
WANalytics: Analytics for a
Geo-Distributed Data-Intensive World

Ashish Vulimiriu Carlo Curinom Brighten Godfreyu

Konstantinos Karanasosm George Varghesem

u: UIUC <vulimir1,pbg>@illinois.edu m: Microsoft <ccurino,kokarana,varghese>@microsoft.com

ABSTRACT
Large organizations today operate data centers around the
globe where massive amounts of data are produced and con-
sumed by local users. Despite their geographically diverse
origin, such data must be analyzed/mined as a whole. We
call the problem of supporting rich DAGs of computation
across geographically distributed data Wide-Area Big-Data
(WABD). To the best of our knowledge, WABD is not sup-
ported by currently deployed systems nor sufficiently studied
in literature; it is addressed today by continuously copying
raw data to a central location for analysis. We observe from
production workloads that WABD is important for large or-
ganizations, and that centralized solutions incur substan-
tial cross-data center network costs. We argue that these
trends will only worsen as the gap between data volumes and
transoceanic bandwidth widens. Further, emerging concerns
over data sovereignty and privacy may trigger government
regulations that can threaten the very viability of centralized
solutions.

To address WABD we propose WANalytics, a system that
pushes computation to edge data centers, automatically op-
timizing workflow execution plans and replicating data when
needed. Our Hadoop-based prototype delivers 257× reduc-
tion in WAN bandwidth on a production workload from Mi-
crosoft. We round out our evaluation by also demonstrating
substantial gains for three standard benchmarks: TPC-CH,
Berkeley Big Data, and BigBench.

1. INTRODUCTION
Many large organizations today have a planetary-scale

footprint and operate tens of data centers around the globe.
Local data centers ensure low-latency access to users, avail-
ability, and regulatory compliance. Massive amounts of data
are produced in each data center by logging interactions
with users, monitoring compute infrastructures, and track-
ing business-critical functions. Analyzing all such data glob-
ally in a consistent and unified manner provides invaluable
insight. We refer to the problem of supporting arbitrary
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Figure 1: Running example

DAGs of computation over data born in geographically dis-
tributed data centers as Wide-Area Big Data (WABD),
and argue for solutions that are cross-data center bandwidth
conscious.

We introduce WABD using the running example in Fig-
ure 1. This example, derived from BigBench [21], is rep-
resentative of the data processing needs we observe in Mi-
crosoft production workloads. It is also consistent with data
processing pipelines at Yahoo! [20], Facebook [38], Twit-
ter [29], and LinkedIn [12]. Figure 1 shows three input data
sources: clickstream, storing Web server logs of user brows-
ing activities; reviews, capturing textual representations of
item reviews; and sales, a relational table storing transac-
tional records of item purchases. Unlike parallel databases
and Big Data systems, the data is distributed across “nodes”
(i.e., data centers) to reduce latency of Web server interac-
tions and not to scale-out the analytical framework. As a
result, we have no control on the base data partitioning : data
is born distributed; we only control data replication and dis-
tributed execution strategies. The DAG of operators shown
in Figure 1 depicts one of the many workflows run daily to
process the raw data and extract insight about user behav-
ior, sales performance, and item reception. In particular,
beside classical relational operators, this workflow includes
arbitrary computations that manipulate unstructured data
(session extraction and sentiment analysis) and ma-
chine learning stages (behavior modeling).

The practical relevance of data analysis like this one can
be seen in the dozens of single- and multi-machine relational
OnLine Analytical Processing (OLAP) systems [6, 7, 4, 10,
14], and more recently with the development of massively
scalable data processing frameworks [36, 39, 3, 40, 34], col-
lectively referred to here as Big Data systems. All these



systems provide sophisticated single-cluster analytics solu-
tions. Recent efforts [23] have focused on data replication for
disaster recovery, but their analytics components still oper-
ate on a single data center. We discuss the vast related work
in distributed databases and workflow management systems
in §4.

Companies deal with WABD today by copying remotely-
born data to a central location for analysis. Throughout
the paper we will refer to this as the centralized solution.
Any such solution is destined to consume cross-data center
bandwidth proportional to the volume of updates/growth of
the base data. Referring back to Figure 1, this consists of
copying the partitions for the three base data sources click-
stream, reviews, and sales, from the edge data centers to a
central location, and running the DAG leveraging standard
single-cluster technologies. For example, using a Hadoop
stack, one could use DistCP to copy data across HDFS in-
stances in each data center, Oozie to orchestrate the work-
flow, Hive for relational processing, MapReduce for session
extraction, OpenNLP for sentiment analysis, and Mahout
for behavior modeling. We prototyped this setup and gath-
ered initial numbers to quantify the cost of this approach.
Assuming daily runs of the DAG of Figure 1, 1 TB daily data
growth, and 10 data centers, we observe cross data center
traffic of 706 GB per day. (Other base data sources in the
original benchmark, not used by the DAG in Figure 1, make
up another 318 GB per day.)

The distributed solution we propose significantly reduces
this bandwidth cost. Further, we argue that any central-
ized solution is on a collision course with current technolog-
ical and geo-political trends: 1) data is growing much faster
than cross-data center bandwidth, and 2) growing privacy
and data sovereignty concerns are likely to result in govern-
ment regulation that threatens the viability of centralized
approaches (e.g., German-born data might not be stored in
US data centers). The table below summarizes how WABD
differs from classical database problems.

WABD Problem: Novel dimensions
Data Placement No control on data partitioning (only on replication)
Target Computation Arbitrary DAGs (vs relational)
Optimization Metrics Cross-data center bandwidth (abundant CPU/Storage)
New Constraints Data sovereignty + Heterogeneous bandwidth

To address the challenges of WABD, we build WANalyt-
ics, a system that supports arbitrary DAGs of computation
on geographically distributed data. WANalytics automati-
cally devises distributed execution plans and an accompa-
nying data replication strategy. These two aspects are ad-
dressed concurrently to minimize WAN bandwidth utiliza-
tion while respecting regulatory requirements. In designing
WANalytics we make three contributions:

1. We introduce a caching mechanism akin (for network-
ing) to syntactic view maintenance for arbitrary compu-
tations.

2. We explore the joint space of distributed execution plans
and data replication strategies, and propose a greedy
heuristic, and show its limitations.

3. We propose “pseudo-distributed measurement”, a tech-
nique that circumvents cardinality estimation by running
user queries as if they were distributed and measuring
their actual cost.

WANalytics vastly outperforms the centralized approach,
moving only 1.07 GB across data centers when tasked with
the DAG of our running example. We obtain similar re-

Data
center

#2
Data center Manager

Workload 
analyzer

Analyst

End-user-facing 
database (handles 

OLTP)

Analytical
Queries (DAGs)

End-users

Transactions

Coordinator

Results

Local   ETL

Data
center

#3

Data
center

#1

Cache
Hadoop

Hive Mahout

Oozie
(workflow 
execution)

Measurements

Distributed
execution plan

Figure 2: WANalytics architecture

sults (over 250× bandwidth reduction) on a large produc-
tion workload from Microsoft, on TPC-CH [16], and Big-
Bench [21] benchmarks, and show more modest gains for
the Berkeley Big Data Benchmark [13] (§3).

We conclude by discussing how WANalytics can serve as a
starting point to address data sovereignty concerns, and by
listing several open questions regarding approximate query
answering, differential privacy, query optimization, view se-
lection and incremental maintenance for the emerging prob-
lem of Wide-Area Big Data.

2. WANalytics OVERVIEW
WANalytics pushes computation to edge data centers, and

replicates the base data when needed, while respecting data
sovereignty constraints. We describe the architecture, the
components, and two new techniques (pseudo-distributed
measurement and syntactic view maintenance) that underly
our system.

2.1 Architecture
WANalytics consists of two main components (see Fig-

ure 2): (1) a runtime layer that executes user DAGs in a
distributed way across data centers, moving data accord-
ing to the execution and data replication strategies devised
by (2) a workload analyzer that continuously monitors and
optimizes the user workload.

Runtime layer comprises a centralized coordinator in a
master data center that interacts with data center managers
at each edge data center. Users submit logical DAGs of
computation (such as the one in Figure 1) to the coordi-
nator. The coordinator in turn asks the workload analyzer
to provide a physical distributed execution plan for a given
DAG. The physical plan explicitly specifies where each stage
is going to be executed, and how data will be transferred
across data centers. We leverage Apache Oozie [1] to handle
the mechanics of orchestrating distributed execution, and
simple faults, while we provide purpose-built components
to collect statistics on job execution and base data growth
(e.g., volume of updates on the base data). By design our
system can support DAG operators expressed in any frame-
work compatible with Oozie (e.g., Hive, Pig, MapReduce,
Spark). After execution completes, job statistics from each
data center manager are sent to the workload analyzer to
aid future query optimization. As part of our runtime layer
we developed a data transfer optimization that minimizes
the redundancy of subsequent transfers (§2.2).



Figure 3: Optimal strategy for session extraction ./
sales summarization

Workload analyzer WANalytics is targeted towards appli-
cations with a slowly-evolving core of recurring jobs (DAGs)
that make up the bulk of the workload. This is a reason-
able assumption in the context of WABD, as we confirm by
inspecting several production workloads at Microsoft. The
workload analyzer jointly optimizes all the DAG execution
plans of the workload, along with the data replication pol-
icy. The resulting search space is inherently vast, and we
thus propose a greedy heuristic to explore it efficiently in
§2.3. During this optimization step the system translates the
logical input DAGs into fully qualified distributed physical
plans. We take a two-step approach, in which we first gener-
ate an optimized centralized plan and then add distribution
to it, as often done in the past [27]. We handle conservatively
all operators with unknown semantics/requirements, i.e., we
assume they can only be run in a single data center on local
data. As an example consider the machine learning step of
behavior modeling in our running example. On the other
hand, we leverage the known semantics of relational oper-
ators and MapReduce jobs when possible. For example we
detect that the sentiment analysis stage in our running
example is a map-only job, and we can thus “push-down”
its execution to each edge data center. Figure 4 shows the
results of this optimization for our running example.

The analyzer costs each alternative execution by means
of the technique we discuss in §2.4. The workload analyzer
also establishes a policy for base data replication, i.e., it
decides whether for each base data source it is worthwhile to
maintain a replica in another data center to reduce network
transfers.

The workload analyzer is run every epoch (e.g., once a
day). This allows us to continuously assess the performance
of current strategies and investigate alternative options. The
goal is to progressively improve upon the current strategies
by carefully exploring the space. Each change of strategy is
carefully vetted (§2.4), and we favor robust plans, since the
cost of mistakes in our environment is very high.

We next discuss: an optimization we deploy to reduce the
cost of data transfer (§2.2); the algorithm used by our proto-
type of the workload analyzer (§2.3); and the technique we
use to make it possible to cost alternative execution strate-
gies (§2.4).

2.2 Data transfer optimization
The unique setting we consider, in which each “node” is

a full data center with virtually limitless CPU and stor-

age capabilities, and connectivity among nodes is very
costly/limited, lends itself to a novel optimization. We cache
all intermediate results generated during DAG execution at
each data center, and systematically compute diffs1 to re-
duce cross-data center bandwidth. Whenever a source data
center S sends the result for a computation C to a destina-
tion data center D, both S and D store a copy of the result
of C in a cache tagged with 〈signature(C)〉2. The next time
S needs to send results for C to D, it evaluates C again,
but instead of sending the result afresh, it computes a diff
between the old and new result, and sends the smaller be-
tween the diff and new result. D then applies the diff onto
its copy of the old result.

In many cases a change in the base data affects only part
of the output of C, hence a significant data transfer bene-
fit can be obtained by our data transfer optimization. Our
approach is agnostic of what C does, but systematically re-
moves redundant data transfers, by detecting overlap. This
is done at the cost of increased computation and storage re-
quirements on each data center (to cache data and compute
diffs).

Interestingly, this form of caching helps not only when
end-users submit the same DAG repeatedly, but also by
eliminating redundant transfers across DAGs sharing com-
mon sub-computations. In the TPC-CH benchmark, 6 dif-
ferent DAGs all compute slightly different aggregates on top
of the same (relatively data-intensive) join. Caching reduces
the data transfer for these DAGs by 5.99×.

In a sense, our data transfer optimization is a syntactic
form of view maintenance for arbitrary computations. We
materialize an implicit view the first time a computation ar-
rives, and lazily refresh it at every subsequent query that
overlaps this. The purely syntactic nature of this process
allows it to function for arbitrary computation. However,
compared to classical relational view maintenance mecha-
nisms, our cache is likely to waste computation/storage, and
possibly miss opportunities for optimization.

2.3 Workload analyzer
The workload analyzer takes as input a set of logical DAGs

and the base data natural partitioning. It then determines
the combination of choices for the following three factors
that would minimize total bandwidth usage: (1) the phys-
ical operator to use for tasks that accept multiple imple-
mentations (e.g., hash, broadcast or semi join), (2) the data
center where each task is executed (respecting sovereignty
constraints), and (3) the set of data centers to which each
partition of the base data is replicated. These decisions are
difficult for several reasons.

First, finding the best execution strategy for each task in
a DAG in isolation, is by itself non-trivial. For example, the
choice of optimal join execution strategy is a complicated
function of several parameters: the sizes of the base tables,
the rates at which they are updated, the selectivities of each
of the task in the DAG, etc. Figure 3 shows the best join
strategy for the join between the output of the session ex-

1Diffs are computed at the record level, if the record format
is known, or on the binary representation otherwise.
2signature(C) = depth-first traversal of the sub-DAG in-
duced by C. This mechanism is imperfect – e.g. changing
the order in which DAG edges are listed can change the sig-
nature and cause a cache miss – but is a reasonable starting
point.
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Figure 4: Placement of the running example DAG

traction and sales summarization tasks from Figure 1, as
a function of the rate at which the sales and the click-

stream tables are updated. Depending on the update rates
of the base tables, one of the following strategies dominates:
copying both tables centrally, broadcasting the updates of
the least modified table, or performing a distributed hash
join (i.e., re-distributed both tables via hashing). Second,
the choice of execution strategy for a DAG node may affect
the choice of strategies for other DAG nodes, as this choice
determines the partitioning and placement of the node’s out-
put data. In a workload with n nodes (in one or more DAGs)
and up to k possible execution strategies per node, the an-
alyzer would have to explore a O(kn) search space. Third,
the choices made for nodes of different DAGs influence each
other, as they might leverage a shared data replication strat-
egy, or be affected by the optimization discussed in §2.2.
Hence, we propose a Greedy Heuristic that performs remark-
ably well in practice, while exploring only a small subset of
the search space.

Algorithm 1 Greedy Heuristic
for all DAG G ∈ workload do

for all task t ∈ toposort(G) do
t.completed = false
if ∃ parent p of t such that p.completed = false then

assign a default strategy to t
else

if all strategies for t have been evaluated then
for all data source S ∈ input(t) do

test if replicating S reduces bandwidth further

assign the lowest cost strategy to t, and replication
strategy to S

t.completed = true
else

explore next strategy for t

Greedy Heuristic The heuristic (Algorithm 1) optimizes
each node of each DAG in isolation, proceeding from the
source nodes and moving greedily outward in topological
order. For each node, we evaluate all strategies compatible
with sovereignty constraints, using pseudo-distributed mea-
surement (§2.4) to measure their costs, and greedily pick the
lowest cost alternative at that node. In the process, the sys-
tem also evaluates whether systematically replicating any of
the input base tables can help amortize transfer costs among
DAGs.

Figure 4 shows the resulting execution strategy for the
DAG in our running example. The arrows in red are cross-
data center data transfers, and add up to 1.07 GB. Most of
the cost is incurred while broadcasting the output of senti-
ment analysis during join computation. The alternatives–
such as using a semi-join, or redistributing via hashing—
all turn out to be more expensive. In our running example,

sales ⨝

orderID, productID

orderID, productID

productID1, productID2 aggregate productID1, productID2,
orderCount threshold

Figure 5: Example where heuristic fails

WANalytics decides not to replicate base tables, but replica-
tion proves fundamental for all workloads in our experiments
(§3).

This simple heuristic requires a limited number of mea-
surements (as it explores just a small portion of the search
space), and experimentally works well whenever DAGs “re-
duce” data volumes at each subsequent stage. This seems
common in practice: it is true of 98% of all the DAGs in our
workloads.
Limitations This heuristic can fail when confronted with
DAGs that “expand” the input data they consume (before
optionally condensing it). Consider the DAG in Figure 5,
a simplified version of query Q1 in the BigBench bench-
mark. The DAG starts from a table listing items ordered
by customers (size n), performs a self-join on the table to
find pairs of items that are ordered together (worst case size
O(n2)), computes frequencies of pairs, and returns frequent
pairs. The heuristic would push the join down and run it
distributed, thus exploding data in edge data centers, in-
curring unnecessarily large data transfer during the second
stage.

We are actively working on a non-linear integer program-
ming (NLIP) model that can explore the search space more
systematically. We currently have a limited IP formulation
for the special cases when either all nodes in the DAG are
SQL operators or all the nodes are MapReduce operations
— it turns out that this formulation does identify the correct
strategy in this example. However, at the time of this writ-
ing, the arbitrary DAGs we allow in our system are beyond
our reach.

2.4 Pseudo-distributed measurement
Like most optimizers, our workload analyzer must cost

each strategy it considers. Traditional cardinality estima-
tion techniques, based on data statistics and histograms,
are insufficient for the arbitrary computations we target.
We propose pseudo-distributed measurement, a mechanism
that allows us to “measure” the cost of running a DAG as if
it was executed according to a different strategy.

Consider the DAG in Figure 1, and assume the system is
currently deployed in a centralized manner (i.e., all data are
replicated centrally), but we want to explore the cost of a
distributed execution (e.g., one in which session extrac-

tion is run on each data center). The analyzer would need
to estimate data volumes produced by each operator when
run on the portion of the input data stored at each data
center. This information is not directly available when the
query is run centralized (as input data are combined during
operator execution and their provenance is lost).

To estimate data sizes when multiple (input or interme-
diate) data partitions are housed in a single physical data
center, WANalytics simulates a virtual data center topol-
ogy in which each partition of input data is in a separate
data center. This is done by decomposing an operator O in
the DAG into multiple sub-operators Oi, each executing on
a portion of the data and a final stage Oc combining their



results – this is done only for operators whose semantics is
compatible with such decomposition. We enrich the data
with a “provenance” field that tracks the data centers where
they were born. This allows Oi to filter the data and run
only on data coming from data center i. We then measure
the size of each Oi output and infer the cost of running O dis-
tributed. In the session extraction example, WANalytics
would create [# of DCs] separate tasks that operate on each
partition of the clickstream dataset separately, computing
session statistics for each user at each data center, followed
by a simulated data transfer to a virtual central node that
computes the final aggregate session statistics for each user.

Pseudo-distributed measurement does affect execution
performance (up to 20% in our experiments). This can
be mitigated by increasing parallelism of execution in most
cases (not our focus here). Most importantly, each measure-
ment runs within a single data center, thus never increases
the volume of data transferred between data centers. We
omit the details of how the measurements are executed when
the execution plan is already distributed.

To summarize, pseudo-distributed measurement consists
of a costly but very accurate measurement of the execution
costs under different execution strategies, achieved by means
of DAG rewriting and actual execution.

Limitations To explore all options considered by the
heuristics of Section 2.3, WANalytics has two options: (1)
run a different pseudo-distributed measurement every time
the DAG is submitted by the user, or (2) run dedicated jobs
that have the sole purpose of costing different options. In
either case, if d is the longest path of any of the DAGs in the
workload, and k the maximum number of strategies available
for any task, we might require up to k∗d epochs/submissions
to collect all needed measurements.

This could be slow in certain settings, and indicates
that hybrid solutions, combining the low-cost of classical
cardinality estimation using statistics/histograms with the
high-precision of pseudo-distributed measurement, are likely
needed.

3. EXPERIMENTAL EVALUATION
In this section, we compare WANalytics with a centralized

deployment over various workloads.

3.1 Workloads and Experimental Setup
Microsoft production workload: This use case con-
sists of a monitoring infrastructure collecting tens of TBs
of service health/telemetry data daily at geographically dis-
tributed data centers. The data are continuously replicated
to a central location, and analyzed by means of a mix of
purpose-built near-real time analysis and Hive-based batch
analytics. The bulk of the load is produced by few tens of
canned DAGs producing aggregate reports on service utiliza-
tion and infrastructure health, and by thousands of ad-hoc
analytical queries (submitted over a 6 month period of time
by the engineering team for triaging/testing purposes). The
complexity of the DAGs ranges from small to medium (up
to tens of stages).
BigBench: This workload [21] has been recently proposed
as a first step towards a SPEC standardization. It comprises
a relational portion, TPC-DS, and the two non-relational
sources we show in our running example, clickstream and
reviews. In our multi-data center setup, we assume data are
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Figure 6: WANalytics vs centralized baseline on Mi-
crosoft production workload

produced at edge data centers, and that accesses by the same
user are logged in one location. This reasonable assumption
of co-location lowers the cost of joins, but is not required for
WANalytics to work correctly.
TPC-CH: The TPC-CH benchmark [16] models the database
for a large-scale product retailer such as Amazon, and is a
joint OLTP/OLAP benchmark, constructed by combining
the well-known TPC-C OLTP benchmark with the TPC-H
OLAP benchmark. In our experiments, we assume that the
TPC-C portion of the workload is exercised locally at each
edge data center, while the TPC-H analytics are meant to
be run on the overall data.
Berkeley BigData Benchmark: This benchmark [13],
developed by the AMPLab at UC Berkeley, models a
database generated from HTTP server logs3. Once again
we assume that the raw data are logged by web servers at
edge data centers.

Experimental setup. We ran our experiments across three
geographically distributed Azure data centers (US, EU,
Asia), and on a large on-premise cluster, on which we sim-
ulate a multi-data center setup. Specifically, we ran the
benchmark-based experiments in both deployments for up
to 25 GB of data transfers. Experiments on the larger Mi-
crosoft workload and on benchmarks in the 25 GB to 10 TB
range have been conducted exclusively on the on-premise
cluster. This is because each of the multi-terabyte runs for
the baseline centralized approach would have otherwise cost
thousands of dollars in cross-data center bandwidth. The
on-premise cluster consists of 120 machines, each with 128
GB of RAM, 32 cores, and 12 x 3 TB of drives. The inter-
connect is 10 Gbps within a rack, and 6 Gbps across any
two machines.

3.2 Comparing WANalytics with Centralized
The software stack we use in these experiments is based on

a combination of Oozie, Hive, MapReduce, OpenNLP, Ma-
hout and DistCP. Since our focus is on network bandwidth
consumption and not query execution performance, we ex-
pect similar results from alternative choices of stack. All

3This benchmark has queries that are parametric. We set
the parameter to the median value of 0.5 for this experi-
ments.



network transfers, both baseline and WANalytics, are gzip-
compressed. For the centralized baseline we always pick the
best between log-shipping and batch-copying.

Figure 6 shows the results of running WANalytics and the
centralized baseline on the Microsoft workload (axes hidden
due to proprietary nature of the data). Figure 7 shows an
equivalent set of experiments for the three standard bench-
marks we consider. On the y-axis we report the cross-data
center network bandwidth consumed by each approach, for
different volumes of update/growth of the base data be-
tween runs of the analytical workload. This is consistent
with our observation of production workloads, where anal-
ysis is run on a fix daily schedule, while the raw volume of
data growth/update changes with the service popularity (in
this case, growing aggressively over time). Our workload an-
alyzer consistently picks the lowest among centralized and
distributed solutions from Figures 6, 7. To avoid crowding
the figures, we omit these lines. The key insights from these
experiments are:

1. The centralized approach grows linearly with raw
data updates/growth. Note that slope is < 1 due to com-
pression.

2. Controlling base-table replication is key to lower
bandwidth consumption for frequently-read, rarely-updated
tables (e.g., dimension tables in TPC-CH).

3. At low update rates, centralized outperforms dis-
tributed for two of the four workloads. This is
because frequent analytics operate on mostly unchanged
data.

4. At high update rates distributed outperforms
centralized by 3× to 360×. The larger advantages
accrue for workloads where we can push operators to
edge data centers more effectively. The Berkeley Big-
Data Benchmark results are dominated by a single query,
which requires to move large amounts of data to compute
a top-k.

5. At low/medium update rates caching is effective.
This is due to the large redundancy among the answers to
subsequent runs of overlapping queries. By contrast, at
high-update rates, and for queries with no overlap (Fig. 6)
caching is not effective, since transfer redundancy is al-
ready minimal.

Overall, these results are very encouraging, and confirm
a substantial opportunity to address WABD by means of
distributed execution of complex DAGs.

4. RELATED WORK
Distributed databases Although analytical query pro-
cessing has been extensively studied in the database lit-
erature [14], few papers have considered a wide area dis-
tributed setting such as ours. Distributed query processing
was surveyed in [27] with a focus mostly on join processing.
The optimization of queries with aggregations is presented
in [10]. Recently, [18, 28] focused on geo-replication for
OLTP workloads. PNUTS/Sherpa [17] supports geograhi-
cally distributed partitions, laying out data to optimize la-
tency (by moving a “master” copy close to where it is com-
monly used). Mesa [23] focused on geo-replicated data ware-
housing, whereas Riak [5] also provides multi-datacenter
replication. WANalytics differs from these approaches, as it
focuses on arbitrary DAGs, and it supports geo-distributed
execution of DAGs of computation.
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Single-cluster scale-out platforms Shared-nothing par-
allel databases, such as Netezza [6], Vertica [7] and Green-
plum [4], began as a means to accommodate ever-increasing
data in data warehouses. More recently, other flavors of
scale-out systems have emerged with systems like Hive [36],
Impala [3], Shark [39] and SciDB [37]. Unlike our setting,
all these scale-out solutions control partitioning and are de-
ployed in single clusters. In fact, our work is complementary:
WANalytics could leverage these systems as building blocks.

Workflow management systems Recently, various sys-
tems for richer workflow management have been proposed,
e.g., Pig [34], Spark [40], Oozie [1], Storm [2]. These systems
are typically not geo-distributed and lack a sophisticated op-
timizer. Conversely, the need for distribution was identified
early on in scientific workflow systems [11]. Pegasus [19]
is a representative example, which tailors the execution of
an abstract DAG to a specific Grid environment. Although
relevant, Pegasus does not consider data replication during
placement of tasks.

Query optimization Many works have considered query
optimization in distributed databases [27]. R* [31] was
among the first to add distribution to the traditional dy-
namic programming optimization algorithm. Similar to our
work, many systems reduce the complexity of optimization
using a two-step centralized-to-distributed optimization [27].
Recent work on multi-query optimization [22] also relates to
our multi-DAG approach. RoPE [8] and DynO [26] gather
runtime data statistics, but do not change the computation
to facilitate extra measurements. Babu et al. systematically
addressed the optimization of MapReduce workflows [30,
24]. Their approach can be used to optimize our initial cen-
tralized plan, but does not consider our geo-distributed sce-
nario. Overall, optimizing arbitrary DAGs remains a hard
problem; no previous work has sufficiently addressed the mix
of constraints and network-focus of WABD.

Data replication Most research in distributed databases
focuses on static techniques for data replication [27]. More-
over, the problems of query optimization and data repli-
cation are tackled independently despite being interrelated.
On the contrary, in WANalytics, we tackle both problems at
once. Data placement in the context of Pegasus was stud-
ied in [15], assuming prior knowledge of the workflows and
placing replicas asynchronously before execution.

Other architectures Sensor networks share our assump-
tion of expensive network bandwidth with respect to com-
pute/storage [32]. The obvious differences in scale (one
micro-controller vs. one data center), and the much broader
computation model we assume, make most techniques from
this space not directly applicable, though relevant as an in-
spiration. Likewise, stream-processing databases [25, 2] con-
sider a more restrictive model than ours, in which data are
always produced at edge nodes and are not replicated. Work
in the CDN setting [35] has begun to address geo-distributed
analytics, but with much simpler data models.

5. CONCLUSION AND OPEN PROBLEMS
The recent explosion of data volumes has reignited the fo-

cus on scale-out data analytics, and has fostered the world
of Big Data systems. While these paradigms suffice for a
single data center, we believe we have reached a new inflec-
tion point where the combination of big and geographically
distributed data requires new approaches for geo-distributed

analytics processing to minimize wide-area bandwidth costs.
Centralized approaches together with heuristics such as data
reduction or ad-hoc distributed querying may suffice in the
short term. However, they are not sustainable as data vol-
umes grow relative to transoceanic bandwidth and regula-
tory concerns become paramount.

In this paper we presented an architecture for solving the
Wide-Area Big Data problem. We showcase the unique
features of this problem, and introduce new techniques to
cope with it. Our prototype implementation, WANalytics,
achieves over 250× bandwidth reduction in a Microsoft pro-
duction workload, and significant gains for a range of stan-
dard benchmarks. Besides presenting an initial proposal, we
hope our paper serves as a problem statement and a call to
arms. Many challenges remain open including:
Improved workload optimization The optimization prob-
lem we tackle is challenging, combining distributed (multi-
)query optimization and data replication. The proposed
heuristic only scratches the surface and much needs to be
done in this space. Adapting recent advances on view selec-
tion and maintenance, as well as cardinality estimation, to
our more-than-relational, geo-distributed setting is an inter-
esting avenue.
Approximate query answering lends itself well to build
bandwidth-conscious WABD solutions, where trading preci-
sion for network costs is very appealing [9].
Fault tolerance / Consistency / Latency are not ad-
dressed here, but are clearly needed to make WABD a real-
ity; coordinating replication for disaster recovery and query
answering is also intriguing.
Privacy WANalytics respects raw data storage require-
ments, but does not limit data moved by queries. This suf-
fices for scenarios where all queries are vetted before they
can be executed, but automated solutions incorporating dif-
ferential privacy techniques [33] would be interesting to ex-
plore.

In conclusion, WABD is a new spin on classic database
problems that is growing in relevance. While it can benefit
from existing techniques, significant novel research will be
needed.
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