
Automated Differential Program Verification for
Approximate Computing?

Ganesh Gopalakrishnan1, Arvind Haran1, Shuvendu K. Lahiri2, and Zvonimir
Rakamarić1

1 School of Computing, University of Utah, UT, USA
{ganesh,haran,zvonimir}@cs.utah.edu

2 Microsoft Research, Redmond, WA, USA
shuvendu@microsoft.com

Abstract. Approximate computing is an emerging area for trading off
the accuracy of an application for improved performance, lower energy
costs, and tolerance to unreliable hardware. However, care has to be
taken to ensure that the approximations do not cause significant diver-
gence from the reference implementation. Previous research has proposed
various metrics to guarantee several relaxed notions of safety for the de-
sign and verification of such approximate applications. However, current
approximation verification approaches often lack in either precision or
automation. On one end of the spectrum, type-based approaches lack
precision, while on the other, proofs in interactive theorem provers re-
quire significant manual effort.
In this work, we apply automated differential program verification (as
implemented in SymDiff) for reasoning about approximations. We show
that mutual summaries naturally express many relaxed specifications
for approximations, and SMT-based checking and invariant inference can
substantially automate the verification of such specifications. We demon-
strate that the framework significantly improves automation compared
to previous work on using Coq, and improves precision when compared
to path-insensitive analysis. Our results indicate the feasibility of apply-
ing automated verification to the domain of approximate computing in
a cost-effective manner.

1 Introduction

Continuous improvements in per-transistor speed and energy efficiency are fad-
ing, while we face increasingly important concerns of power and energy consump-
tion, along with ambitious performance goals. The emerging area of approximate
computing aims at lowering the computational effort (e.g., energy) of an appli-
cation through controlled (small) deviations from the intended results. These
deviations may be deliberately introduced by developers (e.g., selective use of
lower energy ALUs or memories) or incidental by letting a non-hardened piece of
electronics operate in a harsh environment (e.g., drones) and thus being subject

? Partially supported by NSF award CCF 1255776 and SRC contract 2013-TJ-2426.

to “bit flips.” Specific low-level mechanisms to reduce energy consumption and
handle faults include approximating digital logic elements [9] or arithmetic [17],
and exploiting hardware variability [16]. High-level mechanisms include program
directives [28,21], approximating loop computations [43], generating multiple
candidate implementations [1,19,45], and frameworks for automating approxi-
mate programming [33,14]. There are also approaches to recover from hardware
faults through software-level recovery methods [23], and techniques to verify the
quantitative reliability of programs [8]. In addition, many of these studies also
show that large classes of applications can in fact tolerate small approximations
(e.g., machine learning, web search, multimedia, sensor data processing).

There is a growing need to develop formal and automated techniques that
allow approximate computing trade-offs to be explored by developers. Prior re-
search has ranged from the use of types [40], static reliability analysis [8] or
interactive theorem provers [7] to study the effects of approximations while also
providing formal guarantees. While these techniques have significantly increased
the potential to employ approximate computing in practice, a drawback is that
they either lack the required level of precision or degree of automation. More
importantly, these works do not harness the continuous advances in Satisfiability
Modulo Theories (SMT) [4] based automatic software verification [2,29]. SMT-
based approaches have the potential of providing a good balance of precision and
scalability, without sacrificing automation, at least for a large class of programs
written in imperative languages such as C/C++, Java, or C#.

In this paper, we apply automated differential program verification [26,18]
(implemented in SymDiff [25]) towards the problem of logical3 reasoning about
program approximations. Previous work has shown that structural similarity
of closely-related programs can be exploited to perform automated verification
of relative safety for assertions [26]. Although formalisms based on Relational
Hoare Logic [5] have been around for reasoning about relational properties, such
verifiers are mostly based on interactive theorem provers (e.g., Coq [11]). This
precludes leveraging automatic verification condition generation [3], SMT-based
checking, and invariant inference. In this work, we unify two ideas in SymDiff
to harness the power of SMT solvers towards differential verification. First, we
use the concept of mutual summaries for specifying relational (two-program)
properties related to approximation [18]. Second, we use a novel product pro-
gram construction for differential assertion checking that permits procedural
programs, and allows leveraging off-the-shelf program verifiers and invariant in-
ference engines [26]. We describe how the construction can be used to check mu-
tual summary specifications as well. The framework enables inference of simple
relational invariants using a form of predicate abstraction in a scalable manner.

We have applied SymDiff towards two approximate computing case stud-
ies. First, we illustrate the modeling, specification, and proof of several accept-
ability conditions for approximate transformations studied by Carbin et al. [7].
They developed a domain-specific language for specifying approximations and

3 We distinguish from approaches that provide provide probabilistic guarantees re-
garding approximations [8].

acceptability conditions, and performed the verification of several examples us-
ing interactive theorem prover Coq. These examples cover approximations due
to truncating loops, unreliable memory, and relative memory safety [26]. Over-
all, their proofs for three examples required around 955 lines of Coq proof script
— this makes it difficult to scale the effort to larger programs or hundreds of
such programs. In contrast, our verification in SymDiff requires less than 10
lines of specifications. Second, we apply SymDiff towards formalizing a precise
specification for ensuring that an approximation does not impact control flow of
a program. Approximations that impact control flow often lead to undesirable
behavior, such as non-termination or crashes. Unlike type-based approaches [40],
we illustrate that SymDiff can provide verification of this property with desired
precision and little overhead. We show examples where the need to track dy-
namic segments of arrays are crucial to enable precise reasoning about impact
on control flow. We also analyze several small C programs to show the potential
of path-sensitive analysis for improving the set of statements that can be safely
approximated without impacting control flow.4

In the rest of the paper, we first describe the differential program verifica-
tion in SymDiff; this includes combining the specification mechanism [18] and
product program construction [26], originally developed separately (§ 2). We
then describe our two case studies: applying SymDiff towards checking various
approximation acceptability conditions [7] (§ 3), and towards checking impact
of approximation on control flow (§ 4). We cover related work in the end (§ 5).

2 Differential Program Verification

In this section, we cover recent works on differential program verification [18,26]
to verify (relational) properties over two programs, as implemented in the SymD-
iff tool [25]. We first describe mutual summaries [18] as a specification mecha-
nism for relational properties (§ 2.2). Then, we introduce a method for modularly
checking mutual summary specifications based on a product program transfor-
mation [26] (§ 2.3). Although the transformation was proposed for differential
assertion checking, we show that the construction can be used to check more
general mutual summary specifications. These mechanisms are well-suited for
reasoning about programs with multiple (recursive) procedures. More impor-
tantly, the technique allows for leveraging any off-the-shelf invariant inference
engine to infer intermediate specifications required to prove the desired specifi-
cation (§ 2.4). We start by formalizing the language in the next section.

2.1 Simple Programming Language

Fig. 1 defines the syntax of our simple programming language, which is a subset
of the Boogie language [3]. The language supports integers int, arrays [int]int,

4 Examples and the tool binary are available at http://1drv.ms/1ACV34H; SymDiff
source code is available at http://symdiff.codeplex.com.

http://1drv.ms/1ACV34H
http://symdiff.codeplex.com

Type ::= int | [int]int | bool

Program ::= (var Id : Type;)∗ Procedure+

Procedure ::= procedure Id((Id : Type,)∗) Returns? Spec∗ {Body}
Spec ::= requires Expr ; | ensures Expr ; | modifies (Id ,)∗;

Returns ::= returns ((Id : Type,)∗)

Body ::= (var Id : Type;)∗ Stmt

Stmt ::= Id := Expr | Id [Expr] := Expr | if (Expr) Stmt else Stmt

| Stmt ; Stmt | havoc Id | call (Id ,)∗ := Id((Id ,)∗) | return

| assume Expr | assert Expr

Fig. 1: Simple programming language. Id and Expr have the usual meaning.

and booleans bool. A program consists of a set of global variables and a set
of one or more procedures. A procedure has zero or more input parameters
and output variables. The requires and ensures clauses specify preconditions
and postconditions/summaries, respectively; the modifies clause specifies the
globals that may be modified in a procedure. A procedure body contains local
variable declarations and a sequence of statements Stmt . Loops are assumed to be
already automatically extracted into deterministic tail-recursive procedures [26].

Most statements, including assignments (scalar and array), conditionals, and
sequential composition, are standard. Statement havoc x sets variable x to an
arbitrary value, while the call statement denotes a procedure invocation. Infor-
mally, the assert Expr (resp., assume Expr) fails (resp., blocks) execution
when Expr evaluates to false in a state; otherwise, it acts as a skip. The expres-
sion language of Expr is left unspecified, but includes standard integer-valued
arithmetic expressions (e.g., x+y) and Boolean-valued expressions (e.g., x ≤ y).
In addition, the construct old(Expr) can be used to evaluate an expression at
entry to a procedure.

We informally sketch the semantics for the language here; more formal details
can be found in earlier works [3]. A state σ of a program at a program location
is a type-consistent valuation of variables in scope at the location, or the error
state Error. Let Σ be the set of all states for a program. For any procedure p,
we assume a transition relation Tp ⊆ Σ ×Σ that characterizes the input-output
relation of the procedure p. In other words, two states (σ, σ′) ∈ Tp if there is
an execution of the procedure p starting at σ and ending in σ′. The transition
relations can be defined inductively on the structure of the program, which is
fairly standard for our simple language. For any state σ and an expression e,
〈e〉σ evaluates e in the state σ.

2.2 Specification: Mutual Summaries

Consider a program P and procedure p belonging to P. A summary specification
Sp is a Boolean-valued expression over the input (parameters and globals) and

var g:int; // global
procedure F(x:int)
modifies g;
{

if (x < 100) {
g := g + x;

call F(x+1);
}

}

procedure Main()
modifies g;
{ call F(0); }

var g:int; // global
procedure F(x:int)
modifies g;
{

if (x < 100) {
g := g + 2*x;

call F(x+1);
}

}

procedure Main()
modifies g;
{ call F(0); }

Fig. 2: Two versions of a program with a change in F.

output (returns and globals) variables of p that specifies a constraint on the
transition relation Tp of the procedure. More formally, a well-formed summary
expression Sp induces a relation bSpc = {(σ, σ′) | 〈Sp〉σ,σ′ = true}. A procedure
p satisfies a summary Sp if Tp ⊆ bSpc — all terminating executions of p satisfy
Sp. Consider either of the two F procedures in Fig. 2, and the expression x ≥ 0⇒
(g ≥ old(g)). The expression is a well-formed summary specification for F since
it only refers to the input state (x and old(g)) and output state (g) of F. Both
procedures satisfy this summary because none of the terminating executions of
either F decrease g when starting from a state where the parameter x is non-
negative.

Now consider two procedures p, q. An expression Mp,q is a well-formed mu-
tual summary specification if it is an expression over the input and output
variables of p and q. Such a specification represents the relation bMp,qc =
{(σp, σ′p, σq, σ′q) | (σp, σ

′
p) ∈ Tp, (σq, σ′q) ∈ Tq, 〈Mp,q〉σp,σ′

p,σq,σ′
q

= true}. A pro-
cedure pair (p, q) satisfies a mutual summary Mp,q if Tp × Tq ⊆ bMp,qc.

Consider the two programs in Fig. 2, with a change in the procedure F, and
the following mutual summary for Main:

old(v1.g = v2.g)⇒ v1.g ≤ v2.g.

The summary relates the pre- and post-states of the two versions (prefixed with
v1. and v2. respectively) of the program. It is not difficult to see that the proce-
dure pair (v1.Main, v2.Main) satisfies this mutual summary specification, since
the argument x to F is always non-negative in executions starting from Main. In
the next section, we describe how to specify and modularly verify such mutual
summary specifications for a pair of programs.

2.3 Modular Checking of Mutual Summaries

We describe the modular checking of mutual summaries (using the construction
in previous work [26]) with the aid of the running example in Fig. 2. We first

sketch the product program construction for the running example, and later
describe how to add specifications to the product program.

Product Programs For a program P, let us overload P to also represent the
set of procedures in P. Consider two programs P1, P2, and a mapping relation
β ⊆ P1 × P2 that maps procedures from two versions. A default value of β
is a one-to-one mapping between identically named procedures from the two
programs, but this can be changed by the user. For our running example P1 =
{v1.F, v1.Main} and P2 = {v2.F, v2.Main}, and we consider the default mapping
β = {(v1.Main, v2.Main), (v1.F, v2.F)}.

Given such P1, P2 and β, we construct a product program P1×2 with the
following properties:

– The set of globals in P1×2 is the disjoint union of globals in P1 and P2. The
globals are prefixed with v1. and v2. respectively to avoid name clashes.

– The set of procedures in P1×2 consists of the disjoint union of procedures
from P1 and P2 (signature suitably prefixed) along with a set of product
procedures. For each (p, q) ∈ β, there is a procedure MS p q whose input and
output parameters are concatenations of the parameter lists from p and q.

For the running example, P1×2 consists of globals {v1.g, v2.g} and pro-
cedures {v1.F, v1.Main, v2.F, v2.Main, MS v1.F v2.F, MS v1.Main v2.Main}. Fig. 3
shows the details of the MS v1.F v2.F procedure. We briefly sketch the important
components of this construction:

– Line 6 initializes a list of call witness variables, one per call-site within v1.F
and v2.F respectively.

– Lines 8–14 inline the body of v1.F, whose statements are underlined. Each
procedure call (e.g., line 11) is instrumented so that the inputs and outputs
are recorded in local variables and the witness variable for the call-site is set.

– Lines 16–22 do the same for v2.F.

– Lines 24–31 are the most interesting part. First, we test using the witness
variables if a pair of callees (v1.F, v2.F) has been executed. If so, we call the
joint procedure for the callee-pair MS v1.F v2.f with the stored arguments
and globals. The recursive call to MS v1.F v2.f in line 27 results from the
recursive calls to F in the two versions. The assume statements after the call
constrain the earlier output values of the two callees. Finally, the globals are
restored back to the state before the recursive call to MS v1.F v2.f.

Let σ1 ⊕ σ2 denote a composed state consisting of states from the two pro-
grams with disjoint signatures. The following theorem relates MS p q with the
procedures p and q.

Theorem 1 ([26]). For two procedures p ∈ P1 and p2 ∈ P2, (σ1, σ
′
1) ∈ Tp and

(σ2, σ
′
2) ∈ Tp if and only if (σ1 ⊕ σ2, σ′1 ⊕ σ′2) ∈ TMS p q.

1 procedure MS_v1.F_v2.F(v1.x:int, v2.x:int)
2 modifies v1.g, v2.g;
3 requires v1.x >= 0; // intermediate contract (manual)
4 {

5 // initialize call witness variables

6 v1.b_1, v2.b_1 := false, false;

7 // v1

8 if (v1.x < 100) {
9 v1.g := v1.g + v1.x;

10 v1.i_1, v1.gi_1 := v1.x + 1, v1.g; // store inputs

11 call v1.F(v1.x + 1);
12 v1.b_1 := true; // record call

13 v1.go_1 := v1.g; // store outputs

14 }
15 // v2

16 if (v2.x < 100) {
17 v2.g := v2.g + 2*v2.x;

18 v2.i_1, v2.gi_1 := v2.x + 1, v2.g; // store inputs

19 call v2.F(v2.x + 1);
20 v2.b_1 := true; // record call

21 v2.go_1 := v2.g; // store outputs

22 }
23 // constrain calls

24 if (v1.b_1 && v2.b_1) { // for pair of calls
25 v1.st_g, v2.st_g := v1.g, v2.g; // store globals

26 v1.g, v2.g := v1.gi_1, v2.gi_1;

27 call MS_v1.F_v2.F(v1.i_1, v2.i_1);
28 assume (v1.g == v1.go_1); // constrain outputs

29 assume (v2.g == v2.go_2); // constrain outputs

30 v1.g, v2.g := v1.st_g, v2.st_g; // restore globals

31 }

32 return;
33 }

34
35 procedure MS_v1.Main_v2.Main()
36 modifies v1.g, v2.g;
37 requires v1.g == v2.g; // globals start equal (automatic)
38 ensures v1.g <= v2.g; // mutual postcondition (manual)

39 {

40 ...

41 }

Fig. 3: Composed program for example in Figure 2. Underlined statements cor-
respond to constituent procedures.

Adding Specifications Theorem 1 allows us to write summary specifications
on the product program to capture mutual summary specifications over P1 and
P2. Since the signature (inputs and outputs) of a product procedure MS p q is the
disjoint union of the signatures of p and q, a well-formed summary expression
SMS p q is a well-formed mutual summary expression for the procedure pair (p, q).
Hence, verifying summary specifications on the product program allows us to
verify mutual summary specifications over the two programs.

Theorem 2. Consider a product procedure MS p q ∈ P1×2 and a summary spec-
ification SMS p q. Moreover, let Mp,q be a mutual summary specification such that
bMp,qc = bSMS p qc. If TMS p q ⊆ bSMS p qc, then Tp × Tq ⊆ bMp,qc.

Recall the mutual summary specification for the pair of Main procedures.
This can be expressed as a summary for MS v1.Main v2.Main procedure as a
postcondition (ensures clause):

ensures(old(v1.g = v2.g)⇒ v1.g ≤ v2.g).

Fig. 3 shows the above specification; however, we have broken up the spec-
ification into a requires (a precondition constraining the state at entry) and
ensures clause to simplify the specification. SymDiff automatically inserts the
equalities in the requires for entry procedures, and the user only has to specify
the ensures clause in this case.

The program P1×2 along with the desired specification can be handed off to
any off-the-shelf (single) program verifier such as Boogie to attempt the veri-
fication. The verifier can leverage advances in SMT solvers to perform reliable
and predictable verification. If verification succeeds, then we can establish the
mutual summary for the pair of procedures.

2.4 Invariant Inference

Currently, SymDiff performs an automatic inference of simple relative specifica-
tions by searching for preconditions and postconditions of the form v1.x ./ v2.x,
where ./ ∈ {=,≤,≥, <,>,⇒}. It leverages the implementation of the Hou-
dini [15] (monomial predicate abstraction) inference technique available in Boo-
gie [27]. This allows SymDiff to communicate domain-specific (mutual specifica-
tions) to the invariant inference engine. Using this inference technique, we are
able to infer many intermediate invariants for many realistic examples, as we
discuss later in the paper. As invariant inference in Boogie matures (e.g. to in-
corporate interpolants [29]), the relative specification inference will also mature.

Houdini allows us to automatically infer several intermediate specifications,
including inferring that v1.g ≤ v2.g is both a precondition and postcondition
for MS v1.F v2.F. In addition, we required v1.x ≥ 0 as a non-relational (single
program) precondition for MS v1.F v2.F to capture that both v1.F and v2.F are
always invoked with a non-negative parameter (see Fig. 3). We hope to auto-
matically infer such facts in the future once simple abstract domains such as
intervals [12] can be leveraged.

function RelaxedEq(x:int, y:int) returns (bool) {
(x <= 10 && x == y) || (x > 10 && y >= 10)

}

procedure swish(max_r:int, N:int) returns (num_r:int) {
old max r := max r; havoc max r; assume RelaxedEq(old max r, max r);

num_r := 0;

while (num_r < max_r && num_r < N) num_r := num_r + 1;
return;

}

Fig. 4: Swish++ example. Underlined statements introduce the approximation.

3 Case Study: Acceptability of Approximate Programs

In this section, we illustrate the application of differential verification towards
three examples from a recent work by Carbin et al. [7]. The authors developed
a special-purpose language to specify the transformations and reason about the
relaxed specifications. They used the general purpose Coq theorem prover [11] to
discharge proof obligations; each proof required roughly 300 lines of proof scripts
according to the authors. By leveraging existing program verifiers and SMT
solvers, we show that we can obtain the proofs almost completely automatically.
In all cases, the final verification takes less than a second.

3.1 Dynamic Knobs

Fig. 4 gives the example from an open-source search engine Swish++. The ap-
proximation (referred to as Dynamic Knobs) allows the search engine to trade-off
the number of search results to display to the user under heavy server load. The
approximation is justified as users are typically interested in the top few results,
and care more about the performance of displaying the search results. The pro-
gram swish takes as input (a) a threshold for the maximum number of results
to display max r, and (b) the total number of search results N. It returns the
number num r denoting the actual number of results to display, which has to be
bounded by max r and N.

Approximation The underlined statements denote the approximation that non-
deterministically changes the threshold to a possibly smaller number, without
suppressing the top few (10 in this case) results. The predicate RelaxedEq de-
notes the relationship between the original and the approximate value — the
important part is that approximate value has to be at least 10 when the original
value exceeds 10.

Relaxed Specification The relaxed specification (akin to acceptability property [7,36])
can be expressed as a mutual summary over the original and approximate version
(prefixed with v1. and v2. respectively) of swish as follows:

old(v1.max r = v2.max r ∧ v1.N = v2.N)⇒ v1.RelaxedEq(v1.num r, v2.num r).

function A(i:int, j:int) returns (int);
const e:int; axiom e >= 0;
function RelaxedEq(x:int, y:int) returns (bool) {
x <= y + e && y <= x + e

}

procedure lu(j:int, N:int, max0:int) returns (max:int, p:int) {
i := j+1; max := max0;

while (i < N) {
a := A(i, j);

old a := a; havoc a; assume RelaxedEq(old a,a);

if (a > max) { max := a; p := i; }
i := i + 1;

}

return;
}

Fig. 5: LU decomposition. Underlined statements introduce the approximation.

As described earlier in §2.3, the user only has to specify the postcondition

ensures v1.RelaxedEq(v1.num r, v2.num r)

for MS v1.swish v2.swish, since the antecedent (with equalities) is already present
for the top-level procedures.

Verification We required four additional intermediate specifications (beyond the
relaxed specification) for the proof. Recall that loops are automatically extracted
as tail-recursive procedures in SymDiff. The additional intermediate specifica-
tions are (a) the relational expression v1.RelaxedEq(v1.num r, v2.num r) as both
requires and ensures for the product of the two loop-extracted procedures, and
(b) (non-relational) postcondition that each loop-extracted procedure does not
decrease the num r variables across execution of the loop. All the remaining in-
variants are automatically inferred. In comparison, the Coq proof comprised of
330 lines of proof script.

3.2 Approximate Memory and Data Type

Fig. 5 gives a portion of the LU Decomposition algorithm implemented in Sci-
Mark2 benchmark suite [41]. The algorithm computes the index of the pivot row
p for a column j, where the pivot row contains the maximum value among all
rows in the column. It returns the index p of the pivot in addition to the value
of the maximum element in column j.

Approximation The underlined statements model the introduction of an error
value e if the matrix is stored in approximate memory [32]. As before, the pred-
icate RelaxedEq denotes the relationship between the original and approximate
value read from the memory; in this case, they are bounded by a non-negative
constant e.

Relaxed Specification Similar to Swish++, the relaxed specification for the pair
of lu procedures is specified by the postcondition on MS v1.lu v2.lu:

ensures RelaxedEq(v1.max, v2.max).

Verification Similar to the previous example, the only additional intermediate
specifications are the expression v1.RelaxedEq(v1.max, v2.max) as both requires
and ensures for the product of the two loop-extracted procedures. Remaining
invariants are automatically inferred. In comparison, the Coq proof comprised
of 315 lines of proof script.

3.3 Statistical Automatic Parallelization

1 var FF, RS:[int]int;
2 var K:int;
3 function exp(int) returns (int);
4
5 procedure water(len_FF:int,
6 len_RS:int, N:int, gCUT2:int) {
7 K := 1;

8 havoc RS; // approximation
9

10 while (K < N) {
11 assert (K < len_FF);
12 assert (K < len_RS);
13 if (RS[K] < gCUT2) {
14 // assert (K < len_FF);

15 FF[K] := exp(RS[K]);

16 }

17 K := K + 1;

18 }

19 }
Fig. 6: Water example.

Fig. 6 gives an example from a par-
allelization of the Water computa-
tion [6]. In the loop, the result of RS[K]
is compared with a cutoff gCUT2, and
then another array FF is updated at
index K. The bounds of the two ar-
rays are provided in the len RS and
len FF variables.

Approximation To maximize perfor-
mance, the parallelization eliminates
locks, which can result in race condi-
tions for the array RS. This is modeled
by havoc-ing the entire array RS.

Relaxed Specification The assertions
model memory safety, and ensure that
the program accesses the two arrays
within bounds. The relaxed specifica-

tion has to ensure relative memory safety — that the assertions in the approxi-
mate version do not fail more often than the original version.

We exploit the formalization of differential assertion checking [26], which
automatically replaces an assertion assert φ with an update to a global variable
OK := OK ∧ φ, and inserts a mutual postcondition v1.OK⇒ v2.OK when starting
from equal states. Hence, we did not have to make any changes to define the
relative specification.

Although it is desirable to check the assertion in line 14 relatively, the ap-
proximate version is not relatively correct with this assertion (also mentioned by
Carbin et al. [7]). We instead prove the weaker assertion in line 11 that essentially
expresses that len FF is not correlated with the value in array RS.

Verification We verified this example completely automatically with SymDiff —
all intermediate invariants are automatically inferred. In comparison, the Coq
proof comprised of 310 lines of proof script.

4 Case Study: Control Flow Equivalence

var arr:[int]int;
var n:int; var x:int; var y:int;
procedure ReplaceChar() {
call Helper(0);

}

procedure Helper(i:int) {
var tmp:int;
if (i < n && arr[i] != -1) {
tmp := arr[i];

havoc tmp;

arr[i] := tmp == x ? y : tmp;

call Helper(i+1);
}

}

Fig. 7: Replacing a character in a string.

Approximating statements that
impact control flow often leads
to serious problems in guarantee-
ing program termination, unac-
ceptably high corruptions in out-
put data, and program crashes.
Preservation of control flow has
been identified as a natural and
useful relaxed specification for ap-
proximations [40]. One can obtain
a conservative estimate of the set
of statements that do not affect
control flow by performing type-
based analysis [40], dataflow anal-
ysis [35], or slicing [20]. Although

mostly automatic (type-based analyses typically require user-provided type in-
formation), these approaches are conservative and cannot exploit detailed pro-
gram semantics.

Consider the program in Fig. 7 that replaces a given character x with y in
a character array arr. The procedure Helper iterates over indices of the array
until the bound n or the termination character (-1 in this case) is reached. Let
us consider the approximation of the variable tmp indicated by the underlined
statement. Since tmp flows into arr which controls the conditional, most men-
tioned conservative analysis would mark the approximation as unsafe. However,
observe that the indices that store the value in tmp never participate in the con-
ditional. Therefore, any analysis that cannot track dynamic segments of an array
will result in a false alarm. Similarly, lack of path-sensitivity can also result in
such imprecisions (see § A.1).

4.1 Modeling Control Flow

In this section, we describe a precise and automated (although not push-button)
approach to ensure that an approximation does not impact control flow by
leveraging differential program verification. We achieve this by performing an
automatic program instrumentation (described below) and then leveraging the
differential verifier as described earlier in § 2.

Let us define a basic block to be the maximal sequence of statements that
do not contain any conditional statements. We also assume that each such
basic block has a unique identifier associated with it. To track the sequence
of basic blocks visited along any execution, we augment the state of a pro-
gram by introducing an integer-valued global variable cflow. Then, we instru-
ment every basic block of the program with a statement of the form cflow :=
trackCF(cflow, blockID), where trackCF is an uninterpreted function defined

as trackCF(int, int) returns int and blockID is the unique integer identifier
of the current basic block.

Let v1.p and v2.p be the two versions of a procedure p in the original and the
approximate program. Consider the following mutual summary for the product
procedure MS v1.p v2.p (assuming the inputs including cflow start out equal):

ensures v1.cflow == v2.cflow.

If the product program satisfies this mutual specification, then the injected ap-
proximations do not change the control flow of the program. More formally, if
MS v1.p v2.p satisfies this specification, then the following holds:

For any pair of executions (σ1, σ2) ∈ Tv1.p and (σ1, σ3) ∈ Tv2.p starting
at the same input state σ1, the sequences of basic blocks in the two
executions are identical.

Hence, we translate the problem of determining if a set of approximations im-
pacts control flow to the problem of verifying a mutual summary on the product
program. Note that the formalism currently does not detect non-termination
introduced in the approximation; we plan to leverage the relative termination
specifications in future work [18].

We have verified that the approximation in Fig. 7 does not impact control
flow. In addition to the mutual specification on the procedures, we needed the
following mutual precondition on MS v1.Helper v2.Helper:

requires (∀j : int :: j ≥ v1.i⇒ v1.arr[j] == v2.arr[j]).

The specification captures the fact that two versions of Helper are invoked with
identical array fragments, namely arr[i, . . . , n]. For any value of i on entry to
Helper in either versions, executions only inspect this fragment of the array to
determine branch conditions. Thus, with little user effort, SymDiff is successfully
able to (soundly) verify that the statement can be safely approximated.

4.2 C Benchmarks

We have also performed preliminary experiments to determine the feasibility of
using differential analysis to infer the set of approximations that do not impact
control flow. The main objective is to compare our differential analysis with
a more traditional taint analysis [13]. The taint analysis for Boogie programs
(also implemented in SymDiff) checks if a statement lies in the slice of any of
the conditionals using interprocedural dataflow analysis. To develop an auto-
mated differential analysis (Diff-Inline), we inline procedure calls (up to a small
bound, say 10) before checking the mutual summary specifications — this leads
to an unsound analysis in the presence of loops and recursion. In essence, the
taint analysis and Diff-Inline provide respectively a lower and upper bound on
the number of statements that can be safely approximated without impacting
control flow. We have chosen a set of 9 realistic C programs including sorting,

Table 1: Experimental results for control flow equivalence. LOC is the number
of lines of code; #P is the number of procedures; #Locs. is the number of pro-
gram locations that could potentially be approximated; #Inline is the chosen
inlining bound; #Approx. is the reported number of locations that can be ap-
proximated (i.e., those that do not affect control flow when approximated); Time
is cumulative runtime in minutes.

Benchmark LOC #P #Locs.
Diff-Inline Taint

#Inline #Approx. Time #Approx. Time

Insertion Sort 24 2 13 10 1 1.3 1 1.1
Bubble Sort 25 2 13 10 1 1.6 1 0.8
Selection Sort 30 2 15 10 2 1.8 1 1.9
Brightness Correction 21 1 8 10 4 1.4 4 0.4
Arithmetic Mean Filter 27 1 13 10 5 1.3 5 2.5
Centroid Computation 55 3 30 10 14 8.3 14 3.3
Matrix Multiplication 38 3 17 16 7 5.4 7 2.9
Linked List Operations 76 5 40 6 7 55.4 2 0.8
Array Map Operations 78 7 35 10 12 115.4 3 2.5

image processing [30], data structure implementations, and operations on ma-
trices. Table 1 summarizes our benchmarks. We first translate them into Boogie
programs using the HAVOC verifier [10]. In our experiments, an approximation
is modeled as just a havoc statement (of the appropriate variable) introduced at
every program location of interest (i.e., variable assignments). We then establish
control flow equivalence for every such approximation in turn, and we report
total cumulative runtimes.

Table 1 presents the results of our experiments. Overall, benchmarks from
the domain of image processing are most amenable to approximations that do
not affect control flow, since most computations are local to a pixel neighbor-
hood. As expected, the inlining-based approach scales poorly compared to the
modular taint analysis. However, it is encouraging to see that the differential
analysis improves the precision on three benchmarks. Among these, we have
studied the SelectionSort example in detail, and have applied the sound dif-
ferential verification on it (see § A.2). The imprecision of taint analysis is caused
by the same reason (unable to distinguish segments of an array) we encountered
in the ReplaceChar example from Fig. 7. Verification of the mutual summary
specification required 7 more intermediate invariants, mainly due to the pres-
ence of nested loops. The example illustrates the robustness of our differential
approach to verify more complex examples, albeit with a little more user effort.

5 Related Work

A number of complementary approaches have been recently proposed to reason
about approximations. These approaches can be roughly categorized (with over-
laps) into (a) language based, (b) static analysis, and (c) dynamic approaches.

Language based approaches propose language constructs and annotations to
make approximations explicit in a program [40,7]. EnerJ [40] introduces approx-
imate types and ensures that such values do not impact precise computations,
including conditional statements. Our work can be used to improve the preci-
sion of the type-based analysis, as demonstrated in § 4. Carbin et al. [7] describe
language constructs for introducing approximations and relaxed specifications,
and prove correctness of transformations using Coq. We show that mutual sum-
maries and SMT-based verification can significantly improve the automation for
most transformations covered by this approach.

Rely [8] performs static quantitative reliability analysis to provide probabilis-
tic guarantees on the impact of approximations on overall behavior of a program.
We believe that SymDiff can be augmented with this framework to create an au-
tomated framework for improving precision using relative invariants. ExPAX [33]
is a framework that generates a set of safe-to-approximate operations based on a
dataflow taint analysis. It develops an algorithm to compute the level of approx-
imation for each operation in the set so that energy consumption is minimized
and reliability constraints are satisfied.

Among dynamic approaches, fault injection at the source or intermediate
representation level has been used to profile the sensitivity of output quality
to approximations. Fault injectors such as KULFI [42], LLFI [44], and PDS-
FIS [22] approximate instructions at runtime. Though these techniques achieve
high levels of accuracy, they provide no formal coverage guarantees, unlike our
technique. Offline dynamic analysis techniques provide information on dataflow
and correlation difference (e.g., [37,38]). The former may be imprecise as it is
based on static dataflow analysis, while the latter again does not provide formal
guarantees. Although there are optimizations for selective instruction perturba-
tion, such as the statistical methods [39], the reasoning is only for a subset of all
the possible executions of the program.

Finally, our work is closely related to previous works on translation valida-
tion [34,31] that validate equivalence-preserving intraprocedural compiler trans-
formations, using lock-step symbolic execution and SMT solvers. However, mu-
tual summaries and the product construction allows for richer relaxed specifi-
cations other than equivalence, interprocedural reasoning [18], and leveraging
off-the-shelf program verifiers and inference engines.

6 Conclusions

In this paper, we have described the application of automated differential veri-
fication for providing formal guarantees of approximations. The structural sim-
ilarity between original and approximate programs are leveraged to automate
most intermediate relative specifications. We are currently working on exploiting
more powerful invariant inference engines such as interpolants [29] and indexed
predicate abstraction [24] to infer remaining specifications. We would also like
to leverage the concept of relative termination [18] to improve on the partial
correctness guarantees of mutual summaries.

References

1. Baek, W., Chilimbi, T.M.: Green: A framework for supporting energy-conscious
programming using controlled approximation. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). pp. 198–209 (2010)

2. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI). pp. 203–213 (2001)

3. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: International Sympo-
sium on Formal Methods for Components and Objects (FMCO). pp. 364–387
(2006)

4. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: Version 2.0. In: Inter-
national Workshop on Satisfiability Modulo Theories (SMT) (2010)

5. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL). pp. 14–25 (2004)

6. Blume, W., Eigenmann, R.: Performance analysis of parallelizing compilers on the
perfect benchmarks programs. IEEE Trans. Parallel Distrib. Syst. 3(6), 643–656
(Nov 1992)

7. Carbin, M., Kim, D., Misailovic, S., Rinard, M.C.: Proving acceptability properties
of relaxed nondeterministic approximate programs. In: ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI). pp. 169–180
(2012)

8. Carbin, M., Misailovic, S., Rinard, M.C.: Verifying quantitative reliability for pro-
grams that execute on unreliable hardware. In: ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA). pp. 33–52 (2013)

9. Chakrapani, L.N., George, J., Marr, B., Akgul, B.E.S., Palem, K.V.: Probabilis-
tic design: A survey of probabilistic CMOS technology and future directions for
terascale IC design. In: International Conference on Very Large Scale Integration
of System on Chip (VLSI-SoC). pp. 101–118 (2006)

10. Chatterjee, S., Lahiri, S.K., Qadeer, S., Rakamarić, Z.: A reachability predicate for
analyzing low-level software. In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). pp. 19–33 (2007)

11. The Coq proof assistant. http://coq.inria.fr
12. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In:
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL). pp. 238–252 (1977)

13. Denning, D.E.: A lattice model of secure information flow. Communications of the
ACM 19(5), 236–243 (May 1976)

14. Esmaeilzadeh, H., Sampson, A., Ceze, L., Burger, D.: Neural acceleration for
general-purpose approximate programs. Commun. ACM 58(1), 105–115 (Dec 2014)

15. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:
International Symposium of Formal Methods Europe (FME). pp. 500–517 (2001)

16. Gupta, P., Agarwal, Y., Dolecek, L., Dutt, N., Gupta, R.K., Kumar, R., Mitra,
S., Nicolau, A., Rosing, T.S., Srivastava, M.B., Swanson, S., Sylvester, D.: Under-
designed and opportunistic computing in presence of hardware variability. IEEE
Trans. on CAD of Integrated Circuits and Systems 32(1), 8–23 (2013)

http://coq.inria.fr

17. Han, J., Orshansky, M.: Approximate computing: An emerging paradigm for
energy-efficient design. In: IEEE European Test Symposium (ETS). pp. 1–6 (2013)

18. Hawblitzel, C., Kawaguchi, M., Lahiri, S.K., Rebelo, H.: Towards modularly com-
paring programs using automated theorem provers. In: International Conference
on Automated Deduction (CADE). pp. 282–299. Springer (2013)

19. Hoffmann, H., Sidiroglou, S., Carbin, M., Misailovic, S., Agarwal, A., Rinard, M.:
Dynamic knobs for responsive power-aware computing. In: International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). pp. 199–212 (2011)

20. Horwitz, S., Reps, T.W., Binkley, D.: Interprocedural slicing using dependence
graphs. ACM Trans. Program. Lang. Syst. 12(1), 26–60 (1990)

21. Hukerikar, S., Diniz, P., Lucas, R.: A programming model for resilience in extreme
scale computing. In: IEEE Dependable Systems and Networks Workshops (DSN-
W). pp. 1–6 (Jun 2012)

22. Jin, A., Jiang, J., Hu, J., Lou, J.: A pin-based dynamic software fault injection
system. In: Young Computer Scientists, 2008. ICYCS 2008. The 9th International
Conference for. pp. 2160–2167. IEEE (2008)

23. de Kruijf, M., Nomura, S., Sankaralingam, K.: Relax: An architectural framework
for software recovery of hardware faults. In: ACM SIGARCH Computer Architec-
ture News. vol. 38, pp. 497–508. ACM (2010)

24. Lahiri, S.K., Bryant, R.E.: Predicate abstraction with indexed predicates. ACM
Trans. Comput. Log. 9(1) (2007)

25. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SymDiff: A language-
agnostic semantic diff tool for imperative programs. In: International Conference
on Computer Aided Verification (CAV). pp. 712–717 (2012)

26. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion
checking. In: Joint Meeting of the European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software Engineering (ES-
EC/FSE). pp. 345–355 (2013)

27. Lahiri, S.K., Qadeer, S., Galeotti, J.P., Voung, J.W., Wies, T.: Intra-module in-
ference. In: International Conference on Computer Aided Verification (CAV). pp.
493–508 (2009)

28. Liu, S., Pattabiraman, K., Moscibroda, T., Zorn, B.G.: Flikker: Saving DRAM
refresh-power through critical data partitioning. In: International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS). pp. 213–224 (2011)

29. McMillan, K.L.: An interpolating theorem prover. In: International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS). pp.
16–30 (2004)

30. Myler, H.R., Weeks, A.R.: The pocket handbook of image processing algorithms
in C. Prentice Hall Press (2009)

31. Necula, G.C.: Translation validation for an optimizing compiler. In: ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI).
pp. 83–94 (2000)

32. Nelson, J., Sampson, A., Ceze, L.: Dense approximate storage in phase-change
memory. In: Ideas and Perspectives session at ASPLOS (2001)

33. Park, J., Ni, K., Zhang, X., Esmaeilzadeh, H., Naik, M.: Expectation-oriented
framework for automating approximate programming. In: Workshop on Approxi-
mate Computing Across the System Stack (WACAS) (2014)

34. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). pp. 151–166 (1998)

35. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL). pp. 49–61 (1995)

36. Rinard, M.: Acceptability-oriented computing. In: ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA). pp. 221–239 (2003)

37. Ringenburg, M.F., Sampson, A., Ackerman, I., Ceze, L., Grossman, D.: Dynamic
analysis of approximate program quality. Tech. Rep. UW-CSE-14-03-01, University
of Washington

38. Ringenburg, M.F., Sampson, A., Ceze, L., Grossman, D.: Profiling and autotun-
ing for energy-aware approximate programming. In: Workshop on Approximate
Computing Across the System Stack (WACAS) (2014)

39. Roy, P., Ray, R., Wang, C., Wong, W.F.: ASAC: Automatic sensitivity analysis for
approximate computing. In: ACM SIGPLAN/SIGBED Conference on Languages,
Compilers and Tools for Embedded Systems (LCTES). pp. 95–104 (2014)

40. Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., Grossman, D.:
EnerJ: Approximate data types for safe and general low-power computation. In:
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI). pp. 164–174 (2011)

41. SciMark 2.0. http://math.nist.gov/scimark2
42. Sharma, V.C., Haran, A., Rakamarić, Z., Gopalakrishnan, G.: Towards formal

approaches to system resilience. In: IEEE Pacific Rim International Symposium
on Dependable Computing (PRDC). pp. 41–50 (2013)

43. Sidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., Rinard, M.C.: Managing per-
formance vs. accuracy trade-offs with loop perforation. In: Joint Meeting of the
European Software Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE). pp. 124–134 (2011)

44. Thomas, A., Pattabiraman, K.: LLFI: An intermediate code level fault injector
for soft computing applications. In: Workshop on Silicon Errors in Logic System
Effects (SELSE) (2013)

45. Zhu, Z.A., Misailovic, S., Kelner, J.A., Rinard, M.: Randomized accuracy-
aware program transformations for efficient approximate computations. In:
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). pp. 441–454 (2012)

http://math.nist.gov/scimark2

A Additional Control Flow Equivalence Examples

A.1 Example Requiring Path-Sensitivity

In the example in Fig. 8, the approximation does not affect control flow since
the sign of x is preserved, and the control flow only depends on the sign. We had
to specify the following mutual precondition for the loop-extracted procedure:

v1.x > 0⇔ v2.x > 0.

A.2 Selection Sort

For proving the selection sort example in Fig. 9, the following 7 manual invariants
are required:

– Two non-relational invariants to indicate that loops in Find do not decrease
d variables.

– Two non-relational invariants to indicate that loops in Find do not decrease
position when the initial value of position is bound by d.

– Three relational invariants (for the two loops and Find) to indicate that
values of position, andcflow only depend on a sub-fragment of the array.

var x:int;
var y:int;
var n:int;

procedure foo() returns (r:int) {
r := 0;

y := x + 3;

havoc y; assume y != 0;

y := y * y;

x := x * y;

while (0 < n && n < 1000) {
if (x > 0) {
n := n + 1;

r := r + n;

} else {

n := n - 1;

r := r - n;

}

}

return;
}

Fig. 8: Control flow equivalence example requiring path-sensitivity. Underlined
statements introduce the approximation.

var array:[int]int;
var n:int;

procedure SelectionSort() {
var c:int, position:int, temp:int;
position := 0;

temp := 0;

c := 0;

while (c < (n - 1)) {
call position := Find(c);
if (position != c) {
temp := array[position];

array[position] := array[c];

havoc temp;

array[c] := temp;

}

c := c + 1;

}

}

procedure Find(c:int) returns (position:int) {
var d:int;
position := c;

d := c + 1;

while (d < n) {
if (array[position] > array[d]) {
position := d;

}

d := d + 1;

}

}

Fig. 9: Selection sort control flow equivalence example. Underlined statements
introduce the approximation.

	Automated Differential Program Verification for Approximate Computing

