Microsoft Research

Faculty Summit
tyzo15

July 8-9, 2015

= Microsoft

Logical Reasoning for
Approximate and Uncertain Computation

Michael Carbin

Microsoft Research and MIT CSAIL

Thought Experiment.

Loop Perforation

for (uint 1 =0; 1 < n; ++1) {...}

o

9; 1 < n/2; ++i) {...}

for (uint i

What will happen to your program?

Faster and consumes less energy!

May give the wrong resulit.

Faster and consumes less energy!

May give the-wrang result.

a different

Let’s try it and see how it works!

Original Perforated
(2x performance)

Applications
Media Processing
Computer Vision
Machine Learning
Search

Finance

Loop Perforation Results
(ICSE ‘10, FSE ‘11,)

Framework

* Developer specifies maximum acceptable
error using error metric

. Automatlcallz identifies loops perforations
with acceptable error

Performance improvement
* Typically over a factor of two

* Up to a factor of seven

Quality Impact
* < 10% change in output

Approximate Computations

Approximate Computations

® Higher quality,

Quality =+ Expensive

Lower quality,
Inexpensive

0%

Time/Resources

New opportunity to trade quality for increased performance

Approximation Techniques

Code Perforation

Rinard, ICS ‘06; Baek et al., PLDI |0; Misailovic et al., ICSE ’10; Sidiroglou et al., FSE ‘I |;
Misailovic et al., SAS ‘| |; Zhu et al., POPL ‘12; Carbin et al. PEPM ’|3; Samadi et al. ASPLOS ‘14

Function Substitution
Hoffman et al., APLOS I |; Ansel et al., CGO 'l |; Zhu et al., POPL ‘12

Approximate Memoization
Alvarez et al., |[EEE TOC ’05; Chaudhuri et al., FSE ’|2; Samadi et al., ASPLOS ’ 14

Relaxed Synchronization (Lock Elision)
Renganarayana et al., RACES ’12; Rinard, HotPar ‘| 3; Misailovic, et al.,, RACES ’12

Approximate Hardware
Ernst et al, MICRO 2003; Samson et al.,, PLDI’1 I; PCMQOS, Palem et al. 2005; Narayanan et al., DATE ’10; Liu et
al. ASPLOS ’l I;Venkataramani et al., MICRO ’13

Original Application

100% =

Quality =+

0%

Time/Resources

Approximate Computing

100% =+

Quality =+

0%

—? >

Time/Resources

Benefit: create new operating points in trade-off space

How do we develop and reason about
approximate programs!?

The Problem

Produce an inaccurate result
5+5=8

Produce correct results too infrequently
Pr(5 + 5 = 10) too low

Produce an invalid result
5+ 5 =%hello”

Crash or do something nefarious

5 + 5 = exec“/bin/launch_missiles”

Challenges for Developing
Approximate Programs

* How to express important program properties?
* How to approximate and capture resulting program behaviors!?

* How to reason about program to ensure that properties hold?

Solution: design a and supporting
programming languages to address these challenges.

Proving Acceptability Properties of Relaxed Approximate Programs

Michael Carbin, Deokhawn Kim, Sasa Misailovic, and Martin Rinard

PLDI ’12: Programming Language Design and Implementation

Verifying Quantitative Reliability for Programs that Execute on
Unreliable Hardware
Michael Carbin, Sasa Misailovic, and Martin Rinard

OOPSLA '3 (Best Paper Award): Object-Oriented Programming, Systems, Languages & Applications

Reliability- and Accuracy-Aware Optimization of Approximate
Computational Kernels

Sasa Misailovic, Michael Carbin , Sara Achour, Zichao Qi, Martin Rinard
OOPSLA ’14 (Best Paper Award): Object-Oriented Programming, Systems, Languages & Applications

Step #1: Develop a Program

100% =

4
o
o
o
o

Quality =+ e

0%

Time/Resources

Image Scaling

Image Scaling Kernel:
Interpolation

Interpolation

uint interpolation(int x, int y, int src[][], int dest[][])
{

Interpolation

uint interpolation(int x, int y, int src[][], int dest[][])
{

int x_src = map_x(x, src, dest),
y src = map_y(y, src, dest);

Interpolation

uint interpolation(int x, int y, int src[][], int dest[][])

{

int x_src = map_x(x, src, dest),
y src = map_y(y, src, dest);

int xs[MAX_N], ys[MAX N];
uint n = get neighbors(x_src, y _src, src, Xs, ys);

Interpolation

uint interpolation(int x, int y, int src[][], int dest[][])
{

int x_src = map_x(x, src, dest),
y src = map_y(y, src, dest);

int xs[MAX_N], ys[MAX N];
uint n = get neighbors(x_src, y _src, src, Xs, ys);

uint val = 0;

for (uint 1 = 0; i < n; ++1) {

val += src[ys[i]][xs[1]];

Interpolation

uint interpolation(int x, int y, int src[][], int dest[][])
{

int x_src = map_x(x, src, dest),
y src = map_y(y, src, dest);

int xs[MAX_N], ys[MAX N];
uint n = get neighbors(x_src, y _src, src, Xs, ys);

uint val = 0;

for (uint 1 = 0; i < n; ++1) {

val += src[ys[i]][xs[1]];

¥

return 1.0/n * val;

Step #2: Define and Verify/Validate Acceptability

100% A ° ° °

Define safety and

Quality T acceptable levels of quality

0%

Time/Resources

Acceptability Properties

|. Safety — properties required to produce a valid result
2. Reliability — probability program produces correct result

3. Accuracy — worst-case difference in program result

Acceptability Properties

|. Safety — properties required to produce a valid result

Safety

uint interpolation(int x, int y, int src[][], int dest[][])
{

int x_src = map_x(x, src, dest),
y src = map_y(y, src, dest);

int xs[MAX_N], ys[MAX N];
uint n = get neighbors(x_src, y _src, src, Xs, ys);

4)
uint val = 0; Array accesses of

for (uint i = @; 1 < n; ++1i) (XS, ysS, src) must
{ /\ be within bounds)

val += src[ys[i]]1[xs[i]];
}

return 1.0/n * val;

Other Safety Properties

Memory Safety (pointers are valid)
Result Validity (results in range)
Sufficiency (forward progress)

Sanity Checks (well-formed data structures)

Acceptability Properties

|. Safety — properties required to produce a valid result

assert (x != null)

Acceptability Properties

2. Reliability — probability program produces correct result

Quality versus Reliability

0 2 4 6 8 10

Interpolation Reliability (as Negative Log Failure Probabilit
*Peak-Signal-to-Noise Ratio P y (& & Y)

Acceptability Properties

2. Reliability — probability program produces correct result

Pr(res == res’) >= .99

Acceptability Properties

3. Accuracy — worst-case difference in program result

Quality vs Local Accuracy

AT ey T
L Py e
P o, PR
% 6
e R
H i i
e
2! o
1 PV o

60

50
%‘ 40 High Quality T
C:)' 30 |

Maximum Per-Pixel Relative Difference (%)
*Peak-Signal-to-Noise Ratio

Acceptability Properties

3. Accuracy — worst-case difference in program result

assert r |res - res’| <= .02 * res

Step #3:Approximate Programs

100% A ° ° °

Quality T Apply approximations and model as

introduction of nondeterministic
behaviors at other points

0%

Time/Resources

Approximation Techniques

Code Perforation

Rinard, ICS ‘06; Baek et al., PLDI [0; Misailovic et al., ICSE ’10; Sidiroglou et al., FSE ‘| |;
Misailovic et al., SAS ‘I |; Zhu et al., POPL ‘12; Carbin et al. PEPM ’|3; Samadi et al. ASPLOS ‘14

Function Substitution [Key observation]
Hoffman et al., APLOS I |; Ansel etal., CGO’lI; Zhu et al., POPL ‘|2
I
A ° M ° 3 [\
Pproximate [*lemoization original and approximate

Alvarez et al., [EEE TOC ’05; Chaudhuri et al., FSE ’12; Samadi et al., ASPLOS ’ |4 program share much of

Relaxed Synchronization (Lock Elision) g thelsame structure y

Renganarayana et al., RACES ’12; Rinard, HotPar ‘| 3; Misailovic, et al.,, RACES ’12

Approximate Hardware
Ernst et al, MICRO 2003; Samson et al.,, PLDI’1 I; PCMQOS, Palem et al. 2005; Narayanan et al., DATE ’10; Liu et
al. ASPLOS ’l I;Venkataramani et al., MICRO ’13

Step #4:Verify that Approximation
Preserves Acceptability

100% 1 ®
° ® o
Quality Verify that
is a subset of
0%
—?)

Time/Resources

Standard Hoare Logic

“If precondition P is true before execution of s,
then postcondition Q is true after”

F{0<x}y=x+1{0<y}

Standard Hoare Logic doesn’t
fully capture what we want

New Logics for Verifying Acceptability Properties

|. Safety — properties required to produce a valid result

assert (x != null) A x == x’ E x* != null Relational Program Logic]

2. Reliability — probability program produces correct result

Pr(res == res’) >= .99 [Probabilistic Relational Program Logic]

3. Accuracy — worst-case difference in program result

assert r |res - res’| <= .02 * res [Relational Program Logic]

Conclusion

* Many opportunities to approximate programs
* Machine learning,Vision, Media Processing, Simulations
* Both software and hardware techniques

* Performance/Energy Usage improvements up to 7x

* Possible reason about approximate programs’ behaviors
* Step #|:Write standard program
* Step #2: Specify acceptability properties (Safety, Reliability, Accuracy)
* Step #3: Relax program’s existing semantics

* Step #4:Verify using novel program logics

Conclusion

* Many opportunities to approximate programs
* Machine learning,Vision, Media Processing, Simulations
* Both software and hardware techniques

* Performance/Energy Usage improvements up to 7x

* Possible reason about approximate programs’ behaviors
* Step #|:Write standard program
* Step #2: Specify acceptability properties (Safety, Reliability, Accuracy)
* Step #3: Relax program’s existing semantics

* Step #4:Verify using novel program logics

Takeaway: Methodology for
Programming General Uncertain Computations

Google Search I'm Feeling Lucky

