










really bad



Developer Experience



Distributed runtime

Built for .NET
• Actors (Grains) are .NET objects

• Messaging through .NET interfaces

• Asynchronous through async/await in C#

• Automatic error propagation 

Silo: runtime execution container
• Implicit activation & lifecycle management

• Coordinated placement

• Multiplexed communication

• Failure recovery



‘Hello World’ in Orleans – Interface

public interface IHello : IGrainWithIntegerKey

{

Task<string> SayHello (string name);

}



public class HelloGrain : Grain, IHello

{

private int _counter;

public async Task<string> SayHello (string name)

{

return string.Format(

“Hello {0}. You are caller #{1}”, name, counter++));

}

}



GetGrain<IHello>

await



List<IUser>

IUser

List<string>

• Grain interface is a.NET interface that 

extends IGrain

• All methods return Task or Task<T>

• Arguments and return values must be 

serializable, can be grain references

• Compiler auto-generates proxy classes



await

• Reference grain interfaces project

• Call GetGrain() to obtain a reference 

to a grain for a given key

• Invoke interface methods on the 

reference (proxy)

• Handle returned TPL Task’s properly

• Just like in a desktop app



Grain

tasks.Add

await WhenAll

• Extend Grain

• Implement grain interface(s)

• Exclusive access to private fields

• No multi-threading

• Easy parallelism

• Handle returned TPL Task’s properly

• Just like in a desktop app











Orleans on GitHub: 
https://github.com/dotnet/orleans

Documentation:
http://dotnet.github.io/orleans/

Ideas for Research and Course Projects:
http://dotnet.github.io/orleans/Student-Projects

https://github.com/dotnet/orleans
http://dotnet.github.io/orleans/
http://dotnet.github.io/orleans/Student-Projects






Client 

Gatew
ay

Messaging/Serialization

Cluster 

Membership

Grain 

Directory

Activation 

Catalog

Dispatcher

Scheduler

Grain ActivationsPersistence 

Manager

Client 

Gateway

Cluster 
Membership

Actor 

DirectoryActivation 

Catalog

Dispatcher

Scheduler

Actor ActivationsPersistence 

Manager

Messaging/Serialization

Client 

Gatew
ay

Messaging/Serialization

Cluster 

Membership

Grain 

Directory

Activation 

Catalog

Dispatcher

Scheduler

Grain ActivationsPersistence 

Manager

Client 

Gatew
ay

Messaging/Serialization

Cluster 

Membership

Grain 

Directory

Activation 

Catalog

Dispatcher

Scheduler

Grain ActivationsPersistence 

Manager





3-Tier Architecture

Frontends

Storage

Middle Tier

• Stateless frontends 

• Stateless middle tier

• Storage is the bottleneck

o Latency

o Throughput

o Scalability

• Horizontal calls are problematic

• Data shipping



Cache Tier for Performance & Scalability

Frontends

Storage

Middle 

Tier

• Much better performance

• Lost semantics of storage 

• Lost concurrency control

• Horizontal calls are still 

problematic

• Still data shipping

Cache



Actors as Stateful Middle Tier

Frontends

Storage

Middle Tier • Performance of cache

• Rich semantics

• Concurrency control

• Horizontal calls are natural

• OOP paradigm regained

• Function shipping

• But there are still 

problems…




