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Project “Orleans” is a programming model and runtime
for building cloud native services

It’s available as open source on github



What is Project “Orleans”?

e Distributed C#

* You define .NET interfaces and classes, as if they run in a single process.
* Orleans runs your app on a cluster of servers

* Orleans ensures your app is scalable, reliable, and elastic

* Performance is near-real-time (milliseconds)

e 3-5x less code to write than on a bare virtual machine



Motivation

* Developer Productivity

e Challenges: concurrency, distribution, fault tolerance, resource management...
 Domain of distributed systems experts

* Orleans helps desktop developers [and experts] succeed

* You write much less code.

* Scalability by default

* Designs and architectures break at scale
* Failure to scale may be fatal for business
e Code must be scale-proof — must scale out without rewriting



Actor Model

* Orleans programs use the actor model
* Actors are objects that don’t share variables

* Orleans adapts the actor model for challenges of cloud computing



Actor Model as Stateful Middle Tier

Frontends
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What's the Alternative?
A Cache Tier

Frontends * Lost semantics of storage
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* Lost concurrency control
* Data shipping

 Actor model can solve all

of these problems




Problems with Actor Model Frameworks

* Too low level

* App manages lifecycle of actors, exposed to distributed races
* App has to deal with actor failures, supervision trees

* App manages placement of actors — resource management

* Developer has to be a distributed systems expert

* Orleans avoids these problems with a higher level actor model



Orleans Programming Model

* Each class has a key, whose values uniquely identify actors (i.e. instances)
* Game, player, phone, device, scoreboard, location, etc.

* To invoke a method M on an actor A of class C:
* Call C’s local class factory with A’s key as parameter
* Class factory returns an actor reference R,
* The caller invokes M on R,

* The Orleans runtime manages activations of actors




Invoking a method on actor A

3. R,.method()
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v Orleans Runtime

Lookup A’s location

If (A is active) {invoke R,.method}

else {activate A on some server S;
invoke R,.method at S }
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Key Innovation: Virtual actors

1. Actor instances always exist, virtually
* Application neither creates nor deletes them. They never fail.
* Code can always call methods on an actor

2. Activations of actors are created on-demand
* |f there is no existing activation, a message sent to it triggers instantiation

* Transparent recovery from server failures
e If an actor isn’t used for a while, it is deactivated
* The Orleans runtime manages the actor’s lifecycle

3. Location transparency
* Actors can pass actor references as parameters to a method and can persist them
e These are logical (virtual) references, always valid, not tied to a specific activation



Asynchronous RPC

 Method invocations are asynchronous
 Method returns a “task” (i.e., a promise), and caller continues executing

 When caller references a task’s result, it blocks until the task completes

* NET has language support for this (Async/Await)
async Task<int> MyMethodAsync () { ... };
Task<int> myTask = MyMethodAsync() ;

// Other work
int x = await myTask; //blocks until MyMethod returns



Single Threading

* Orleans runtime schedules invocations of actor methods
on hardware threads

* Activations are single-threaded
e Since actors don’t share state, there’s no need for locks
e Optionally re-entrant
* Multiplexed across hardware threads

* Cooperative multitasking

 Since multithreading is at the user level, all /O and method calls
must be asynchronous

* Synchronous call would block the hardware thread



Actor State Management

* The runtime instantiates an actor by invoking the actor’s constructor
* The constructor typically reads the actor’s state based on its key
* Usually from storage, but possibly from a device (e.g. phone, game console, sensor)

* The actor saves its state to storage whenever it wants

* Typically before returning from a method call that mutates its state
* Or could be after n seconds, or after n calls, etc.

* Declarative persistence
 Attach all state variables to an interface that inherits from IState
* Declare a persistence provider for the class (Azure Table, Azure SQL DB, Redis...)
* Invoke “WriteStateAsync” to save the state to the persistent store



Stateless Actors

* By default, there’s at most one activation of an actor

e But if an actor is declared to be stateless, then the runtime creates an
activation local to the caller

* So there will be multiple activations of the actor

* Enables high throughput on actors with immutable state (e.g., a cache)



Scalability

Test Lab Numbers

* Near linear scaling to hundreds of 500,000/
thousands of requests per second £
§400,000-
e Scalable in number of actors z
© 300,000
* Multiplexes resources for efficiency £
| | N §_200,000
* Location transparency simplifies -
scaling up or down s
. . 0 [
* Elastic — transparently adjusts to R e I 15D

adding or removing servers
Request: Client 2 Actor 1 = Actor 2



Orleans was built for...

Scenarios Common characteristics

* Social graphs * Large numbers of independent actors
* Mobile backend * Free-form relations between actors

* Internet of things * High throughput/low latency

e Real-time analytics * Fine-grained partitioning is natural

* ‘Intelligent’ cache * Cloud-based scale-out & elasticity

e Interactive entertainment * Broad range of developer experience

= Not good for a service where different requests span different
combinations of records over a large database



Production usage

* First production deployment in 2011
* Halo 4 (December 2012) - all back end services

* Players, games, statistics, regions, scoreboards, ....
* Dozens of services, 10s to 100s of machines each
e 100Ks of requests per second

* Bursty load (evenings, weekends) and peak load at product launch

* Public preview since April 2014. Open source since January 2015.
* Back end services of many other Microsoft game studios
e About ten other Microsoft services run on Orleans

 Examples: intelligent cache, telemetry.



Conclusion

* Orleans Benefits
 Significantly improved developer productivity
* Makes cloud-scale programming attainable to desktop developers
 Scalability by default. Excellent performance

* Proven in multiple production services
* A main innovation: Virtual actor programming model
* What | skipped: Virtual streams, timers, reminders, exceptions

e Future work: transactions, dynamic optimization, geo-distribution

Open Source Release: https://github.com/dotnet/orleans



Backup slides



Data Sources: Devices, Sensors, ...

Orleans Streams
Combines dataflow & imperative styles

Stateful Processing Agents
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Virtual Streams

» Event source

® Processing agent (actor)
* Imperative code
* LINQ query
* Stream processing
engine

¥ Output

= Virtual stream
e ‘Stream provider’ plug-in
maps physical stream to
virtual stream
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Orleans Streams — Programming model

* Programming model innovation — Virtual Streams
e Stream is always available (i.e. fault tolerant).
* No need to explicitly create or delete it.

* APl —a session from observable data source to observer actor
* Observer calls a stream provider with a stream identity and callback method
» Stream provider registers the observer for the observable stream
* For each of its events, the observable stream calls the observer’s callback method
* Similar to .NET’s Rx interface, extended for remote, asynchronous access

____________________
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3. OnNext----—-"""""""" .
Observable et":’ﬁea,m : Observer actor
data source A G o2

Stream provider

* In production with a major internal customer
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