
Philip A. Bernstein
Microsoft Research
Joint work with Sergey Bykov, Alan Geller,
Gabriel Kliot, Michael Roberts, Jorgen Thelin

Project Orleans
Distributed Virtual Actors for
Programmability and Scalability

Project “Orleans” is a programming model and runtime

for building cloud native services

It’s available as open source on github

3

• Distributed C#

• You define .NET interfaces and classes, as if they run in a single process.

• Orleans runs your app on a cluster of servers

• Orleans ensures your app is scalable, reliable, and elastic

• Performance is near-real-time (milliseconds)

• 3-5x less code to write than on a bare virtual machine

What is Project “Orleans”?

4

•Developer Productivity
• Challenges: concurrency, distribution, fault tolerance, resource management…

• Domain of distributed systems experts

• Orleans helps desktop developers [and experts] succeed

• You write much less code.

Motivation

5

• Scalability by default
• Designs and architectures break at scale

• Failure to scale may be fatal for business

• Code must be scale-proof – must scale out without rewriting

• Orleans programs use the actor model

• Actors are objects that don’t share variables

• Orleans adapts the actor model for challenges of cloud computing

Actor Model

6

Actor Model as Stateful Middle Tier
Frontends

Storage

Actor Middle Tier

7

What’s the Alternative?
A Cache Tier

Frontends

Storage
Middle Tier

• Lost semantics of storage

• Lost concurrency control

• Data shipping

• Actor model can solve all

of these problems

Cache

8

Problems with Actor Model Frameworks

• Too low level

• App manages lifecycle of actors, exposed to distributed races

• App has to deal with actor failures, supervision trees

• App manages placement of actors – resource management

• Developer has to be a distributed systems expert

• Orleans avoids these problems with a higher level actor model
9

Orleans Programming Model

• Each class has a key, whose values uniquely identify actors (i.e. instances)
• Game, player, phone, device, scoreboard, location, etc.

• To invoke a method M on an actor A of class C:

• Call C’s local class factory with A’s key as parameter

• Class factory returns an actor reference RA

• The caller invokes M on RA

• The Orleans runtime manages activations of actors

10

Invoking a method on actor A

Class

Class
Factory

Methods

Constructor

Client
3. RA.method()

Lookup A’s location
If (A is active) {invoke RA.method}
else { activate A on some server S;

invoke RA.method at S }

Actor A

Orleans Runtime

11

1. Actor instances always exist, virtually
• Application neither creates nor deletes them. They never fail.

• Code can always call methods on an actor

2. Activations of actors are created on-demand
• If there is no existing activation, a message sent to it triggers instantiation

• Transparent recovery from server failures

• If an actor isn’t used for a while, it is deactivated

• The Orleans runtime manages the actor’s lifecycle

3. Location transparency
• Actors can pass actor references as parameters to a method and can persist them

• These are logical (virtual) references, always valid, not tied to a specific activation

Key Innovation: Virtual actors

12

Asynchronous RPC

• Method invocations are asynchronous

• Method returns a “task” (i.e., a promise), and caller continues executing

• When caller references a task’s result, it blocks until the task completes

• .NET has language support for this (Async/Await)

async Task<int> MyMethodAsync() { ... };

. . .

Task<int> myTask = MyMethodAsync();

// Other work

int x = await myTask; //blocks until MyMethod returns

13

• Orleans runtime schedules invocations of actor methods
on hardware threads

• Activations are single-threaded
• Since actors don’t share state, there’s no need for locks

• Optionally re-entrant

• Multiplexed across hardware threads

• Cooperative multitasking
• Since multithreading is at the user level, all I/O and method calls

must be asynchronous

• Synchronous call would block the hardware thread

Single Threading

14

Actor State Management
• The runtime instantiates an actor by invoking the actor’s constructor

• The constructor typically reads the actor’s state based on its key

• Usually from storage, but possibly from a device (e.g. phone, game console, sensor)

• The actor saves its state to storage whenever it wants
• Typically before returning from a method call that mutates its state

• Or could be after n seconds, or after n calls, etc.

• Declarative persistence
• Attach all state variables to an interface that inherits from IState

• Declare a persistence provider for the class (Azure Table, Azure SQL DB, Redis…)

• Invoke “WriteStateAsync” to save the state to the persistent store

15

Stateless Actors

• By default, there’s at most one activation of an actor

• But if an actor is declared to be stateless, then the runtime creates an
activation local to the caller

• So there will be multiple activations of the actor

• Enables high throughput on actors with immutable state (e.g., a cache)

16

Scalability

• Near linear scaling to hundreds of
thousands of requests per second

• Scalable in number of actors

• Multiplexes resources for efficiency

• Location transparency simplifies
scaling up or down

• Elastic – transparently adjusts to
adding or removing servers

17

Test Lab Numbers

Request: Client  Actor 1  Actor 2

Common characteristics

• Large numbers of independent actors

• Free-form relations between actors

• High throughput/low latency

• Fine-grained partitioning is natural

• Cloud-based scale-out & elasticity

• Broad range of developer experience

Orleans was built for…



18

• First production deployment in 2011

• Halo 4 (December 2012) - all back end services
• Players, games, statistics, regions, scoreboards, ….

• Dozens of services, 10s to 100s of machines each

• 100Ks of requests per second

• Bursty load (evenings, weekends) and peak load at product launch

• Public preview since April 2014. Open source since January 2015.

• Back end services of many other Microsoft game studios

• About ten other Microsoft services run on Orleans
• Examples: intelligent cache, telemetry.

Production usage

19

• Orleans Benefits

• Significantly improved developer productivity

• Makes cloud-scale programming attainable to desktop developers

• Scalability by default. Excellent performance

• Proven in multiple production services

• A main innovation: Virtual actor programming model

• What I skipped: Virtual streams, timers, reminders, exceptions

• Future work: transactions, dynamic optimization, geo-distribution

Open Source Release: https://github.com/dotnet/orleans

Conclusion

20

Backup slides

21

Orleans Streams
Combines dataflow & imperative styles

Event source

Processing agent (actor)
• Imperative code
• LINQ query
• Stream processing

engine

Output

Virtual stream
• ‘Stream provider’ plug-in

maps physical stream to
virtual streamD

at
a

So
u

rc
e

s:
 D

e
vi

ce
s,

 S
e

n
so

rs
, .

..

Stateful Processing Agents

O
u

tp
u

t

Virtual Streams

22

Orleans Streams – Programming model
• Programming model innovation – Virtual Streams

• Stream is always available (i.e. fault tolerant).
• No need to explicitly create or delete it.

• API –a session from observable data source to observer actor
• Observer calls a stream provider with a stream identity and callback method
• Stream provider registers the observer for the observable stream
• For each of its events, the observable stream calls the observer’s callback method
• Similar to .NET’s Rx interface, extended for remote, asynchronous access

23
• In production with a major internal customer

Observer actorObservable
data source Stream provider

3. OnNext

24

