q = q \Rightarrow p; r^* + q = q
```

Boolean Algebra Axioms

```
a + (b;c) = (a + b); (a + c)

a + true = true

a + ! a = true

a; b = b; a

a;!a = false

a; a = a
```

Packet Axioms

```
f := n; f' := n' \equiv f' := n'; f := n \quad \text{if } f \neq f'
f := n; f' = n' \equiv f' = n'; f := n \quad \text{if } f \neq f'
f := n; f = n \equiv f := n
f := n; f := n \equiv f = n
f := n; f := n' \equiv f := n'
f := n; f := n' \equiv f \text{alse} \quad \text{if } n \neq n'
A \Rightarrow B; f = n \equiv f = n; A \Rightarrow B \quad \text{if } f \neq \text{switch}
```

Kleene Algebra Axioms $p + (q + r) \equiv (p + q) + r$ p + q = q + pp + false = p $p + p \equiv p$ p; (q; r) = (p; q); r $p;(q+r) \equiv p;q+p;r$ (p + q); r = p; r + q; rtrue; $p \equiv p$ p = p; true false; p = falsep; false = false true true

```
Boolean Algebra Axioms
a + (b; c) \equiv (a + b); (a + c)
a + true \equiv true
a + ! a \equiv true
a; b \equiv b; a
a; ! a \equiv false
a; a \equiv a
```

```
Packet Axioms

f := n; f' := n' \equiv f' := n'; f := n \quad \text{if } f \neq f'

f := n; f' = n' \equiv f' = n'; f := n \quad \text{if } f \neq f'

f := n; f = n \equiv f := n

f := n; f := n \equiv f = n

f := n; f := n' \equiv f := n'

f := n; f := n' \equiv f := n'

f := n; f := n' \equiv f := n'

A \Rightarrow B; f = n \equiv f = n; A \Rightarrow B \quad \text{if } f \neq \text{switch}
```

Kleene Algebra Axioms

```
p + (q + r) \equiv (p + q) + r

p + q \equiv q + p

p + false \equiv p

p + p \equiv p
```

p; (q; r) = (p; q); r

```
p; (q + r) = p; q + p; r
(p + q); r = p; r + q; r
true; p = p
p = p; true
false; p = false
p; false = false
true
true
p
```

Boolean Algebra Axioms

```
a + (b; c) ≡ (a + b); (a + c)

a + true ≡ true

a + ! a ≡ true

a; b ≡ b; a

a; !a ≡ false

a; a ≡ a
```

Packet Axioms

```
f := n; f' := n' \equiv f' := n'; f := n \quad \text{if } f \neq f'
f := n; f' = n' \equiv f' = n'; f := n \quad \text{if } f \neq f'
f := n; f = n \equiv f := n
f := n; f := n \equiv f = n
f := n; f := n' \equiv f := n'
f := n; f = n' \equiv f \text{alse} \quad \text{if } n \neq n'
A \Rightarrow B; f = n \equiv f = n; A \Rightarrow B \quad \text{if } f \neq \text{switch}
```

Kleene Algebra Axioms $p + (q + r) \equiv (p + q) + r$ p + q = q + pp + false = p $p + p \equiv p$ p; (q; r) = (p; q); rp; (q + r) = p; q + p; r(p + q); r = p; r + q; rtrue; p = pp = p; true false; p = falsep; false = false true true

Boolean Algebra Axioms $a + (b; c) \equiv (a + b); (a + c)$ $a + true \equiv true$ $a + ! a \equiv true$ $a; b \equiv b; a$ $a; ! a \equiv false$ $a; a \equiv a$

```
Packet Axioms

f := n; f' := n' \equiv f' := n'; f := n \quad \text{if } f \neq f'

f := n; f' = n' \equiv f' = n'; f := n \quad \text{if } f \neq f'

f := n; f = n \equiv f := n

f := n; f := n \equiv f = n

f := n; f := n' \equiv f := n'

f := n; f := n' \equiv f \text{alse} \quad \text{if } n \neq n'

A \Rightarrow B; f = n \equiv f = n; A \Rightarrow B \quad \text{if } f \neq \text{switch}
```

 $a;a \equiv a$

Kleene Algebra Axioms $p + (q + r) \equiv (p + q) + r$ p + q = q + pp + false = p $p + p \equiv p$ p; (q; r) = (p; q); r $p;(q+r) \equiv p;q+p;r$ (p + q); r = p; r + q; rtrue; $p \equiv p$ p = p; true false; p = falsep; false = false true true

Boolean Algebra Axioms $a + (b; c) \equiv (a + b); (a + c)$ $a + true \equiv true$ $a + ! a \equiv true$ $a; b \equiv b; a$ $a; ! a \equiv false$

```
Packet Axioms

f := n; f' := n' \equiv f' := n'; f := n \quad \text{if } f \neq f'

f := n; f' = n' \equiv f' = n'; f := n \quad \text{if } f \neq f'

f := n; f = n \equiv f := n

f = n; f := n \equiv f = n

f := n; f := n' \equiv f := n'

f := n; f := n' \equiv f \text{alse} \quad \text{if } n \neq n'

A \Rightarrow B; f = n \equiv f = n; A \Rightarrow B \quad \text{if } f \neq \text{switch}
```

 $a;a \equiv a$

Kleene Algebra Axioms $p + (q + r) \equiv (p + q) + r$ p + q = q + pp + false = p $p + p \equiv p$ p; (q; r) = (p; q); r $p;(q+r) \equiv p;q+p;r$ (p + q); r = p; r + q; rtrue; $p \equiv p$ p = p; true false; p = falsep; false = false true true

Boolean Algebra Axioms $a + (b; c) \equiv (a + b); (a + c)$ $a + true \equiv true$ $a + ! a \equiv true$ $a; b \equiv b; a$ $a; ! a \equiv false$

```
Packet Axioms

f := n; f' := n' \equiv f' := n'; f := n \quad \text{if } f \neq f'

f := n; f' = n' \equiv f' = n'; f := n \quad \text{if } f \neq f'

f := n; f = n \equiv f := n

f := n; f := n' \equiv f := n'

f := n; f := n' \equiv f \text{ alse } \quad \text{if } n \neq n'

A \Rightarrow B; f = n \equiv f = n; A \Rightarrow B \quad \text{if } f \neq \text{ switch}
```

```
Soundness: If p = q, then [p] = [q]
Completeness: If [p] = [q], then \vdash p = q
```

NetKAT Automata

Can exploit NetKAT's regular structure to build equivalent finite automata

Automata provide a practical way to decide program equivalence

Prototype implementation performs well on Topology Zoo benchmarks

$$(x=1; x:=2; A \Rightarrow B + x=2; x:=1; B \Rightarrow A)*$$

Other Applications

Regular paths have many uses:

- Network Virtualization
- Traffic Engineering
- Fault Tolerance
- Application Intent

[POPL '14]

[POPL '15]

[ICFP '15]

[CoNext '14]

[HotSDN '13]

Verified Implementation

Question: How can we know the NetKAT compiler is correct?

Answer: implement it in a proof assistant!

- Formalize source and target languages in Coq
- Prove that transformations preserve semantics
- Extract code to OCaml and execute on real hardware

OpenFlow Specification

42 pages...

...of informal prose

...diagrams and flow charts

...and C struct definitions

Featherweight OpenFlow

Syntax

Devices	Switch	S	$::=\mathbb{S}(sw, pts, RT, inp.outp, inm, out)$
	Controller	C	$:=\mathbb{C}(\sigma,f_{in},f_{out})$
	Link	L	$::=\mathbb{L}(loc_{src}, pks, loc_{dst})$
	OpenFlow Link to Controller	M	$::=\mathbb{M}(sw,SMS,CMS)$
Packets and Locations	Packet	pk	::= abstract
	Switch ID	sw	$\in \mathbb{N}$
	Port ID	pt	$\in \mathbb{N}$
	Location	loc	$\in sw \times pt$
	Located Packet	lp	$\in loc \times pk$
Controller Components	Controller state	σ	::= abstract
	Controller input relation	f_{in}	$\in sw \times CM \times \sigma \leadsto \sigma$
	Controller output relation	f_{out}	$\in \sigma \leadsto sw \times SM \times \sigma$
Switch Components	Rule table	RT	::= abstract
	Rule table Interpretation	$\llbracket RT rbracket$	$\in lp \to \{ lp_1 \cdots lp_n \} \times \{ CM_1 \cdots CM_n \}$
	Rule table modifier	ΔRT	::= abstract
	Rule table modifier interpretation	apply	$\in \Delta RT \to RT \to \Delta RT$
	Ports on switch	pts	$\in \{pt_1 \cdots pt_n\}$
	Consumed packets	inp	$\in \{ lp_1 \cdots lp_n \}$
	Produced packets	outp	$\in \{ lp_1 \cdots lp_n \}$
	Messages from controller	inm	$\in \{ SM_1 \cdots SM_n \}$
	Messages to controller	outm	$\in \{ CM_1 \cdots CM_n \}$
Link Components	Endpoints	loc_{src}, loc_{dst}	$\in loc \text{ where } loc_{src} \neq loc_{dst}$
	Packets from loc_{src} to loc_{dst}	pks	$\in [pk_1\cdots pk_n]$
Controller Link	Message queue from controller	SMS	$\in [SM_1 \cdots SM_n]$
	Message queue to controller	CMS	$\in [CM_1 \cdots CM_n]$
Abstract OpenFlow Protocol	Message from controller	SM	$::=$ FlowMod $\Delta RT \mid $ PktOut $pt \mid $
	Message to controller	CM	$:= \mathbf{PktIn} \ pt \ pk \mid \mathbf{BarrierReply} \ n$

- Models all features related to packet forwarding and *all* essential asynchrony
- Supports arbitrary controllers

Semantics

```
(outp', outm') = [RT](lp)
     \mathbb{S}(sw, pts, RT, \{|lp|\} \uplus inp, outp, inm, outm) \xrightarrow{lp} \mathbb{S}(sw, pts, RT, inp, outp' \uplus outp, inm, outm' \uplus outm)
                  \mathbb{S}(sw, pts, RT, inp, \{ | (sw, pt, pk) | \} \uplus outp, inm, outm) \mid \mathbb{L}((sw, pt), pks, loc')} \text{ (Send-Wire)}
\longrightarrow \mathbb{S}(sw, pts, RT, inp, outp, inm, outm) \mid \mathbb{L}((sw, pt), [pk] + pks, loc')
                            \mathbb{L}(loc, \overline{pks + [pk], (sw, pt)}) \mid \mathbb{S}(sw, pts, RT, inp, outp, inm, outm)
                            \mathbb{L}(loc, pks, (sw, pt)) \mid \mathbb{S}(sw, pts, RT, \{ | (sw, pt, pk) | \} \uplus inp, outp, inm, outm)
                                                                RT' = \text{apply}(\Delta RT, RT)
      \mathbb{S}(sw, pts, RT, inp, outp, \{|\mathbf{FlowMod} \ \Delta RT|\} \ \uplus \ inm, outm) \longrightarrow \mathbb{S}(sw, pts, RT', inp, outp, inm, outm)
                                                                                                                                      (SWITCH-FLOWMOD)
\mathbb{S}(sw, pts, RT, inp, outp, \{|\mathbf{PktOut}| pt| pk\} \uplus inm, outm) \longrightarrow \mathbb{S}(sw, pts, RT, inp, \{|(sw, pt, pk)|\} \uplus outp, inm, outm)
                                                            f_{out}(\sigma) \leadsto (sw, SM, \sigma')
              \overline{\mathbb{C}(\sigma, f_{in}, f_{out}) \mid \mathbb{M}(sw, SMS, CMS)} \longrightarrow \mathbb{C}(\sigma', f_{in}, f_{out}) \mid \mathbb{M}(sw, [SM] + SMS, CMS) (CTRL-SEND)
            \frac{f_{in}(sw, \sigma, CM) \leadsto \sigma'}{\mathbb{C}(\sigma, f_{in}, f_{out}) \mid \mathbb{M}(sw, SMS, CMS + [CM]) \longrightarrow \mathbb{C}(\sigma', f_{in}, f_{out}) \mid \mathbb{M}(sw, SMS, CMS)} \text{ (CTRL-RECV)}
                                                                                                                                    (SWITCH-RECV-CTRL)
                          \mathbb{M}(sw, SMS + [SM], CMS) \mid \mathbb{S}(sw, pts, RT, inp, outp, inm, outm)
                 \longrightarrow \mathbb{M}(sw, SMS, CMS) \mid \mathbb{S}(sw, pts, RT, inp, outp, \{|SM|\} \uplus inm, outm)
                           \mathbb{M}(sw, SMS + [\mathbf{BarrierRequest}\ n], CMS) \mid \mathbb{S}(sw, pts, RT, inp, outp, \emptyset, outm)
                   \longrightarrow \mathbb{M}(sw, SMS, CMS) \mid \mathbb{S}(sw, pts, RT, inp, outp, \emptyset, \{|\mathbf{BarrierReply} \ n|\} \uplus outm)
                                                                                                                               (SWITCH-RECV-BARRIER)
                                                                                                                                     (SWITCH-SEND-CTRL)
                          \mathbb{S}(sw, pts, RT, inp, outp, inm, \{|CM|\} \uplus outm) \mid \mathbb{M}(sw, SMS, CMS)
                 \longrightarrow \mathbb{S}(sw, pts, RT, inp, outp, inm, outm) \mid \mathbb{M}(sw, SMS, \lceil CM \rceil + CMS)
```


$$(H_1, \bigcirc) \longrightarrow (S_1, pt_1, \bigcirc) \longrightarrow (S_2, pt_1, \bigcirc) \longrightarrow (H_2, \bigcirc)$$

$$(H_1, \mathcal{O}) \longrightarrow (S_1, pt_1, \mathcal{O}) \longrightarrow (S_2, pt_1, \mathcal{O}) \longrightarrow (H_2, \mathcal{O})$$

Theorem: NetKAT semantics is weakly bisimilar to Featherweight OpenFlow + run-time system

Network Updates

Question: how can we gracefully transition the network from one program to another?

Consistent Updates

Operationally: every packet (or flow) processed using a consistent version of the network-wide configuration

Semantically: guarantee preserves all safety properties

Implementations: many different possibilities—e.g., one option is to use a two-phase distributed protocol

Update Synthesis

Update Synthesis

Update Synthesis

Conclusion

- Programming languages and formal methods have a key role to play in next-generation networking platforms
- The NetKAT language offers expressive constructs for specifying and verifying network functionality
- Formal methods are ready for prime time!

Ongoing Work

- Probabilistic semantics
- Stateful functions
- Multi-packet properties

Thank you!

- Carolyn Anderson (UMass)
- Pavol Cerny (Colorado)
- Arjun Guha (UMass)
- Jean-Baptiste Jeannin (CMU)
- Dexter Kozen (Cornell)
- Jedidiah McClurg (Colorado)
- Matthew Milano (Cornell)
- Mark Reitblatt (Cornell)
- Jennifer Rexford (Princeton)
- Cole Schlesinger (Princeton)
- Alexandra Silva (Nijmegen/UCL)
- Steffen Smolka (Cornell)
- Laure Thompson (Cornell)
- Dave Walker (Princeton)

http://frenetic-lang.org/