Microsoft Research

Faculty Summit
ty2015

July 8-9, 2015

Microsoft

Cloud-Native Services

Term coined by Hoop Somuah

Services that are built for the cloud

« Reliable

« Scalable

« Elastic

« High throughput, low latency
« Fast to build and iterate

» DevOps friendly

No lift-and-shift

m Microsoft

What is Project “Orleans”?
Oversimplitying: “Distributed C#”

 Orleans runs your .NET objects on a cluster as if in a single process
« Define .NET interfaces and classes, deploy, send requests to them

Practically: “Toolset for building cloud-native services”

« Encapsulates best practices for building cloud-native services
« Framework for stateful near-real-time backends
« 3-5x less and simpler code to write, scalability by default

Academically: “Distributed virtual actor model”
« Adaptation of the Actor Model for challenges of the Cloud
 Actors that exist eternally and never fail = Microsoft

HALD

. -
wavPBINT
: o

RALD MEHOE TR C A | @ | ® tswoa

SERVICE RECORD : .
SHUTOUT ' _

[AST PLAYED YESTERDAY y)
‘ e - RECENT GAMES [«owr] recar »
TTL L ASKAN WAR GAMES . :
g ! HAVEN 160 12 4TH LEGENDARY
2234 1443 13D 03H MOST PLAYED SLAYER WAR GAVES- YESTERDAY = T e »
GuEsCOMETED | wins TOTAL PLAYTIME VARIANT STATS 1 P SLAYI
| 'MOST USED WEAPON [& o
CUSTOM » SHUTOUT 215 14 2ND vesERaR
WAR GAMES [Fone e 124 |22
35 18 03H 23M COMMENDATIONS o
\ : = e m sHuTouT 0 v oew
“’w. swE® ¥ N SLAYER WAR GAVES- YESTERGAY scone aus Fuce
AL St) 4 o
7 - »
SRPBO Y SPARTAN OPS | e T
g " ‘SLAYER WAR GAMES- YESTEROAY scone s FLace »
0/50 0/50 00H 00M d
PATHFINDER - 10 Saroms | s | e
SHUTOUT 125 10 3RD "
iy — & arER e eSO scoe s e
CAMPAIGN esrassor
| SRUKDPPRPTENSRRETK T 6 SAVAGE SILVA
| 0/8 % @& 5 oA
HssonscoveeTED STATS SUMMARY
OVERVIEW
130 06H I7M 12212 52 229 TEAM RESULTS
o rrme Py P, ciences covmisren e e S
0/7 100% 52 TOSSEM
w3 i 1 ¥
B prm—
2 TTL L ASKAN [? 215 14 23
'WAR GAMES: MATCHMAKING ey 27 ScoRe xuLs MEONS
13003H04M 2294 1443 79343 ==
‘ e coesnam | e GRS 3 @ moen = E
o
— 45 8 2
WAR GAMES: CUSTOM 4 {"] “ﬂuLKYLB “2’; score s MenaLs
0DO3HE2M 35 18 753 e
- - 240 18 29
‘ i oY = _j 1) swsesuw -
SEATIANDES | TRULYLEGENDARYX w15 n e CsR2L
2 @R = TR
0DOOHOOM O 0/50 0/50
o e on POT WOLTEY — 130 7 18 CSR23
3 o |5 = s s o
CAMPAIGN 105 7 14 CSR 22
4 @ rocee @ = A
O 0DOOHOOM O 0/8 :
0% TOTAL PLAYTIME “TOTAL GAMES PLAYED CAMPAIGN PROGRESS
T TEAM COMPARISON
VIEwNG TR s S LTS .
50
MOST PLAYED VARIANT STATS 3
'MATCHMAKING: SLAYER _“2'9_ =
3 22
—= s
8D00H26M 21287 43344 — —=f r
ot arme o s Tom s e E}
s asssts - resosroTs
1368 869 148
ieins s vt i
MEDAL DISTRIBUTION

CUSTOM: SLAYER VIEWING TIL L ASKAN'S GAME RESULTS

Developer Experience

Key Concepts

Distributed runtime
Bth for NET

Actors (Grains) are .NET objects
» Messaging through .NET interfaces
» Asynchronous through async/await in C#
* Automatic error propagation

Silo: runtime execution container

« Implicit activation & lifecycle management
« Coordinated placement

* Multiplexed communication

 Failure recovery

'Hello World" in Orleans — Interface

public interface IHello : IGrainWithIntegerKey
{

Task<string> SayHello (string name);

¥

'Hello World" in Orleans — Implementation

public class HelloGrain : Grain, IHello

{

private int _counter;

public async Task<string> SayHello (string name)

{

return string.Format(
“Hello {©}. You are caller #{1}”, name, counter++));

'Hello World" in Orleans — Invocation

GrainClient.Initialize(); // client-only

IHello grainRef = GrainFactory.GetGrain<IHello>(9);

string reply = await grainRef.SayHello (name);

Console.WriteLine("HelloGrain said:" + reply);

m Microsoft

Beyond 'Hello World" — Grain Interface

public interface IUser : IGrain

{

Task<string> GetName();

Task SetName(string name);

Task <string> GetStatus();
Task UpdateStatus(string status);

Task<List<lUser>> GetFriends();

Task AddFriend(IUser friend);
Task<string> GetFriendsStatus();
Task<List<string>> GetFriendsUpdates();

Grain interface is a.NET interface that
extends IGrain

All methods return Task or Task<T>

Arguments and return values must be
serializable, can be grain references

Compiler auto-generates proxy classes

m Microsoft

Beyond 'Hello World" — Invoking Grains

IUser me = GrainFactory.GetGrain<IUser>(myld);
|User friend = GrainFactory.GetGrain<IUser>(friendld); .

try
{ [
await me. AddFriend(friend);
Console.WriteLine("Added friend {0}.", friendld); .
}
catch(Exception exc)
{

Reference grain interfaces project

Call GetGrain() to obtain a reference
to a grain for a given key

Invoke interface methods on the
reference (proxy)

Handle returned TPL Task’s properly
Just like in a desktop app

Console.WriteLine(“Failed to add {0} as friend: {1}", friendld, exc);

throw;

}

m Microsoft

Beyond "Hello World" — Grains Class

public class UserGrain : Grain, [User

{

private List<lUser> _friends;

io"ublic async Task<string> GetFriendsStatus()
{

var tasks = new List<Task<string>>();
foreach (var friend in _friends)
tasks.Add(friend.GetStatus());

await Task.WhenAll(tasks);
var sb = new StringBuilder();
foreach (var t in tasks)

sb.AppendLine(t.Result);

return sb.ToString();

Extend Grain

Implement grain interface(s)
Exclusive access to private fields

No multi-threading

Easy parallelism

Handle returned TPL Task’s properly
Just like in a desktop app

m Microsoft

Lots More Features...

Automatic cluster membership, recovery from failures
Automatic resource management, elasticity

Flexible placement policies

Grain timers and reminders

Support for persistence with a provider model

Support for streaming event processing

m Microsoft

Orleans Benefits

Very easy to program reliable distributed/cloud systems
Scalability by default

Uncompromised performance

Proven in many production services

Runs anywhere

Open source!

m Microsoft

How You Can Benefit

A vibrant open source project to leverage
« Easy enough for undergrads
« Deep enough for PhD students

 Architected for the Cloud, great fit for |oT, social, gaming, even workflow
Build distributed scalable apps/services/systems in ‘user’ mode
Build system components/algorithms in ‘kernel’ mode (runtime)

Contribute to code used in production systems

m Microsoft

Orleans Is Open Source

June 7, 2015 - July 7, 2015 On GitHub under an MIT license
sreme GitHub is the ‘master branch’

Active and growing community that
Mergedll;luﬁgequests Proposed:!::uﬁ Requests ne\/er Sleeps

Easy to contribute

65 Active Pull Requests

Excluding merges, 14 authors have pushed 90 commits to

master and 144 commits to all branches. On master, 465 P r| d e Of owners h | p — p r| ce | ess

files have changed and there have been 19,964 additions

and 11,036 deletions. jo[n amd emjoy Z‘/’)e fu/’)./

m Microsoft

Orleans on GitHub:

Documentation:

Ideas for Research and Course Projects:

https://github.com/dotnet/orleans
http://dotnet.github.io/orleans/
http://dotnet.github.io/orleans/Student-Projects

m Microsoft

© 2015 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the
part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Backup

Distributed Runtime

Scheduler

Actor Activations =
Manager (oo XeoXoXeoXeX=)
(o YoYolotoYoY o) Actor
Activation || © © © © © © © (el Bt .
oq |29 ’ ge33ses
Cata Og .“.“. ><><><><><><>;
.‘..‘.. ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ _'
. ©cococococoo Cluster
Dispatcher jooococococo© :
Membership
Client . . e .-] =
T Messaging/Serialization
,,,,,,, i =0 =g

= Microsoft

Distributed Runtime

Messaging is multiplexed over a small number of TCP
connections

Actor directory is a custom DHT

Single-threaded execution on a small number of threads,
one per core

Performance benefits from cooperative multitasking
Actor activation management

Automatic instantiation and placement (default is random)
Garbage collection of idle activations

Custom cluster membership protocol, no Paxos

m Microsoft

3-Tier Architecture

Frontends

Stateless frontends
Middle Tier

iP

Stateless middle tier

Storage is the bottleneck
o Latency

o Throughput

o Scalability

o ®m

Horizontal calls are problematic

Data shipping

RPN R

Cache Tier for Performance & Scalability

Frontends

Much better performance
Middle Cache

W Storage Lost semantics of storage
Lost concurrency control

Horizontal calls are still

-
@p— =
-
=

problematic
« Still data shipping
[w

PNRRP

Actors as Stateful Middle Tier

Frontends

PNRRP

I[NNI/
’ ®

Middle Tier

« Performance of cache
 Rich semantics

« Concurrency control

» Horizontal calls are natural
* OOP paradigm regained
 Function shipping

e But there are still

problems...

Community That Never Sleeps

dotnet/orlean

the resolutions and just re-runs them always. U S

| don't know if there's harm done about having it on always, at least | haven't

noticed.
Then | justdid g se upstre =ter whenever there were >

changes in upstream master. Pushing to the fork was
.
That little plus sign means push force, but only the branch. So it's safer
than using switchor £ which is better than plain U |
] .
eva. It turns out that the easiest way to fix my problems is F | | I | a | I d

just to copy al s from my feature branch, switch to master, paste them,
and commit

.
Ukraine
Sometimes the Roslyn AST which is constructed differs from what would be

parsed by the rendered source of that AST..

Especially regarding identifiers

- | Hungary,

Hi everybody and good morning

It's possible send events to a stream from BootstrapProvider?
How i can get the Provider? The 'GetStreamProvider' method is in 'Grain' et e r a l l S
class!

Ye, currently we don't expose one provider to other provider. We should fix it,
definitely. 000

just missing functionality.

¥ Lunn

ot e m Microsoft

