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Abstract
Handheld devices and cloud-connected applications are now
commonplace, and developers cooperate more than ever,
taking advantage of distributed version control systems and
online collaborative development environments.

Providing a robust collaborative experience for editing
code remains challenging, however. Traditional text-based
merge algorithms (e.g. diff3) are unfit for automatic synchro-
nization, as they often require manual resolution of merge
conflicts. On the other hand, collaborative editing technolo-
gies such as operational transformations (OT) do not support
extended offline operation, and are difficult to apply in con-
texts which must support complex editing operations.

To solve this problem, we introduce diffTree, a new 3-
way merge algorithm for tree-structured data, and prove
that it satisfies several properties which make it intuitive
for users. We show how, by augmenting syntax trees with
unique identifiers to track the tree nodes while they are
edited, we can implement a failure-free 3-way merge on pro-
grams. We then show how to implement real-time collabo-
ration with seamless online and offline support by applying
this merge function continuously and automatically.

Our diffTree algorithm and collaborative-coding frame-
work have been implemented in the TouchDevelop online
programming environment, where they are publicly avail-
able for experimentation. We present preliminary evaluation
of diffTree performance using data collected in the field.

∗Work performed during an internship at Microsoft Research

1. Introduction
We live in an era where handheld devices and cloud-connected
applications are highly prevalent. Even complex software
development tasks are moving into the mobile arena. As a
result, new forms of collaborative development are gaining
traction. We believe there are two major trends in this area.

One is the rapid rise of distributed version control sys-
tems. Because they are well-suited for both loose and tight
collaboration, and often integrate social functionality such as
online discussion forums, they foster spontaneous collabora-
tion of developers, sometimes across organizational bound-
aries. Online portals such as GitHub make it very easy for
developers to fork existing code, make their own changes in
private, and then reintegrate those changes later if desired.

Another trend is the use of online integrated development
environments that can replace the traditional workstation as
a place to store, compile, run, and test code. One of the bene-
fits is that users can access the code they are currently devel-
oping from any device, including mobile devices, which re-
sults in a convenient single-workspace experience through-
out the development process. Some typical technical chal-
lenges in this area are (1) how to adapt the editor experience
to small screens and keyboard-less devices, and (2) how to
support offline availability by storing eventually consistent
replicas of the workspace in local storage [2].

1.1 Merging Code
A central technical challenge in both scenarios (version con-
trol systems, and replicated workspaces) is the requirement
for some procedure that can reconcile concurrent, possibly-
conflicting edits to the code being developed. The traditional
solution to this problem is to rely on a per-file, text-based
merge function (typically using the diff3 algorithm). How-
ever, traditional text-based merges leave much to be desired:

• The merge may fail and ask the user to manually resolve
conflicts, which is inconvenient at best, and dauntingly
difficult at worst.

• The merge algorithm sees a program as a collection of
text files, rather than a tree of declarations/statements.
Thus, the moving of code using copy/paste is misinter-
preted as a deletion, followed by the addition of new, un-
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related code. Thus, reorganizing or refactoring code often
introduces merge conflicts requiring manual resolution.

• The diff3 algorithm has no insight into basic syntactic
or semantic concepts, such as the difference between
comments and code, or the use of identifiers. Common
tasks like the global renaming of functions or variables
are risky, since they can cause many merge conflicts.

• Since it does not always succeed, a traditional merge
cannot be used for fully automatic synchronization.

1.2 The diffTree Algorithm
To achieve a better collaboration experience, we propose
and evaluate a solution that represents programs as trees,
and merges those trees using a novel tree-merge algorithm
called diffTree which always succeeds (i.e. never requires
any manual conflict resolution). A key aspect of our solution
is to embed invisible unique identifiers in the code that mark
the nodes of the tree. These identifiers allow us to (1) track
accurately how users rearrange nodes of the tree when they
move code within and across functions, and (2) track the
relationship of identifier uses to identifier definitions. Thus,
our merge function reliably merges changes even if users
move code in arbitrary ways or rename identifiers at will.

We call our trees hybrid syntax trees (HST), since they do
not simply correspond to traditional concrete or abstract syn-
tax trees used in compilers. Rather, they combine informa-
tion that is typically associated with several different com-
piler phases (tokenize, parse, symbol). We show that our
merge algorithm preserves some basic semantic information
about merged trees, and possesses several properties which
make it intuitive for developers and allow it to be applied
continuously without changing the trees in unexpected ways.

1.3 Implementation in TouchDevelop
We have implemented our system in the TouchDevelop on-
line programming environment [2, 15], which already in-
cluded a semi-structured editor, hybrid syntax trees, and sup-
port for forking (but not merging) scripts online. Using our
new diffTree merge function, we were able to implement the
following new functionality:

• Scripts that have a common ancestor can be merged. This
allows developers to not only freely fork and edit scripts,
but to combine those changes at a later point as desired.

• Users can join “group scripts” which are collaboratively
edited by all participants. This collaboration is based
on automatic, continuous merging, and can transition
seamlessly between online, real-time collaborative edit-
ing (similar to what is provided by Google Docs, Office
Online, etc.), and offline editing (which requires main-
taining eventually consistent replicas in local storage).

Our solution requires some integration with the code
editor, in order to accurately track the unique identifiers.
The amount of additional information maintained is small,

however—one unique identifier per line of code. Preserv-
ing this type of information is compatible with typical text
editing operations like cut-pasting full lines of code or var-
ious code-moving refactorings. It is thus conceivable that
a smart text-based editor, and not only a semi-structured
editor, could also keep track of such identifiers behind the
scenes, making our technique applicable to traditional pro-
gramming languages edited in modern IDEs.

1.4 Contributions
• We develop a general and failure-free 3-way merge al-

gorithm diffTree for tree-structured data with embedded
unique identifiers, and show that it has desirable proper-
ties regarding quality of the merge result (§3).

• We show how to take advantage of diffTree in the context
of an IDE that uses a semi-structured editor and stores
programs as hybrid syntax trees (§2), thus allowing de-
velopers to collaborate by branching and merging pro-
grams freely as desired.

• We describe how to use diffTree in a continuous, auto-
matic manner. This enables, through a single mechanism,
both online real-time collaboration, as well as support for
offline editing of eventually consistent replicas stored in
local storage (§4).

• We have implemented diffTree-based collaborative cod-
ing as a publicly available feature in the TouchDevelop
IDE, and demonstrate its use in a linked video.1

• We present a performance evaluation of diffTree, on data
automatically collected since we deployed the online col-
laboration feature (§6).

Overall, we make a definitive step towards enabling both
real-time and off-line collaboration in an online software
development environment. The results of this research can
help make developers more productive, allowing them to
edit and collaborate on-the-go. It can also help educators
make their programming classes more interactive, allowing
an entire classroom of students to participate in a “hands-on”
way with software development assignments.

2. Language and Environment
TouchDevelop is a web-based application development en-
vironment which allows participants to use a structured code
editor (see Figure 1) to write scripts in a simple impera-
tive programming language, and then run these scripts in a
browser. Many libraries are made available, allowing users
to easily create games, quizzes, interactive forms, and all
the way up to RESTful web services utilizing state-of-the-
art cloud infrastructure. TouchDevelop users range from stu-
dents and teachers to enthusiasts and seasoned developers.

1 The video is available at http://bit.ly/tdmerge or directly at
http://youtu.be/e7Pa5pxIyeM. The curious reader can play with
the implementation at https://www.touchdevelop.com/.
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Figure 1: TouchDevelop structured code editor

TouchDevelop scripts are cross-platform, since the run-
time and editor are both written in JavaScript/HTML5 and
run in a wide range of browsers. Users can easily publish
their scripts, allowing the community to read and extend
them by “cloning” (forking) published scripts. These fea-
tures, in combination with the semi-structured code-editor,
make TouchDevelop an excellent candidate for experiment-
ing with features for collaborative coding.

2.1 Example: Merging Conflicting Edits
To motivate our use of a tree-based merge function, consider
the simple script shown at the top of Fig. 2. This script
displays the numbers 0 through 9 (the post-to-wall method is
a built-in method that displays the argument). The for-loop
implicitly declares the loop variable i and initializes it to 0.

We now consider two users, Alice and Bob, who indepen-
dently fork and modify this script. Alice decides to change
the printed value from i to (2 ∗ i), while Bob refactors
the print functionality into a separate function print. What
happens if they try to merge their changes? With a text-
based merge function, the conflicts cannot be automatically
resolved, and the user would need to determine what hap-
pened and manually fix it. However, our tree-based merge
function can use embedded unique identifiers to detect that
the print statement was moved by Bob, and can thus correctly
apply Alice’s change to the statement in its new location.

2.2 Hybrid Syntax Trees
In TouchDevelop, a program is always stored and edited as
a tree, using a structured editor. Figure 3 shows the basic
(simplified) syntax tree of TouchDevelop programs, in line
with how the user edits them and the environment stores
them. While it may look like an abstract syntax tree at first,
it is both more concrete in some ways and more abstract in
others. We thus call it “hybrid” syntax tree, or HST.

At the top level, a program is a sequence of function dec-
larations (we have omitted data declarations for simplicity).
Each function declaration contains a unique node identifier

original program (version O)
function main() {
for var i < 10 {
i→post to wall

}
}

Alice’s change (version A)
function main() {
for var i < 10 {
(2 * i)→post to wall

}
}

Bob’s change (version B)
function main() {
for var i < 10 {
print(i)

}
}
function print(i: Number) {
i→post to wall

}

merged changes
function main() {
for var i < 10 {
print(i)

}
}
function print(i: Number) {
(2 * i)→post to wall

}

Figure 2: Illustration of concurrent editing operations and
the desired outcome of the merge.

(ID) n for the function, its current name cseq , a formal pa-
rameter list (which contains for each parameter a unique
identifier, a name, and a type), and a body which is a list of
statements. Node IDs must be unique (the implementation
uses randomly generated strings).

All statements start with a node ID n, which is used by the
merge function to track how statements in different versions
of the scripts correspond. We show five kinds of statements:

• a comment statement, containing a character sequence;
• an expression statement, containing an expression which

is a token sequence;
• a variable declaration, containing an identifier, as well as

an initialization expression;
• a conditional statement, containing an expression and

two statement sequences, one per clause;
• a for-loop, containing an identifier (loop variable), an

expression for the bound, and statements for the body.

Note that although the statement syntax is recursive as
usual, expressions are not defined recursively, but rather as
a flat sequence of tokens. This is because the editor works
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prog ∶∶= decl (program)
decl ∶∶= n ∶ function cseq(param) do stmt (decl)
param ∶∶= n ∶ cseq ∶ τ (param)
stmt ∶∶= n ∶ // cseq (statement)

∣ n ∶ token
∣ n ∶ var cseq ∶= token
∣ n ∶ if token then stmt else stmt

∣ n ∶ for var cseq below token do stmt

token ∶∶= op ∣ digit ∣ n ∣ /cseq (token)
τ ∶∶= cseq (type)
n ∈ NodeId (node ID)
cseq ∈ {c⋯ ∶ c ∈ Char} (char sequence)
op ∈ {+,−,∗, /,<,>,=} (operator)
digit ∈ {0,1, ...,9, .} (digit)

Figure 3: Basic TouchDevelop HST

differently at the statement level than at the expression level.
In terms of Java-like language, the users never type braces,
but they do type parentheses.

For example, when the user inserts an if-then-else state-
ment, it appears with three holes for the condition and two
branches, and it is impossible to delete the “then” or “else”
keywords alone. Thus, programs are never malformed at the
statement level. However, it is perfectly possible to enter
malformed expressions like foo(42. Allowing malformed
intermediate expressions improves the speed at which users
edit expressions [5], and helps avoid causing users to feel
overly constrained by the structured editor.

Each token is either an operator (including numeric dig-
its), or a node ID that refers to some variable or some func-
tion (as determined by the declaration with matching node
ID), or an unbound identifier. Unbound identifiers cannot be
entered directly, but may occur as result of deleting or mov-
ing code (see the discussion in Section 2.4 below).

Besides parse errors and unbound identifiers, token se-
quences can also contain type errors. The type errors do not
affect the merge process in any way, so we ignore them here.

2.3 Example HST
For example, Bob’s version B of the program in Fig. 2 has
the following HST, where greek letters represent node IDs:

α: function main() do
β: for var i below 1 0 do
γ: δ ( β )

δ: function print(ε : i : Number) do
φ: ε→post to wall

2.4 Copy/Paste on HSTs
Users can copy (or cut) a sequence of statements (together
with their identifiers) and paste it in another part of the
program. Bound identifiers are treated as follows:

• When a function or variable declaration is pasted in a
context where the same identifier is already used by a
different declaration, the identifier is changed.

• When a user copies a reference to a local variable without
also copying the corresponding declaration, the reference
is changed to an unbound identifier (containing the iden-
tifier used in the original declaration). Upon paste, we try
to re-bind unbound identifiers in the target context: if a
declaration of the corresponding identifier exists, we use
the corresponding node ID.

• The same mechanism is applied to global declarations
when the copy-paste operation is performed across dif-
ferent programs.

3. Tree Merge Algorithm
We now proceed to present the centerpiece of our solution:
the diffTree algorithm for merging trees. To explain this 3-
way merge function at an appropriate level of generality, we
first introduce a general notion of an (ordered, annotated)
tree. This simplifies the description of how diffTree operates,
as it abstracts away the language-specific properties of the
HST representation introduced in the previous section. The
translation from HST to this generic tree is described in §3.7.

3.1 Definition of Trees
A tree is a set T of tuples of the form (n, p,S,Pr), where
n ∈ NodeId is the unique node ID, p ∈ NodeId ∪ {ε} is
the parent ID (or ε if no parent), S is the set of subsequent
sibling node IDs, corresponding to the siblings of n appear-
ing to the right of n in the tree, and Pr ∶ N → String is a
mapping from property IDs to values. There is a single root
node having ID R. When there is no ambiguity, we omit
unused elements of the tuple, e.g. (n, p) when referring to
n and its parent p. Note that considering S to be the entire
set of successor siblings is slightly redundant—although we
could just consider the immediate successor sibling, our set
notation makes later developments more straightforward.

Tree property retrieval. We denote the set of all trees by T ,
and we use functions par ∶ NodeId × T → NodeId ∪ {ε}
and index ∶ NodeId × T → N to retrieve the parent of a
node, and the node index among its siblings respectively. We
use children ∶ NodeId × T → P(NodeId) to retrieve the
children of a node (and descendants to retrieve the children,
grandchildren etc.), and use update(Pr, prop, v) to change
property prop to value v in map Pr. The ids ∶ T → N
function obtains all node IDs from a tree, i.e. ids(T ) = {n ∶
(n, p,S) ∈ T for some p,S}. We use notation (x → y) ∈
T to indicate that x is a predecessor sibling of y, that is,
∃(x, p, S) ∈ T s.t. y ∈ S.
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3.2 Design Guidelines
The basic idea of this section is to construct a 3-valued merge
function M(TO, TA, TB) that takes three versions of a tree:
the original version TO, a first changed version TA, and a
second (independently-) changed version TB , and computes
as its result a tree TM that contains the merge of those two
changes (as shown in the example in Fig. 2). We design
our algorithm according to the following general guidelines,
applied to various aspects of the tree structure:

1. Preserve non-change – if an aspect was changed neither
in TA nor TB , then it should not be changed in the result.

2. Prefer change over no change – if an aspect was changed
by TA but not TB , or was changed by TB but not TA, then
the result should contain the changed aspect.

3. Preserve identical change – if some aspect was changed
by both TA and TB in the same way, then the result
should be changed in the same way.

4. Prefer A over B on conflict – if the same aspect was
changed by both TA and TB in different ways, then the
result should be changed in the same way as in TA.

Item 4 expresses the fact that the merge function must be
asymmetrical. In our collaborative editing implementation,
we view A as “mine” and B as “theirs”, but we do not
impose such semantic requirements on A,B in general.

Our algorithm satisfies the above guidelines as best it can,
while always maintaining essential structural invariants, i.e.
merging trees should result in a tree, and merging sequences
should result in a sequence.

3.3 Merge Algorithm
Somewhat surprisingly, the guidelines in Section 3.2 are
quite specific and provide an excellent blueprint for the con-
struction of a reasonable merge function. The key insight is
to apply the above rules separately and subsequently to the
following aspects of a tree: (1) the set of node IDs contained
in the result, (2) the tree structure (i.e. parent relationship) of
nodes in the result, (3) the sequence structure of nodes in the
result (i.e. the relative order of siblings, meaning nodes with
the same parent), and (4) the node properties of each node
in the result. We now describe the corresponding four steps
of our merge algorithm, and show that they satisfy basic ex-
pectations, referring to the appendices for details/proofs.

Step #1 – Perform additions and deletions. Let IM =
f(ids(TO), ids(TA), ids(TB)), where f(o, a, b) = ((a ∪
b) − o) ∪ (a ∩ b ∩ o). We will construct TM starting with
the nodes appearing in the set IM (see Figure 4).

Note that this definition matches the guidelines of Sec-
tion 3.2 precisely, if the aspects being considered are the set
membership of each node.

Step #2 – Determine parent for each node (Tree Merge).
We construct a function par ∶ IM → IM ∪ {δ} which maps
each vertex to its new parent (or to δ if it has been deleted).

ids(TO)

ids(TB)ids(TA)

Figure 4: Merge Step #1 – additions/deletions (IM is shaded)

1 function TreeMerge(TO, TA, TB) {
2 var par = ∅ // empty map
3 var VL = ∅ // empty set
4 var domain = IM // copy of the IM set
5 // take changes from A
6 forall x ∈ IM {
7 if (x, p1) ∈ TO ∧ (x, p2) ∈ TA for some p1, p2 {
8 par(x) = p2; if p1 /= p2 { VL = VL ∪ {x} }
9 }

10 }
11 // take changes from B which have not been

blocked by a change from A
12 forall x ∈ (IM − VL) {
13 if (x, p1) ∈ TO ∧ (x, p3) ∈ TB for some p1 /= p3 {
14 par(x) = p3
15 }
16 }
17 // removed orphaned nodes resulting from

deletions
18 while ∃x ∈ IM ∶ par(x) /∈ IM {
19 domain = (domain − {x})
20 par(x) = δ
21 forall y ∈ children(x) { par(y) = δ }
22 }
23 // deterministically break any cycles in

the parent graph (restricted to domain)
24 return makeTree(par, domain)
25 }

Figure 5: Tree Merge algorithm (construct the mapping par)

This procedure is shown in Figure 5. At line 23 It is possible
for the parent graph par to contain cycles. The makeTree

function deterministically breaks any cycles in the parent
graph par restricted to domain, returning the resulting tree.

Note that any cycle in the parent graph must look like the
left side of Figure 6 (non-shaded nodes and solid edges).

Figure 6: The structure of cycles in parent graph par
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Lemma 1 (Properties of an arbitrary parent-graph cycle).
Any cycle induced by the relation par satisfies the following:

• The cycle must be simple, since no node can have two
outgoing edges (i.e. each node only has a single parent).

• A node within the cycle may have descendants outside.
We call these “tails” of the cycle descendant-subtrees.

• For any node x in the cycle, ({x}∪descendants(x, par))
contains no descendant of the root nodeR.

The makeTree function does a depth-first search (DFS) of
the parent graph starting from the root R and using edges
from TA, reconnecting any encountered disconnected com-
ponents by resetting the parent to a node outside the discon-
nected component. For example, in Figure 6, if the DFS first
arrives at node 8, it removes the edge 8 → 7 by adding the
edge 8 → 18. If the DFS arrives at a node such as 4 by way
of a descendant(s) of the cycle such as 2 which is outside the
cycle, this cycle-breaking function must be repeated.

1 function makeTree(par, domain) {
2 // compute set of all descendants of root
3 var children = descendants(R, par)
4 // compute strongly-connected components

of parent graph
5 var components = tarjans(domain, par)
6 DFS(∅, R) // start DFS from the root node
7 function DFS(parents, n) {
8 if n ∈ S for some S ∈ components ∧ ∣S∣ > 1 {
9 do {

10 par(n) = head(parents) // immediate parent
11 parents = tail(parents) // older ancestors
12 } while(par(n) /∈ children)
13 // at this point, the cycle is gone.
14 // update the descendants
15 children = children ∪ descendants(par(n), par)
16 // update strongly-connected components
17 components = (components − {S})
18 }
19 forall x ∈ children(n) { DFS(n::parents, x) }
20 }
21 // return the resultant graph (tree)
22 return {(x, p) ∶ x ∈ domain ∧ p = par(x)}
23 }

Figure 7: Deterministically breaking cycles in parent graph

Lemma 2 (Correctness of Tree Merge). The graph produced
by the Tree Merge algorithm in Figure 5 is a tree.

Lemma 3 (Parent-child preservation of Tree Merge). The
Tree Merge algorithm preserves the parent-child relation-
ship for unchanged nodes, i.e. if p is the parent of x in both
TA and TB , and p, x appear in the merged result TM , then p
is also the parent of x in TM .

Step #3 – Determine sibling order (Sequence Merge). For
each p ∈ domain, we can compute the set of children C =
par−1(p) in the tree produced by TreeMerge. Our task
is now to produce an ordering R of the elements in C,

and we do this by examining the order of the children of
p in TO, TA, TB . Specifically, this is done by calling the
SeqMerge(LO, LA, LB) function shown in Figure 8 on the
sequences LO, LA, LB which are children of p in O,A,B
respectively. This function only produces an order for the
intersection of LO, LA, LB , discarding deleted nodes, and
relegating the insertion of added nodes to the helper function
insertAdded (Figure 9).

1 function SeqMerge(LO, LA, LB) {
2 R = ∅ // empty relation
3 C′ = LO ∩LA ∩LB // the set we need to order
4 added = (LA ∪LB) −LO // added nodes
5 addMap = ∅ // empty map from node ID to

list of IDs
6 // take changes from A
7 forall x, y ∈ C′ where y /= x {
8 if (x→ y) ∈ LA ∧ ((x→ y) /∈ LO ∨ (y → x) /∈ LB)
9 {

10 R = R ∪ {(x A→ y)}
11 }
12 }
13 // take changes from B
14 forall x, y ∈ C′ where y /= x ∧ (x, y) /∈ R ∧ (y, x) /∈ R

{
15 if (x→ y) ∈ LB ∧ (y → x) ∈ LO ∩LA {

16 R = R ∪ {(x B→ y)}
17 }
18 }
19 // compute strongly-connected components

of the relation R
20 components = tarjans(C′,R)
21 // go through each of the non-trivial

components
22 forall S ∈ components where ∣S∣ > 1 {
23 // replace each B-edge involved in this

cycle with an opposing A-edge

24 forall (x B→ y) ∈ S {

25 R = (R − {(x B→ y)})

26 R = (R ∪ {(y A→ x)})
27 }
28 }
29 // sort according to R
30 temp = sort(C′,R)
31 // insert the added nodes into the ordered

sequence
32 return insertAdded(temp, added, LA, LB)
33 }

Figure 8: Sequence Merge algorithm

Although this sequence merge is quadratic in the worst
case, one can envision many optimizations that would offer
better performance. Most straightforwardly, we could first
compute “hunks” between LO, LA, LB as done in diff3, and
coalesce stable (matching) hunks into single nodes, saving
us from having n2 edges connecting all items in the se-
quence. However, in practice, we have not found such opti-
mizations to be necessary, as the size of straight-line blocks
of code is typically small (see performance results in §6).
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1 function insertAdded(result, toAdd, LA, LB) {
2 addMap = ∅ // empty map from node ID to

list of IDs
3 result = ∅ // empty list
4 function makeAddMap(L) {
5 prev = [ε] // singleton list
6 forall x ∈ L {
7 if x ∈ toAdd {
8 forall y ∈ prev {
9 addMap(y) = addMap(y)@[x] // append

10 }
11 }
12 prev = prev@[x] // append x to list
13 }
14 }
15 makeAddMap(LA); makeAddMap(LB)
16 forall x ∈ reverse([ε] ∶∶ result) {
17 // prepend x and any outstanding

successors
18 result = (x ∶∶ (addMap(x) ∩ toAdd))@result
19 // mark the elements added to prevent

re-adding
20 toAdd = toAdd − addMap(x)
21 }
22 return result
23 }

Figure 9: Sequence Merge algorithm - adding nodes

Lemma 4 (Correctness of Sequence Merge). The func-
tion SeqMerge(LO, LA, LB) produces a total order on the
common elements of LO, LA, LB .

Lemma 5 (Order preservation of Sequence Merge). The
Sequence Merge algorithm preserves the order relationship
for unchanged nodes, i.e. if x appears before y (i.e. x → y)
in both LA and LB , and x, y appear in the merged result
LM , then x also appears before y in LM .

Step #4 – Merge properties of the nodes (Node Merge).
Finally, we need to determine the properties that will appear
in each node of the resulting merged program. We do this by
simply preferring change over no change for each property.
That is, if we are determining the value of property pr
in a node n ∈ TM , we look at the corresponding values
prO, prA, prB in TO, TA, TB . If prO /= prA, we take the
value from A, and otherwise we take the value from B.

Overall diffTree algorithm. Given the par map and set
of nodes domain generated by TreeMerge, along with
the relation R(C) generated by SeqMerge for each set
of children C, we can readily construct the result tree.
Specifically, TM = {(n, p,S,Pr) ∶ n ∈ domain,Pr =
newProps(n), p = par(n), S = {y ∈ domain ∶ (n, y) ∈
R(par−1(p))}}, where newProps is a mapping from node
IDs to their new properties, as determined by Step #4.

3.4 Simple Tree Merge Examples
We now present some simple examples of the TreeMerge

portion of diffTree. A-edges are shown in red (solid) with

thick lines for those in VL, and B-edges in blue (dashed),
and TL shows the result before cycle-removal. Figure 10
shows an edit where both users A,B try to set the parent
of node D (conflict resolved by choosing A’s edit). Figure
11 shows a conflicting edit where user A moves the C,D
subtree, and user B moves the A,B subtree. This creates a
nontrivial strongly-connected component, and we break the
cycle by doing a DFS traversal of TA (makeTree function).

Figure 10: Tree merge: change in TB blocked by change in
TA

Figure 11: Tree merge: one nontrivial strongly-connected
component (cycle must be broken)
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Figure 12: Tree merge: TA is unchanged, allowing all TB
changes

Figure 13: Tree merge: two nontrivial strongly-connected
components (cycles must be broken)

Figure 12 shows an edit from user B which does not con-
flict with user A’s edits. Finally, Figure 13 shows a highly
conflicting edit where usersA andB swap nodes in different
ways. This creates two nontrivial strongly-connected com-
ponents, and again cycles are broken deterministically.

3.5 Simple Sequence Merge Examples
We now show some examples of the Sequence Merge por-
tion of diffTree. In Figure 14, no users have made any edits,
so the resulting sequence is unchanged. In Figure 15, users
have made conflicting edits, with user A swapping the order
of 3,1, and user B moving 2 between the originally-ordered
3,1. This results in a cycle, which is deterministically re-
solved by reversing all dashed/blue edges (ones caused by

user B) in the cycle. Figure 17 shows another example of
breaking cycles. Figure 16 shows a non-conflicting change
caused by user B.

Figure 14: Sequence merge: no changes

Figure 15: Sequence merge: cycle broken by reversing
(dashed/blue) B-edge

Figure 16: Sequence merge: only change in B

Figure 17: Sequence merge: another cycle broken by revers-
ing (dashed/blue) B-edge

3.6 Additional Properties of diffTree
Our merge function is well-defined on any combination of
trees, and constructed to satisfy the general guidelines in
Section 3.2. Beyond that, we state and prove some additional
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properties about the merge function, to gain confidence that
its result is acceptable and matches programmer intuitions.

Theorem 1. If one of the changes is trivial, the result
matches the other change:

• M(TO, TO, TO) = TO
• M(TO, TA, TO) = TA
• M(TO, TO, TB) = TB

The theorem follows from corresponding lemmas for each
step of the merge function (as shown in appendix A).

Additional properties we would like to prove are cumu-
lativity (if a programmer makes two changes, the effect of
merging after each change should be the same as if merg-
ing only after both changes, e.g. Figure 18) and associativity
(if three changes TA, TB , TC are made, the effect of merg-
ing the merge of TA, TB with TC should be the same as the
effect of merging TA with the merge of TB and TC).

3.6.1 Well-Separated Edits
Unfortunately, cumulativity/associativity do not hold with-
out additional preconditions on the trees involved. However,
identifying situations in which these properties are guaran-
teed provides an additional level of validation for our merge.

To this end, we define a notion of edit operations on trees,
and of conflicting edit operations. To keep the presentation
light, we give informal definitions here, and include the
formal definitions in the appendix containing the proofs.

Edit operations include (1) additions: new nodes are
added to the tree, (2) deletions: nodes are removed from the
tree, (3) move operations: nodes are (atomically) removed
from one position, and inserted at another, and (4) change
operations: node properties are modified.

Given some set of edit operations, we identify the follow-
ing conflict situations:

• Ancestry conflict – a (sub)set of edits places cyclic parent
dependencies on a node.

• Delete conflict – an edit deletes a node x while another
edit moves a node y into or out of the subtree of x.

• Ordering conflict – if an edit reverses the order of some
x, y (e.g. x→ y changes to y → x), we call this a reorder-
ing, and we refer to any node involved in a reordering as
unstable. An ordering conflict results when a (sub)set of
reorderings places cyclic order requirements on a node.

• Add conflict – (1) a node is added adjacent to an unstable
node, or (2) multiple edits add nodes with identical IDs.

A well-separated set of edits is one which has no con-
flicts. Abusing terminology slightly, if T1,⋯, Tm are descen-
dants of common base TO, we say that Ti are well-separated
with respect to TO if ⋃i edits(TO, Ti) is well-separated.

Theorem 2. The merge function M can be applied cumula-
tively (Fig. 18). That is, if TA, TB are derived from base TO,

and T ′A is derived from TA, and edits are well-separated,
then M(TA, T ′A,M(TO, TA, TB)) =M(TO, T ′A, TB).

Figure 18: Cumulativity property

Theorem 3. The merge function M is associative. That
is, if TA, TB , TC are derived from base TO, and edits
are well-separated, then M(TO,M(TO, TA, TB), TC) =
M(TO, TA,M(TO, TB , TC)).

In practice, these theorems mean that when editing dif-
ferent code regions, the merge function provides particularly
strong guarantees. The proofs are in appendix A.

[α α]p = [α]ids([α]p)p ∪ [α]p
[]p = {}

a(n, k + 1) = {(n ⋅ k,n, ids(a(n, k)),∅)} ∪ a(n, k)
a(n,0) = {}

[n ∶ function cseq(param) do stmt]Sp =
{(n, p,S, ⟨name ∶ cseq, category ∶ function⟩)}∪
a(n,2) ∪ [param]n⋅0 ∪ [stmt]n⋅1

[n ∶ cseq ∶ τ]Sp =
{(n, p,S, ⟨name ∶ cseq, type ∶ τ, category ∶ param⟩)}

[n ∶ token]Sp =
{(n, p,S, ⟨category ∶ expr⟩)} ∪ a(n,1) ∪ [token]n⋅0

[n ∶ var cseq ∶= token]Sp =
{(n, p,S, ⟨name ∶ cseq, category ∶ var⟩)}∪
a(n,1) ∪ [token]n⋅0

[n ∶ // cseq]Sp =
{(n, p,S, ⟨text ∶ cseq, category ∶ comment⟩)}

[n ∶ if token then stmt0 else stmt1]Sp =
{(n, p,S, ⟨category ∶ if⟩)}∪
a(n,3) ∪ [token]n⋅0 ∪ [stmt0]n⋅1 ∪ [stmt1]n⋅2

[n ∶ for var cseq below token do stmt]Sp =
{(n, p,S, ⟨name ∶ cseq, category ∶ for⟩)}∪
a(n,2) ∪ [token]n⋅0 ∪ [stmt]n⋅1

Figure 19: From HST to a tree

3.7 Translation of HSTs to trees
To conclude this section, we refer to Figure 19 to describe
how the HST we defined in Section 2 is translated into the
tree representation that we used for defining diffTree.
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The function [⋅]Sp , defined in Figure 19, converts a node
from the HST, with parent p and successor set S to a set
of tree nodes. The function [α]p where α is any syntactic
category converts a sequence of HST nodes with parent p
into a set of tree nodes.

Whenever an HST node n has children which are se-
quences, we construct artificial child nodes using the a(n, k)
function, and make the particular nodes in the sequences
children of these. The IDs of these artificial children are con-
structed using the function n ⋅ k, which needs to be injective
and return identifiers not occurring in any of the merged pro-
grams (in the implementation, this is easy to achieve by us-
ing suffixes to identifiers). Note that the IDs of the artificial
children are deterministic and will thus match in all three
programs involved in the merge.

The alternative to using deterministic IDs would be stor-
ing the IDs in programs. However, they would carry no in-
formation about user intention, since there is no way to e.g.
move the “else” block around without moving the entire “if”.

4. Merge-based Collaborative Editing
To allow users to edit code even when offline, and to keep the
editor responsive even when the network is slow, it is impor-
tant to maintain local copies of the HST on all participant
devices. We can then propagate changes asynchronously,
meaning that the user can always continue editing without
ever having to wait for network responses. As long as we
resolve conflicts deterministically, eventual consistency is
achieved using the approach we present.

In general, implementing protocols for eventual consis-
tency can be challenging when update operations are not
idempotent or commutative. However, the existence of a 3-
way merge function solves this problem in our context, and
allows us to use a wide range of protocols, from simple to
sophisticated. We describe two different solutions for imple-
menting collaborative editing using the 3-way merge.

4.1 Cloud Storage Solution
A simple solution is to store a main version S in cloud
storage, as well as two versions on each device: the last
known server version O and the current client version A.
Initially, S = O = A. Clients can read and update A, and can
try to write changes back to the server (as often as desired
and as the connection permits):

if O = S then (S,O) ← (A,A)

To avoid losing changes, this writeback is conditional, that
is, succeeds only if the server version has not changed in the
meantime (most storage APIs support conditional updates
using a so-called e-tag). If the server version has changed,
the client must first fetch the latest server state and merge its
changes using the merge function, as in

(O,A) ← (S,M(O,A,S)),

state(T) 
delta(O1,A1) 
delta(O2,A2) 

delta(On,An) 
... 

M0 = T 
M1 = M(O1,A1,M0) 
M2 = M(O2,A2,M1) 

Mn = M(On,An,Mn-1) 
... 

Figure 20: Shared Log, represented as a single-column table.
The first row contains the state, followed by delta rows.

after which it can retry the writeback. This process can be
fully automatic and happen in the background, since our
merge operation always succeeds.

This simple scheme works correctly and supports both
online and offline collaboration. Its drawbacks are limited
throughput for concurrent writes, and the fact that updates
are not quickly pushed to all connected clients.

4.2 Shared Log Solution
We can use the existing cloud types [3] programming model
and implementation, which provides a reliable protocol for
keeping replicas in sync with the cloud storage, and uses
websocket connections so servers can push changes to the
clients quickly. Moreover, since it supports convenient dec-
larations of eventually consistent data consisting of cloud
variables, cloud tables, and cloud indexes, it allowed us to
easily implement additional functionality such as displaying
the current editing location of all participants, a list of users
currently connected, and a shared chat window.

We found that the cloud table abstraction is expressive
enough to implement an eventually consistent HST. The
cloud table data type allows clients to append rows at the
end of the table, and to update/delete (but not insert) rows
anywhere in the table. Also, clients can query the stable pre-
fix of the table, within which no more new rows can appear.
Thus, we can use cloud tables to implement a “shared log”
of updates, as described in the following section.

4.2.1 Implementing a Shared Log
To encode collaborative edits using HSTs, we use a cloud
table with a single column,2 representing a state followed
by deltas as depicted in Figure 20. The first row contains an
entry of the form state(T ), and all the following rows con-
tain entries of the form delta(Oi,Ai). Each delta represents
a change as a pair of HSTs, a pre- and a post-state. The ta-
ble as shown in Figure 20 represents the state Mn defined
recursively by Mi =M(Oi,Ai,Mi−1) and M0 = T .

Using this encoding, we can implement collaborative
editing with desired semantics: clients simply push updates
by appending delta rows. Whenever the cloud table changes

2 In our implementation, we actually use four columns to encode entries
together with additional instrumentation, but the algorithm is simpler to
explain using a single column.
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(the cloud table API includes notifications for this), clients
recompute the current state and update the GUI accordingly.

Consider the example in Figure 21. If these edits are well-
separated, the cumulativity and associativity properties of
the merge give us the semantics shown in 22.

state(T1) M0 = T1
delta(T1, T3) M1 =M(T1, T3,M0)
delta(T1, T2) M2 =M(T1, T2,M1)
delta(T3, T5) M3 =M(T3, T5,M2)
delta(T2, T4) M4 =M(T2, T4,M3)

Figure 21: Example shared log

Figure 22: Shared log semantics for well-separated edits

4.2.2 Reducing the Log
The shared log algorithm cannot perform satisfactorily as
the number of rows continues to grow. To address this issue,
clients reduce the log whenever one or more deltas have
become part of the confirmed prefix (as reported by the cloud
table API). Specifically, as shown in Fig. 23, they (1) delete
all rows in the confirmed prefix but the last, and (2) update
that row to contain the corresponding state. Thus, the log
only retains deltas that are not stable yet.

state(T) 
delta(O1,A1) 
delta(O2,A2) 

... 
delta(O3,A3) 

delta(On,An) 

stable 
prefix 

state(T) 
delta(O1,A1) 

state(M2) 

... 
delta(O3,A3) 

delta(On,An) 

Figure 23: Clients reduce the log by deleting/updating rows.

Note that multiple clients may be concurrently reading
the log, and concurrently reducing various prefixes of the
log. However, this does not create problems because (1) the
effects (deletion of rows and updating of rows) become vis-
ible atomically because of the causally consistent transac-
tions in the cloud types model, and (2) deletion of a row is
idempotent, and commutes with updates to that row, and (3)
when a row is updated multiple times, the last update wins.

4.3 Local Undo
This log-based model has practical implications for other
common editing scenarios besides simple merging. In a
collaborative-editing context where we are editing code
alongside other (remote) users, special care must be taken
when implementing an undo operation. Specifically, each
time user A performs an undo, she should see only her own
local edits being reverted, and this should have no effect on
changes merged in from remote users. For example, user A
performing undo of edit T ′A in Figure 24 (left side) should
return to the state M(TO, TA, TB) (shown in the right side).

Figure 24: Undo (local + remote edits)

We propose a local undo operation implemented via the
merge function. As with regular undo, a local history is saved
as the user edits, but instead of simply reverting to a saved
history item, our undo operation pushes an inverse delta of
the previous local edit. That is, if the user previously made a
change from TA to T ′A, then we push delta(T ′A, TA).

When collaborators confine their edits to separate regions
of the code, this approach works well. We leave for future
work investigation of a fully-robust local undo which be-
haves intuitively even in the case of conflicting edits.

5. Implementation
The implementation described in this section has been de-
ployed in TouchDevelop, and is available for use in the web
app. Additionally, TouchDevelop has been released as an
open-source project on GitHub,3 so it is possible to down-
load/build the project, and run the TouchDevelop app locally.

5.1 The diffTree Merge Algorithm
We have implemented the merge algorithm in about 1500
lines of TypeScript. This functionality accepts three TouchDe-
velop HSTs TO, TA, TB and produces a merged HST TM .

Before connecting this with the user-facing TouchDe-
velop functionality, we needed to make several large modifi-
cations to TouchDevelop’s TypeScript codebase. We first re-
structured the TouchDevelop HST to make it more straight-
forward, and added support in HST nodes for node-IDs and
multiple base-script IDs. We also made modifications to the
cut/copy operations in the TouchDevelop Editor, allowing
tracking of script/node ID for cut/copied HST nodes.

3 https://github.com/Microsoft/TouchDevelop
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5.2 User interface
The merge function is used in several contexts. First, we syn-
chronize locally-stored data (our cache) with cloud-stored
data. It could be that a script has been modified both locally
(user modified the script while offline) and remotely (user
modified the script using another device). In this situation,
we transparently call the merge function so that the locally-
stored script incorporates modifications from the cloud, and
at the next synchronization, we push the merged script to the
cloud. We refer to this as the cloud storage solution.

Secondly, we use the merge function in the context of
pull-requests, i.e. when a user forks a script and asks the
original author to integrate her modifications back. To sup-
port this, we added a button in the interface which allows the
user to manually trigger a call to the merge function. This
operation requires computing the least-common-ancestor to
determine the base script TO required for the merge.

Finally, we use the merge function for real-time collabo-
rative editing. In this scenario, multiple users edit the same
script at the same time. This is the shared log solution we
described earlier. This required a significant amount of im-
plementation work to connect the collaboration features with
the existing editor in TouchDevelop (see the video in §2).

5.3 Real-time Collaboration
Once the shared log solution was implemented, we enriched
it with extra information. We now leverage unique node
IDs to record presence information: whenever a statement
with a given node ID is edited, we push that information
to the cloud, allowing other users to notice that someone is
editing that statement, and thus helping to coordinate edits.
The information is conveyed using a small avatar beside
the statement. In practice, we use a diff algorithm to make
sure we move the DOM nodes for the avatars, rather than
add/delete them, in order to eliminate visual flickering. The
log reduction for presence information consists of pruning
entries that are considered stale—in our case, users who have
not reported presence information for the past ten minutes.

We also leverage the shared log to implement a chat
interface, which allows users to talk about the code being
edited. The log reduction mechanism for this chat feature
consists of deleting messages more than ten minutes old.

A few other implementation tweaks were required to en-
hance the user experience. For example, whenever the user
is editing a token (say, a text field), we temporarily disable
pulling changes from the cloud—otherwise another user’s
edit might cause the field to disappear while the user is busy
editing it. We also make it possible for the user to manually
disable pulling in changes from the cloud. This is useful for
postponing any interruptions due to collaborative merging
while editing a large piece of code.

6. Preliminary Evaluation
Our collaborative-editing functionality has only recently
been deployed, so we do not yet have a large selection of
real-world merge benchmarks to use for testing. We con-
tinue to collect data on all merges, so as more users experi-
ment with these features, we will be able to build up a more
extensive benchmark suite, and identify any performance/us-
ability issues that may be affecting users.

That said, currently we have observed about 50K merges.
Of these, 1175 are nontrivial, i.e. M(TO, TA, TB) where
TO /= TA and TO /= TB . In this Evaluation, we examine
merge performance on this nontrivial dataset.

For the experiments, we used a 64-bit Ubuntu worksta-
tion with 20 GB RAM and a quad-core Intel i5-4570 CPU
(3.2 GHz). We built a test harness for use with the NodeJS
JavaScript engine to perform each of the merges using our
merge functionality. In order to evaluate our tool’s perfor-
mance relative to other merge tools, we have an interface to
both the node-diff3 JavaScript diff3-based merge,4 and the
Linux diff3 command-line program.

Figure 25 shows the performance of these tools on the
dataset, as program size (number of lines) increases:

4 https://www.npmjs.com/package/node-diff3
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1. JS merge (tokens) – diff3-based JavaScript merge tool,
operating on whitespace-separated tokens of the program
text (avg. time 75.6ms, max 4253ms)

2. M(TO, TA, TB) – our un-optimized merge algorithm op-
erating on the trees (avg. time 56.09ms, max 533ms)

3. M(TO, TA, TB) opt. – our merge algorithm with basic
optimizations (avg. time 43.06ms, max 402ms)

4. JS merge (lines) – diff3-based JavaScript merge, operat-
ing on lines of program text (avg. 4.4ms, max 121ms)

5. diff3 merge (lines) – Linux diff3 program, operating on
lines of the program text (avg. time 7.3ms, max 22ms)

The optimized version of our merge function features
some basic adjustments for performance (numeric symbol
table for node identifiers, etc.). Our merge performance falls
between the two extremes of line-based merge and token-
based merge, in the worst case incurring no more than 4-10x
penalty versus the JavaScript diff3-based text merge, and
never exceeding about 400ms of runtime.

The breakdown of runtime for our optimized version is
shown in Figure 26. The runtime components are as follows:

• initialize – various startup, initializing data structures,
hashing IDs, etc. (overall average 7.9ms, max 106ms)

• TreeMerge – total time spent in TreeMerge (overall av-
erage 6.5ms, max 68ms)

• SeqMerge – total time spent in SeqMerge (overall aver-
age 9.4ms, max 107ms)

• build HST – recursively construct final result object from
the parent map (overall average 19.3ms, max 158ms)

 0

 50

 100

 150

 200

 250

 300

 350

 400

0-357

357-714

714-1072

1072-1429

1429-1787

A
ve

ra
g
e 

m
er

g
e 

ru
n
ti
m

e 
(m

s)

Program size (# lines)

build AST
SeqMerge
TreeMerge

initialize

Figure 26: M(TO, TA, TB) runtime breakdown (optimized)

Notice that the core merge functionality (Tree/Seq-Merge)
typically accounts for less than half of the runtime.

The implementation is by no means fully-optimized. We
expect that we can reduce these times significantly as de-
mand for higher performance increases, by pursuing more
aggressive optimizations (see Future Work).

7. Related Work
Much work has been done by the research community in
terms of merge algorithms. The classic text-level merge [7]
is widely used in version-control systems, etc. This is gener-
ally fast, but suffers from inability to understand the source
code that is being merged, often resulting in confusing con-
flicts that must be fixed manually by the user(s), with the risk
of a malformed merged result.

Syntactic [1] and semantic [10] merge approaches take
into account structure and meaning of the merged programs
respectively. This can improve quality of the merge, making
sure that the result program is well-formed in certain ways,
but can only do so at the expense of time. Additionally,
as seen in [6] [13], many of these approaches do not have
an ability to recover from merge conflicts, and we need
automatic conflict resolution functionality to enable real-
time collaboration.

Ensuring eventual consistency across all collaborating
devices is another area of related work. One existing ap-
proach uses Operational Transformations (OT) [4], which
works by transforming operations (add, insert, delete, etc.)
based on the order in which they end up executing. This
is the approach used by Google for their Docs and Wave
products, but has shown to be extremely complicated to im-
plement/maintain, with a former Google engineer indicating
that it took two years to implement OT properly [16].

Additionally, errors have been found in published OT
algorithms [12]. Motivated by these difficulties of the OT
approach, others have proposed a cleaner approach, Com-
mutative Replicated Data Types (CRDT) [14]. However,
this places strong requirements on the datatype operations,
namely commutativity, which would make our automatic
conflict resolution impossible. Instead, we use the similarly-
clean Cloud Types [3] eventual consistency model, which
does not place this restriction on our merge algorithm.

8. Conclusion and Future Work
We have presented a framework for collaborative editing of
source code within a structured online editor. Our approach
is based on a conflict-free HST-based merge function, which
is used in conjunction with the Cloud Types eventual consis-
tency model to enable both standard branch/merge version
control, and real-time collaborative editing. An implemen-
tation which allows standard branching/merging, as well as
functionality which enables real-time collaboration has been
added to the TouchDevelop online programming environ-
ment, as shown in our video demonstration.

In the future, we will work on expanding and fully eval-
uating the multi-user collaborative editing functionality in
TouchDevelop. This will likely involve many optimizations.
Currently the merge algorithm works on monolithic scripts,
so we are interested in allowing the merge/editor to handle
small changes locally. Additionally, we need to reduce the
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communication overhead by compressing the HST diffs that
are sent over the network as users collaborate.

Another interesting area of research would be Longitu-
dinal Program Analysis in our collaborative editing con-
text. It has been proposed that program analysis approaches
take into consideration the full version-history of a program,
rather than just individual snapshots [11], and some research
has moved in this direction [8] [9], but they focus on ana-
lyzing a single diff, i.e. using information from the analysis
of program P to analyze modified program P ′. It would be
interesting to investigate doing this in general, using version
history and our carefully-specified merge algorithm.

In summary, we present a new approach to realtime col-
laborative software development using a tree-merge algo-
rithm. This provides immediately-usable functionality for
online development environments, and sets the stage for fu-
ture research in the area of merge-based collaboration.
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A. Merge Algorithm Correctness Proofs
A.1 Precise Definitions for Tree Edits
Defining edits. Conceptually, an “edit” is a single change
to the program being modified. We model this by defining an
edit to be a named tuple having one of the following forms:

• Add(Pr, p, k): add a new node with properties Pr ∈ N→
String as a child of p ∈ NodeId∪{ε} at index k ∈ N. The
new node’s ID is unique, i.e. not previously appearing.

• Del(n): delete node having index n ∈ NodeId
• Move(n, p, k): make node n ∈ NodeId a child of node
p ∈ NodeId ∪ {ε}, inserting it at position k ∈ N

• Change(n, prop, v): for node n ∈ NodeId, set the prop-
erty prop ∈ N to value v ∈ String

Applying edits to the AST. When applied to a tree T , an
edit produces a new tree T ′. We model this by defining the
function apply ∶ T ×Edits→ T as follows:

apply(T,Add((n,Pr), p, k)) =
(T − {(c, p,∗,∗) ∶ c ∈ children(p, T )})∪

{(n, p′,{ci ∶ ci ∈ children(p, T ) ∧ i ≥ k}, P r)}∪
{(ci, p, S′, P r) ∶ ci ∈ children(p, T ) ∧ (ci, p, S,Pr) ∈ T
∧ (i < k⇒ S′ = insert(n,S, k)) ∧ (i ≥ k⇒ S′ = S)}

apply(T,Del(n)) =
T − {(c, p,∗,∗) ∶ c = n ∨ p ∈ {n} ∪ descendants(n,T )}

apply(T,Move(n, p, k)) =
apply(apply(T,Del(n)),
Add((n, incProps(n,T, p, k)), p, k))

apply(T,Change(n, prop, v)) =
{(m,p,S,Pr′) ∶ (m,p,S,Pr) ∈ T

∧ Pr′ = update(Pr, prop, v)}

Function incProps(n,T, p, k) returns current properties Pr
of node n in T , incrementing special properties treeV er if
par(n,T ) /= p, and seqV er if index(n,T ) /= k. These are
for keeping track of whether a node has been relocated in the
tree, or reordered among siblings.

For simplicity, we have omitted these special properties
from our description of the Tree Merge and Sequence Merge
algorithms, but it is important to note the effect they have.

• In TreeMerge, a check such as par(x,TA) = par(x,TB)
is actually implemented as (par(x,TA), treeV er(x,
TA)) = (par(x,TB), treeV er(x,TB)).

• In SeqMerge, a check such as (x→ y) ∈ TA∩TB is actu-
ally implemented as seqV er(x,TA) = seqV er(x,TB) ∧
seqV er(y, TA) = seqV er(y, TB) ∧ (x→ y) ∈ TA ∩ TB .

Version history. If T ′ = apply(T, e) for edit e, we call T ′

a revision of T , and use the notation T → T ′ (solid arrow).

If T k is derived from T via a series of revisions, we call T k

a descendant of T , denoted T ⇢ T k (dashed arrow). Given
a T,T k where T ⇢ T k, we can compute the corresponding
sequence of edits, and we denote this edits(T,T k).

We can define an “is changed after” relation ⩽ on nodes
in revisions, e.g. (x,T ) ⩽ (x,T ′) iff T ′ is a revision of
T and some aspect of x differs between T and T ′. The
treeV er and seqV er properties discussed in the previous
section are used to ensure that the relation ⩽ transitive, i.e.
(x,T ) ⩽ (x,T ′) ∧ (x,T ′) ⩽ (x,T ′′) ⇒ (x,T ) ⩽ (x,T ′′).
That is, if T ′ changes x from T , and then T ′′ changes x from
T ′, then some aspect of x will differ between T and T ′′.

Conflicting edits. Given a setE of edits, we refer to the set
as conflicting if any of the following hold:

• Ancestry conflict – a (sub)set of edits places cyclic parent
dependencies on a node.

• Delete conflict – an edit deletes a node x while another
edit moves a node y into or out of the subtree of x.

• Ordering conflict – if an edit reverses the order of some
x, y (e.g. x→ y changes to y → x), we call this a reorder-
ing, and we refer to any node involved in a reordering as
unstable. An ordering conflict results when a (sub)set of
reorderings places cyclic order requirements on a node.

• Add conflict – (1) a node is added adjacent to an unstable
node, or (2) multiple edits add nodes with identical IDs.

A well-separated set of edits is one exhibiting no conflicts.
Abusing terminology slightly, if T1,⋯, Tm are descendants
of common base TO, we say that the Ti are well-separated
with respect to TO if ⋃i edits(TO, Ti) is well-separated.

A.2 Set-Merge Properties
Lemma 6. The set operation in Merge Step #1 has basic
identity properties, i.e. for all o, a, b:

f(o, o, o) = o
f(o, a, o) = a
f(o, o, b) = b

Proof. Looking at the definition of f , we see that

f(o, o, o) = ((o ∪ o) − o) ∪ (o ∩ o ∩ o)
= (o − o) ∪ (o ∩ o)
= o

f(o, a, o) = ((a ∪ o) − o) ∪ (a ∩ o ∩ o)
= (a − o) ∪ (a ∩ o)
= a

f(o, o, b) = ((o ∪ b) − o) ∪ (o ∩ b ∩ o)
= (b − o) ∪ (o ∩ b)
= b
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Lemma 7. The set operation in Merge Step #1 is asso-
ciative, i.e. f(o, a, f(o, b, c)) = f(o, f(o, a, b), c) for any
o, a, b, c.

Proof. Expanding the definition of f , we need to show

((a ∪ f(o, b, c)) − o) ∪ (a ∩ f(o, b, c) ∩ o)
= ((f(o, a, b) ∪ c) − o) ∪ (f(o, a, b) ∩ c ∩ o).

But looking at Figure 4, we can see that f(o, a, b) ∩ o =
(a∩ b∩o), and likewise, f(o, b, c)∩o = (b∩ c∩o), meaning
we just need to show

(a ∪ f(o, b, c)) − o = (f(o, a, b) ∪ c) − o.

First, note that (x∪ y)− z = (x− z)∪ (y − z) for any sets
x, y, z. Using this, we can show that ((a ∪ f(o, b, c)) − o) =

(a − o) ∪ (f(o, b, c) − o)
= (a − o) ∪ ((b ∪ c) − o)
= (a ∪ b ∪ c) − o
=((a ∪ b) − o) ∪ (c − o)
= (f(o, a, b) − o) ∪ (c − o)
= (f(o, a, b) ∪ c) − o

This completes the proof.

Lemma 8. For well-separated edits, the f in Step #1 has
the cumulative-editing property, in the sense that for all
o, a, a′, b, if a = ids(TA) and a′ = ids(T ′A) where T ′A is
an edit of TA, then f(a, a′, f(o, a, b)) = f(o, a′, b).

Proof. If a = a′, it is easy to confirm that this property is
true. First note that x = (x − a) ∪ (a ∩ x) for any x, a. Then
we have f(o, a′, b) =

= f(o, a, b)
= (f(o, a, b) − a) ∪ (a ∩ f(o, a, b))
= ((a − a) ∪ (f(o, a, b) − a)) ∪ (a ∩ f(o, a, b))
= ((a ∪ f(o, a, b)) − a) ∪ (a ∩ f(o, a, b))
= ((a ∪ f(o, a, b)) − a) ∪ (a ∩ f(o, a, b) ∩ a)
= f(a, a, f(o, a, b))
= f(a, a′, f(o, a, b))

Otherwise, we must recall the allowable ways in which an
edit can change a into a′. Specifically, if a /= a′, then either
a′ ⊆ a (a node was deleted or moved), or a′ = a ∪ {x} (a
node was added).

We can use the definition of f to confirm that the solid-
shaded area in the left side of Figure 27 graphically rep-
resents f(o, a′, b), and likewise the right side represents
f(a, a′, f(o, a, b)).

a b

a' o

a b

a' o

Figure 27: Left = f(o, a′, b), right = f(a, a′, f(o, a, b))

First, note that well-separatedness makes it impossible for
both A and B to add an identical node, so ((a ∩ b) − o) is
empty, meaning the cross-hatched subset (a ∩ b) − (a′ ∪ o)
must also be empty. Similarly, once a node has been deleted
by A, that node cannot reappear in future edits by A, so the
striped area (a′ ∩ o) − (a ∪ b) must be empty since it is a
subset of (o − a), the nodes deleted by the previous edit.

We have shown that the left and right solid-shaded re-
gions of Figure 27 are equal, completing the proof.

A.3 Tree-Merge Properties
Lemma 1 (Properties of an arbitrary parent-graph cycle).
Any cycle induced by the relation par satisfies the following:

• The cycle must be simple, since no node can have two
outgoing edges (i.e. each node only has a single parent).

• A node within the cycle may have descendants outside.
We call these “tails” of the cycle descendant-subtrees.

• For any node x in the cycle, ({x}∪descendants(x, par))
contains no descendant of the root nodeR.

Proof. The first two items are clear, based on the knowledge
that no node can have more than one parent (outgoing edge).
The third is true because (1) the root node R cannot be
part of the cycle, since the parent of the root node cannot
be changed, and (2) a series of edges from any node in the
descendants of the cycle to the root would cause one of the
descendants to have multiple outgoing edges.

Lemma 2 (Correctness of Tree Merge). The graph pro-
duced by the Tree Merge algorithm in Figure 5 is a tree.

Proof. We first wish to show that the following property P is
an invariant of the makeTree function:
P: Every node is either (1) a descendant of the root in a
cycle-free portion of the graph, or (2) contained in a discon-
nected cycle-containing component (Figure 6).
Lemma 1 shows that this property is true before execut-
ing makeTree. When the DFS first encounters a strongly-
connected component at a node n, there are two cases:

1. If the search arrived from a node p in the cycle-free
portion of the graph, makeTree simply sets the parent
of n to p (breaking the cycle), adds all descendants of
n to the cycle-free portion, and removes the strongly-
connected component from the set, denoting a success
for that cycle. Since we’re adding a cycle-free subtree to
the cycle-free component, the invariant is preserved.
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2. If the search arrived from a node p′ within the cycle-
containing component, simply doing the above can in-
troduce a cycle after eliminating the original one. For ex-
ample, in Figure 6 if the DFS arrives at node 4 via node 2,
breaking the 4 → 3 edge and adding the 4 → 2 edge cre-
ates a new cycle 4,2,3,9,8,7,6,5. Thus, makeTree re-
peats the cycle-breaking up the DFS path until it adds an
edge into the cycle-free component. The DFS path may
cross k descendant-subtrees of the cycle (for example, the
1,2 and 12,11,10 subtrees in Figure 6), but each time it
does, the edge towards the cycle is broken. Thus, no point
along the DFS path can participate in a cycle, meaning no
cycles are introduced (invariant preserved).

Lemma 3 (Parent-child preservation of Tree Merge). The
Tree Merge algorithm preserves the parent-child relation-
ship for unchanged nodes, i.e. if p is the parent of x in both
TA and TB , and p, x appear in the merged result TM , then p
is also the parent of x in TM .

Proof. If the parent of x is p in both TA and TB , the Tree
Merge algorithm will clearly set par(x) = p initially, and
we only need to examine what happens to par(x) during the
makeTree routine. If x is in a cycle, the DFS cannot first
arrive at x (it must necessarily arrive at p first). Similarly, if
x is in a descendant-subtree of the cycle, any DFS arriving at
x comes from p, which means that if the parent of x is reset,
it can only be reset to p (i.e. no change).

Lemma 9 (Tree Merge on well-separated edits). If TA, TB
are well-separated with respect to TO, then the parent graph
is already cycle-free before the call to makeTree.

Proof. The abscence of ancestry conflicts readily implies
that the parent graph is cycle-free.

Lemma 10. The Tree Merge has basic identity properties,
i.e. for all TO, TA, TB:

TreeMerge(TO, TO, TO) = TO
TreeMerge(TO, TA, TO) = TA
TreeMerge(TO, TO, TB) = TB

Proof. The first case is clearly true, since parents will only be
taken from “A” parameter, which in this case is TO. When
TA /= TO, it is easy to see that TreeMerge(TO, TA, TO)
takes the order of all elements from TA. Similarly, when
TB /= TO, we can see that TreeMerge(TO, TO, TB) takes
the order of all elements from TB .

Lemma 11 (Cumulative-editing property of Tree Merge).
The Tree Merge algorithm can be applied cumulatively, i.e.

if TA, TB and T ′A, TB are well-separated with respect to TO
and if T ′A is a revision of TA, then

TreeMerge(TA, T ′A, T reeMerge(TO, TA, TB))
= TreeMerge(TO, T ′A, TB).

Proof. Consider x such that par(x) = δ in
TreeMerge(TO, T ′A, TB). This means x was deleted either
in T ′A or TB (or both).

• If it was deleted in TB , or it was missing in T ′A after
being deleted in TA, then it must also be deleted in
TreeMerge(TO, TA, TB), meaning it must be deleted in
TreeMerge(∗,∗, T reeMerge(TO, TA, TB)).

• If it was deleted in T ′A and not in TA, then it is also
deleted TreeMerge(TA, T ′A,∗).

Consider x such that par(x) = δ in TreeMerge(TA, T ′A,
T reeMerge(TO, TA, TB)). Then x was either deleted in
T ′A (and not in TA), or deleted by TreeMerge(TO, TA, TB).

• If x was deleted in T ′A, then it is also deleted by
TreeMerge(TO, T ′A, TB).

• If x was deleted by TreeMerge(TO, TA, TB), then it
must have been deleted by TA (thus absent in T ′A) or TB ,
meaning it is also deleted in TreeMerge(TO, T ′A, TB).

In other words, the set of deleted nodes is the same for both
sides of the equation. For a non-deleted node x, consider the
following cases:

1. If TO = TA, then TreeMerge(TO, TA, TB) assigns the
parent of x from TB , so

TreeMerge(TA, T ′A, T reeMerge(TO, TA, TB))
= TreeMerge(TO, T ′A, T reeMerge(TO, TA, TB))

has the same effect on x as TreeMerge(TO, T ′A, TB).
2. If TO /= TA, then TO /= T ′A since T ′A is a revision of TA.

Thus, TreeMerge(TO, T ′A, TB) assigns the parent from
T ′A. Likewise, TreeMerge(TO, TA, TB) assigns the par-
ent from TA, so TreeMerge(TA, T ′A, T reeMerge(TO,
TA, TB)) assigns the parent from T ′A.

We have shown that the two sides of the equation assign
the parents of non-deleted nodes in the same way, and this
completes the proof.

Lemma 12 (Associativity of Tree Merge). The Tree Merge
algorithm is associative, i.e. if TA, TB , TC are well-separated
with respect to TO, then

TreeMerge(TO, T reeMerge(TO, TA, TB), TC)
= TreeMerge(TO, TA, T reeMerge(TO, TB , TC)).
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Proof. It can be seen that a node x is deleted by
TreeMerge(TO, T reeMerge(TO, TA, TB), TC)

⇐⇒ x is deleted by TreeMerge(TO, TA, TB) or TC
⇐⇒ x is deleted by TA or TB or TC
⇐⇒ x is deleted by TA or TreeMerge(TO, TB , TC)
⇐⇒ x is deleted by

TreeMerge(TO, TA, T reeMerge(TO, TB , TC)).

For any non-deleted node x, consider the following cases:

1. If TO = TA ∧ TO = TB , then TreeMerge(TO, TA, TB)
sets the parent of x from TB , meaning the left-hand-side
sets the parent of x from TC . Likewise,
TreeMerge(TO, TB , TC) sets the parent of x from TC ,
so the right-hand-side sets the parent of x from TC .

2. Similarly, if TO = TA ∧ TO /= TB , then both sides set the
parent of x from TB .

3. If TO /= TA, then both sides set the parent of x from TA.

Thus, non-deleted nodes are processed identically by the
left- and right-hand-side merges, completing the proof.

A.4 Sequence-Merge Properties
Lemma 4 (Correctness of Sequence Merge). The function
SeqMerge(LO, LA, LB) produces a total order on the
common elements of LO, LA, LB .

Proof. We need to show that the relation R is a total order
before the sort is called on line 30 in the algorithm in Figure
8. It is easy to see that for every pair of nodes x, y, the
relation R contains either x → y or y → x (but not both).
Thus, we only need to show that R is transitive.

We begin by showing that R must be acyclic. First, ob-
serving the conditional which allows the addition of B-
edges, we note that the reverse of anyB-edge is in LA. Each
time the loop on line 22 encounters a non-trivial strongly-
connected component S (which contains a cycle), it reverses
any contained B edges, meaning only edges from LA are
left within S. Since any subset of the LA edges is acyclic,
we only need to confirm that this edge-reversing operation
does not introduce a cycle which extends outside S.

Consider the case where reversing B-edges in a single
strongly-connected component introduces a cycle contain-
ing some node outside the component. For example, in Fig-
ure 28, reversing the 1 → 3 edge in S1 introduces a cycle
containing node 2. Since S1 is a strongly-connected com-
ponent, all nodes reach node 1 (and hence reach node 2),
and all nodes are reachable from node 3 (which is reachable
from node 2), meaning node 2 must be a part of S1 (con-
tradiction). We reach the same contradiction for any length
of continuous path extending out and back into a strongly-
connected component.

The only other possibility is that reversing B-edges in
multiple disjoint strongly-connected components introduces

Figure 28: Strongly-connected components in SeqMerge

a cycle between the components, e.g. a cycle between S2
and S3 in Figure 28 which is introduced by reversing both
the (i → i + n) and (i + 2 → i + 1) edges. Since the
relation R contains an edge between every pair of nodes,
either (i + 1 → i + n) or (i + n → i + 1) exists. In the
former case, as happened with S1, this forces node i + 1
to be contained in S2 (contradiction), and in the latter case,
this forces i + n to be contained in S3 (contradiction).

We have shown that R is acyclic. Thus, if we have (x →
y) ∈ R and (y → z) ∈ R, then (z → x) /∈ R, and since every
pair of nodes is joined by some edge, we must have (x→ z),
so this establishes transitivity and completes the proof.

Lemma 5 (Order preservation of Sequence Merge). The
Sequence Merge algorithm preserves the order relationship
for unchanged nodes, i.e. if x appears before y (i.e. x → y)
in both LA and LB , and x, y appear in the merged result
LM , then x also appears before y in LM .

Proof. If (x → y) ∈ LA and (x → y) ∈ LB , then (y →
x) /∈ LB , so (x → y) will be added as an A-edge because
of the check on line 8 of Figure 8. Since A-edges are left
unchanged by the cycle-breaking mechanism, the ordering
(x→ y) will be respected in the resulting order.

Lemma 13 (Sequence Merge on well-separated edits). If
LA, LB are well-separated with respect to LO, then the re-
lation R is already cycle-free before the strongly-connected
components operation in SeqMerge(LO, LA, LB).

Proof. We begin by showing that if the relation R contains a
cycle, it must contain a cycle of length three, consisting of a
single B-edge and two A-edges. Consider an arbitrary cycle
of length k > 3 in R, as shown in Figure 29.
The cycle must contain a B-edge (since LA is cycle-free),
e.g. the edge 2 → 3 in the figure. If the edge between nodes
4 and 2 is 4→ 2, then we have found a cycle of length three.
Otherwise, the edge is 2 → 4, meaning there is a cycle of
length k − 1 (e.g. 1,2,4,5,⋯ in the figure). We can repeat
this process as many times as needed, eventually reaching a
cycle of length three.
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Figure 29: Cycle in the relation R

Call the nodes in this cycle x, y, z, with z → x as the B-
edge. If one of the other edges is a B-edge, then we have
a sequence of two B-edges. Without loss of generality, say
the second B-edge is x → y. The condition for adding B-
edges shows that the existence of these two edges implies
(z → y) ∈ LB and (y → z) ∈ LO ∩ LA, but this means
(z → y) must be a B-edge (contradicting the fact that
z → x → y → z is a cycle). Thus, we have shown that the
cycle of length three has one B-edge and two A-edges.

Now, assume LA, LB are well-separated with respect to
LO, and consider theR at line 19 of SeqMerge(LO, LA, LB).
We wish to show that this R is cycle-free, so assume to
the contrary that R has a cycle. As we have seen, this
means we have a 3-cycle z

B→ x
A→ y

A→ z. Notice that
(x → y) /∈ LO ∩ LA ∩ LB and (y → z) /∈ LO ∩ LA ∩ LB ,
since otherwise there would be a cycle in LB . Thus, either
x → y or y → z differs in order between LO and LA. Since
z → x is a B-edge, we already know that it differs in or-
der between LO and LB , so we have an ordering conflict
between LA and LB (contradiction).

Lemma 14. The Sequence Merge has basic identity proper-
ties, i.e. for all LO, LA, LB:

SeqMerge(LO, LO, LO) = LO
SeqMerge(LO, LA, LO) = LA
SeqMerge(LO, LO, LB) = LB

Proof. The first case is clearly true, since there are no con-
flicts, and all orderings will be taken from A, which in this
case is LO.

Now, consider a pair of nodes x, y. If their order differs
between LO and LA, then SeqMerge(LO, LA, LO) will be
taken from LA. If their order is identical in LO, LA, the
merge takes the order from LO (which is the same as the
order in LA). Thus, the second property holds.

The third property is clearly true, since SeqMerge(LO,
LO, LB) always takes the order from LB .

Lemma 15 (Cumulative-editing property of Sequence Merge).
The Sequence Merge algorithm can be applied cumulatively,
i.e. if LA, LB and L′A, LB are well-separated with respect

to LO and if L′A is a revision of LA, then

SeqMerge(LA, L′A, SeqMerge(LO, LA, LB))
= SeqMerge(LO, L′A, LB).

Proof. Given arbitrary non-added x, y, we wish to show that
both sides set the order identically. We consider two cases:

• LA and L′A agree on the order of x, y. Then
SeqMerge(LA, L′A, SeqMerge(LO, LA, LB)) will take
the order from SeqMerge(LO, LA, LB), which in this
case will be the same order as SeqMerge(LO, L′A, LB).

• LA and L′A disagree on the order of x, y. Since L′A is a
revision of LA, it must be the case that LO and L′A also
disagree on the order, so both sides of the above equation
set the order identically.

Now we consider an added node α, and we wish to show that
both sides insert α at the same position in the output. If α ∈
LB , well-separatedness guarantees that αwill be inserted af-
ter the same non-added node in both SeqMerge(LO, L′A, LB)
and SeqMerge(LO, LA, LB), and likewise for the left-hand
side of the equality. Similarly, if α ∈ L′A and α /∈ LA, both
sides of the equality position α identically.

Finally consider the case where α ∈ LA ∩ L′A. We know
SeqMerge(LO, LA, LB) will contain the same set of nodes
having edges to α as LA contains, so the left-hand side of the
equation will take the ordering for α from L′A, resulting in
the same positioning that the right-hand side assigns.

Lemma 16 (Associativity of Sequence Merge). The Se-
quence Merge algorithm is associative, i.e. if LA, LB , LC
are well-separated with respect to LO, then

SeqMerge(LO, SeqMerge(LO, LA, LB), LC)
= SeqMerge(LO, LA, SeqMerge(LO, LB , LC)).

Proof. Given arbitrary non-added x, y, we wish to show that
both sides set the order identically. We consider two cases:

• LO and LA agree on the order of x, y. In this case, the
right side takes the order from SeqMerge(LO, LB , LC),
and so does the left side, since SeqMerge(LO, LA, LB)
takes the order from LB .

• LO and LA disagree on the order of x, y. In this case, the
right side will take the order from LA, and so will the
left side, since SeqMerge(LO, LA, LB) takes the order
from LA.

For an added node α, if α ∈ LB , the well-separatedness
ensures that SeqMerge(LO, LA, LB) and SeqMerge(LO,
LB , LC) place α after the same non-added element. Simi-
larly, if α ∈ LA, we see that α appears after the same non-
added element in SeqMerge(LO, LA, LB) and LA, and if
α ∈ LC , α appears after the same non-added element in
SeqMerge(LO, LB , LC) and LC .
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