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Abstract— Sparsity is characteristic of a signal that potentially
allows us to represent information efficiently. We present an
approach that enables efficient representations based on sparsity
to be utilized throughout a signal processing system, with the aim
of reducing the energy and/or resources required for computa-
tion, communication, and storage. The representation we focus on
is compressive sensing. Its benefit is that compression is achieved
with minimal computational cost through the use of random
projections; however, a key drawback is that reconstruction is
expensive. We focus on inference frameworks for signal analysis.
We show that reconstruction can be avoided entirely by trans-
forming signal processing operations (e.g., wavelet transforms,
finite impulse response filters, etc.) such that they can be
applied directly to the compressed representations. We present a
methodology and a mathematical framework that achieve this
goal and also enable significant computational-energy savings
through operations over fewer input samples. This enables
explicit energy-versus-accuracy tradeoffs that are under the
control of the designer. We demonstrate the approach through
two case studies. First, we consider a system for neural prosthesis
that extracts wavelet features directly from compressively sensed
spikes. Through simulations, we show that spike sorting can
be achieved with 54x fewer samples, providing an accuracy of
98.63% in spike count, 98.56% in firing-rate estimation, and
96.51% in determining the coefficient of variation; this compares
with a baseline Nyquist-domain detector with corresponding
performance of 98.97%, 99.69%, and 97.09%, respectively. Sec-
ond, we consider a system for detecting epileptic seizures by
extracting spectral-energy features directly from compressively
sensed electroencephalogram. Through simulations of the end-
to-end algorithm, we show that detection can be achieved with
21x fewer samples, providing a sensitivity of 94.43%, false
alarm rate of 0.1543/h, and latency of 4.70 s; this compares
with a baseline Nyquist-domain detector with corresponding
performance of 96.03%, 0.1471/h, and 4.59 s, respectively.

Index Terms— Compressed sensing, digital signal processing,
linear systems, machine learning, spike sorting, seizure detection.

I. INTRODUCTION

N NATURE, signals often do not represent the informa-
tion of interest in the most efficient manner. Sparsity is
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Fig. 1. Nyquist-domain EEG is sparse in the Gabor basis (center panel),

enabling substantial compression (bottom panel); although accurate recon-
struction is possible (top panel), reconstruction is computationally intensive,
motivating signal analysis directly using the compressed signal.

a property of signals that potentially allows us to represent
information much more efficiently. Sparse representations cap-
ture most or all information in a signal via a small number of
samples. Such representations can significantly benefit several
functions, such as communication, storage, and potentially
computation. Compressive sensing is one specific technique
that exploits sparsity in a transform basis to efficiently repre-
sent signals using simple random projections [1]. It is starting
to find application in several resource-constrained sensing
systems, such as environmental sensors, visual networks, and
patient monitors [2]—[5]. However, compressive sensing signif-
icantly alters the Nyquist-domain samples; Fig. 1, for instance,
shows how an electroencephalogram (EEG), which is sparse in
the Gabor basis, is altered as a result of random projections in
compressive sensing. Consequently, before signal processing
can be performed using conventional frameworks, it becomes
necessary to reconstruct the original Nyquist-domain signal.
The challenge is that reconstruction from random projections,
can be extremely costly. In this paper, we focus on transform-
ing signal-processing operations so that they can be applied
directly to the compressed signals. We focus on data-driven
inference frameworks for analyzing sensor signals. In this
case, our approach enables the use of compressively-sensed
signals while completely avoiding signal reconstruction. Our
transformations also significantly reduce computational energy
by enabling processing over fewer input samples. Our specific
contributions are as follows.

1) For the first time, we present a mathematical frame-
work to derive compressed-domain equivalents of linear
signal-processing functions. We consider both rate-
preserving systems [e.g., finite impulse response (FIR)
filtering] as well as multirate systems (e.g., wavelet
transforms, downsampling, etc.).
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2) We present an approach that solves for random pro-
jections of a processed signal, thereby introducing
important designer-controllable knobs for system-level
tradeoffs. First, the projections can be used to derive
an exact solution for the compressed-domain equiva-
lents. Second, the projections can be used to derive
approximate solutions, wherein fewer signal-processing
operations are required, thereby enabling a new knob for
computational power management. This enables energy
savings while ensuring the required end-to-end perfor-
mance for the system.

3) To illustrate our approach for rate-preserving sys-
tems, we derive compressed-domain equivalents of
wavelet computations for neural prosthesis. We use the
compressed-domain features to sort spikes and infer
statistical parameters, which can be used to synthesize
control function for prosthetics. We show that we can
achieve system performance similar to an approach
where features are extracted from signals that are first
reconstructed.

4) To illustrate our approach for multirate systems, we
derive compressed-domain equivalents for downsam-
pling and FIR filtering in a seizure-detection system.
We provide an exact solution for the compressed-domain
operations and demonstrate a significant improvement in
performance compared with a least-squares approximate
solution [6], which limited the performance that was
previously achievable.

The rest of this paper is organized as follows. In Section II, we
present background on compressive sensing and related work
in compressed-domain analysis. In Section III, we present
system models that will enable a quantitative evaluation of the
approach. In Section IV, we describe our approach for deriving
compressed-domain processing functions. In Section V, we
describe the specific metrics used to evaluate system-level
tradeoffs. We then provide experimental results from two case
studies: 1) a neural-prosthesis system, described in Section VI
and 2) a seizure-detection system described in Section VII.
Finally, we conclude in Section IX.

II. BACKGROUND

In this section, we present background on compressive sens-
ing. We also review related work that focuses on processing
applied to compressed data vectors.

A. Compressive Sensing

Compressive sensing is a technique that can be used to
compress an N-sample signal x, which is sparse in a secondary
basis ¥; e.g., EEG is sparse in the Gabor basis [7] and spike
data are sparse in the wavelet basis [8]; the sparse dictionary
Y can be learned by training on the data, and such data-driven
bases often outperform predefined fixed dictionaries [9], [10].
Thus, if we can represent x as W¥s, where s is a vector of
C-sparse coefficients, we can use a projection matrix ® to
transform x to a set of M [O{Clog(N/C)} < M « N]
compressed samples (denoted by X) as follows:

XMx1 = PMxNXNx1. (D
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The compression factor ¢ = N/M quantifies the amount
of compression achieved by the projection. For accurate
recovery of x from X, ® needs to be incoherent with ¥;
an M x N dimensional matrix ®, whose entries are inde-
pendent identically distributed (i.i.d) samples from the uni-
form distribution U(41, —1) or from the normal distribution
N(0, 1), is often maximally incoherent with ¥ [1]. Deriv-
ing ® from U(+1,—1) also leads to low-energy compres-
sion since the projection is reduced to simple additions and
subtractions.

Although sensing can thus incur very little energy, the
reconstruction of x from X can be costly. We see from (1)
that X is underdetermined (i.e., knowing only X and &, there
are an infinite number of possible solutions for x and, hence,
for s). However, since x is sparse in ¥, the sparsest solution
for s is often the correct solution with high probability. One
common approach used to determine the sparse solution is to
solve the following convex optimization problem:

minimize ||s|; subject to X = ®P¥s. 2)

The reconstructed signal is then given by xg = Ws*,
where s* is the optimal solution to (2). Although (2) requires
only a small number of measurements (M <« N) to enable
accurate recovery, even with the most efficient approach,
the complexity of solving the optimization problem can be
prohibitive on typical power-constrained platforms, such as
sensor nodes [11]-[14].

B. Related Work

Due to the challenges associated with signal reconstruction,
compressive sensing has primarily been used in applications
where the sensor nodes acquire and relay data to a remote
base station for analysis [5], [7], [15]-[17]. Emerging appli-
cations, however, have emphasized the need for on-node
analysis [18], [19]. Random projections, which are used in
compressive sensing, preserve inner products of signals. Since
inner products are at the core of several machine-learning
algorithms, the application of machine-learning frameworks
to compressively-sensed data has thus recently received some
attention. Theoretical error bounds for using generative and
discriminative classifiers with compressively-sensed signals
have been explored in [20] and [21], respectively. Similar
work has shown bounds of O(v/M) and O(log M/v/M)
for compressed-domain classification and regression, respec-
tively [21]-[23]. Applying principal component analysis and
manifold learning to compressively-sensed signals has also
been explored [24], [25]. An important aspect of exploit-
ing inference frameworks for signal analysis, however, is to
develop an ability to process signals before classification in
order to create data representations based on critical signal fea-
tures [26]. In [6], we presented an approach to extract specific
signal features from compressively-sensed EEG. Our approach
was based on a least-squares solution to the compressed-
domain functions. We demonstrated accurate seizure detection
up to & = 10x. In this paper, we introduce a new auxiliary
matrix in the regularized equations to achieve an exact solution
for any linear signal-processing function in the compressed
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Fig. 2. Reconstruction is bypassed in CA to provide significant savings in
computational energy.

domain. This approach retains performance up to much higher
values of ¢ than in [6]. The new auxiliary matrix also
introduces previously unexplored knobs, which are under the
control of a designer, to significantly reduce computational
energy based on the accuracy needs of the system.

III. OVERVIEW OF THE SYSTEM MODELS

Before describing the proposed methodology, we define
three system models that we use for comparisons. Fig. 2
shows the generalized system approaches. First, Nyquist analy-
sis (NA) is defined as the usual approach wherein the embed-
ded signals are time-domain representations obtained through
Nyquist sampling. Second, reconstructed analysis (RA) is
defined as an alternate approach wherein a compressed signal
representation is initially received, but is then reconstructed
before processing (which is represented by the matrix trans-
formation H). RA corresponds to the system model most
commonly used with frameworks like compressive sensing
[5], [27]. Third, compressed analysis (CA) is defined as
our targeted approach wherein the end-to-end embedded sig-
nals are representations based on compressive sensing. Since
the proposed methodology aims to explicitly enable energy-
accuracy tradeoffs in signal processing, comparisons between
CA and RA will enable us to isolate the impact on accuracy
due to these tradeoffs from the impact on accuracy due to com-
pression of the initial signal. Fig. 2 also shows the processing
stages used in each of the three approaches. Embedded signals
are first processed by a feature-extraction stage. Then, the
extracted features are used to develop classification models
and perform classification via an inference stage. Note that
in CA, we need to derive new signal-processing operations
(H) that enable us to obtain a representation of the targeted
features (with minimal distortion errors) directly from the
compressively-sensed signals. Thus, CA completely avoids
signal reconstruction. From a computational complexity point
of view, note that in CA, the derivation of H needs to be done
offline only once as opposed to doing signal reconstruction
online in RA for every incoming data vector, which can be
extremely energy intensive. Next, we describe our approach
of deriving the signal-processing operations required in the
feature-extraction stage of CA.

IV. PROCESSING DATA IN THE COMPRESSED DOMAIN

In this section, we first show the feasibility of compressed-
domain equivalents H for any signal-processing function,

which can be represented as a matrix operation H. We aim to
minimize the error in the inner product between feature vectors
(FVs), since, as described below, this is a key computation in
kernel functions for inference stages like classifiers. We show
that H permits very low distortion errors with respect to the
inner products between FVs.

Many powerful inference frameworks from the domain of
machine learning transform data into the Euclidean space by
employing signal-processing functions for feature extraction.
These frameworks then use linear or nonlinear classification
to perform inference over the data. The classification step
commonly utilizes a distance metric (e.g., 2-norm or inner
product in the Euclidean space) between FVs [28], i.e., classi-
fication can be achieved with only inner-product information,
rather then complete feature data. Connecting this with the
systems in Fig. 3, in NA, an N-dimensional signal x is
multiplied with an N x N matrix operator H to perform linear
processing that derives an FV y in the Euclidean space; as
we describe below, representing signal processing as a matrix
transformation enables the mathematics required to develop
the CA methodology. As an example, to realize FIR filtering
of time-domain signals (as in NA), H is simply selected to
implement convolution, wherein each row is a shifted version
of the system impulse response, thus realizing the multiply-
accumulate-shift operations required. The inner product of
y with other FVs is then used as the distance metric for
classifying the input signal x. Extending this to CA, we now
aim to process compressed representations of the input signal,
namely X = ®x, where ® represents the M x N random-
projection matrix used for compressive sensing. We seek to
find a matrix transformation H that leads to a representation
of a signal with the intended signal processing, but derived by
directly using X.

Need for Regularization: Suppose we can process each vec-
tor X in CA by a matrix operator H to derive the compressed-
domain FV y. A naive approach might be to find H such that
the output vector y equals y from NA. This gives the following
formulation:

y= y:>Hx—Hx=>Hx— Hox= H-= H(I) 3)
N
NxNNxM X N

However, with M < N, matrix H above corresponds to N x M
variables constrained by N x N equations. Such a system with
fewer variables than equations is overdetermined and has no
exact solution. In [6], we proposed an approach to regularize
the left hand side of (3) through ®. The resulting solution for
H was accurate only in the least-squares sense. We show next
how an auxiliary matrix @, which can be used instead of ®
for regularization, introduces additional degrees of freedom in
(3) and allows us to solve for H exactly. Instead of solving
for y = y [6] [as in (3)], we solve for some K-dimensional
projection @y of y. The elements of the K x N auxiliary matrix
© are now design variables along with H. Thus, we need to
solve for ® and H simultaneously in the following equation:

Oy=§ > OHx= A®x= OH = Ho, 4)
/IIV;N ,\r\MxN
KxN KxM
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Fig. 3. For any signal-processing function, which can be represented as a matrix H, we derive an equivalent operator H in CA. Since we are not interested
in the exact value of y, but in its distance from other processed signals, we solve for a random projection of y, which preserves the inner product of vectors.

With M < N, © and H together correspond to K x (N + M)
variables constrained by K x N equations. Thus, with more
variables than constraints, (4) will have an infinite number
of solutions. This lets us set constraints for finding unique
solutions that make several useful design options available.

1) It enables us to solve exactly for the compressed-domain
processing matrix H, avoiding additional error sources
in the processing.

By using a smaller value of K, it also permits us
to solve for an approximate H of smaller size. This
solution provides us with a knob to scale the number
of computations performed in CA based on the required
accuracy for solving (4).

2)

In addition, by introducing ®, (4) allows us to extend our
methodology from signal-processing operations where H is
a square matrix to those where H is a nonsquare matrix
(e.g., multirate system). We consider the above cases in the
Appendices and summarize the solution in the subsections
below.

Before proceeding, we parameterize the dimensionality of
© and relate it to the dimensionality of H; this will ease our
consideration of the scaling tradeoffs related to accuracy and
energy. The size of the compressed-domain processing matrix
H is governed by the size of ® and ® [see (4)]. Thus, in
addition to the compression factor ¢ = N/M, we define a
parameter called projection factor v for @ as follows:

v=N/K. (5)
Note that v > 1 (< 1) denotes a compressive (expansive)
projection ®. Similarly, £ > 1 (< 1) denotes a compressive
(expansive) projection ®. These, in turn, imply fewer (more)
computations associated with H.

A. Exact Solution for H When H is Square
(for Highest Accuracy)

Assuming H is a square matrix [e.g., discrete wavelet
transform (DWT) in NA], we present a solution for (4) in
Appendix A. We find that setting K = M (or v = ¢) leads
to a minimum error solution and results in the following
relationships:

H=S1V" and ® =HOH L. (6)

The solutions for ® and H have dimensionality M x N and
M xM (M <« N due to compression), respectively. Processing
vectors in CA (with an H that is smaller than H) would thus
reduce the number of computations as compared with NA.

B. Approximate Solution for H when H is Square
(for Designer-Controllable Energy Savings)

In Appendix B, we present a solution for ® and an
approximate H to save more computational energy in CA.

To derive the approximate solution, we take help of the
Johnson—Lindenstrauss (JL) lemma [29], which states that
the inner product of vectors is preserved under random pro-
jections. Our results show that @ = (<I>H’1)TI:I and each
row of H needs to be derived from the normal distribution
N(0, X), where X = VS—2VT. S is a diagonal and V is
a unitary matrix obtained from the following singular value
decomposition (SVD): (@H )T = USVT.

In this case, the solutions for @ and H have dimensionality
K x N and K x M (where K can be chosen to be smaller than
M or v > &), respectively. Such an approach (with a much
smaller H matrix) would reduce the number of computations
in CA below those required for the exact solution and save
additional computational energy. This energy saving comes at
the cost of accuracy in solving (4). However, we will present
a case study ahead that suggests that this cost can be small
and, in fact, we can reliably employ K < M (v > &).

Next, we show that our approach is also applicable to
multirate signal-processing systems, and we solve (4) when
H is a nonsquare matrix.

C. Solution for H When H is Nonsquare

For the case when H is of dimensionality L x N (L # N),
we again invoke the JL lemma to derive a near-orthogonal
matrix @ and solve for H using the SVDs of H and ®. The
derivation is presented in Appendix C, where we show that
® is of dimensionality K x L and its elements are drawn
from N (0, 1). We also show that H = OHUS VT, where
U, S, and V are derived from the SVD: & = VSUT.

Algorithm 1 shows the pseudocode (with the correct scaling
constants) that summarizes our approach of simultaneously
solving for ® and H under the three conditions described in
this section. For the case of a nonsquare L x N (L > N)
processing matrix H, the algorithm also shows (on line 15) an
optional step of orthogonalization (e.g., by the Gram—Schmidt
process) before deriving B, A, and H. This ensures a perfectly
orthonormal @ when its row rank is greater than the column
rank. Next, we describe system-level metrics that will be used
to evaluate our approach in CA.

V. METRICS USED TO EVALUATE THE
PROPOSED APPROACH

The approach of the previous section opens up many
system design options. To understand the associated accuracy
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Algorithm 1 Find Compressed-Domain Processing Matrix H

Require: projection dimension K and matrices ® and H
Ensure: O and H with ®H = H®
1: Imit: N— # cols(®); M« # rows(®@); L— # rows(H)
2: if L = N then
3 DT:=®H; USVT « SVD(D);
4. if K = M then
5 H = VN/M) (STIVT): © = IN/M) (ADH™);
6: else
7
8
9

{fOI‘ Hi = Dfll}

fori=1to K do

xi ~ N0, In)/ V(K);

: ﬁi = VS_IXi; 6 = Ux;;
10: end for

{for by ~ N (0, VS~2VT)}

1 @z\/(N/M)(GlT;...;HITJ; ﬁ=\/(N/M)<illT;...;il[T<>;
12:  end if
13: else

14: PQRT « SVD(H); VSUT « SVD(®);

15 O ~N(0,1)/V(NK/M); {ortho(@®) if K > L}
16 B =0OPQ; A =BRTU; H = VN/M (AS7!V");

17: end if

x (NA) Inference Stage (Classification)

Feature
Extraction Inner Decision
Ox(CA) | (Signal Product /4_) Function 7"
Reconstructed Processing) /
*:(RA) Feature Inner Output
Reconstruction Product Performance
Error Error (IPE)

Fig. 4. Metrics used to evaluate the performance of NA, RA, and CA.

tradeoffs, in this section, we discuss precise metrics that are
relevant in inference applications. In addition to comparing
the proposed CA with NA as a baseline approach, we also
compare it with RA in which the sensor node transmits com-
pressed data to an external platform to reduce the amount of
data transmitted (hence, saving communication energy and/or
alleviating bandwidth constraints); the data are reconstructed
on the external platform before performing signal processing.
Fig. 4 shows the metrics we use. Since, in CA, we solve for
a random projection @ of the FV [see (4)], we expect to be
able to reconstruct the signal features accurately. Thus, we
reconstruct the FVs in CA and compare them with the features
extracted from reconstructed signals in RA. We also compare
the variation in the inner-product error (IPE) and the accuracy
of the inference stage with respect to both & and v.

A. Reconstruction Signal-to-Noise Ratio With Respect to &

Since CA solves for a projection of the processed signal
(®y) in NA, the accuracy of processing in CA is expected to
be correlated with our ability to recover the y features from
Oy. If we denote the reconstructed features as y¢,, we can
define the SNR in CA as follows:

SNRca = 10-log[lIyl3/(Iyéa — yI13)] dB. @)

Similarly, the performance in RA is governed by our ability to
recover the yﬁ A features. However, since reconstruction occurs
before processing in RA, the reconstructed features yg, are
related to the reconstructed signal xj, as yg, = Hxg,. Thus,
the SNR in RA can be defined as follows:

SNRga = 10 log [Ilyll3/ (IHxg, — yI3)] dB.  (8)

We will investigate how close the SNR in CA is with
respect to the SNR in RA for the spike-sorting case study in
Section VI-C.

B. IPE in Feature Extraction With Respect to &

For feature extraction and classification, a primary concern
is how the IPE of FVs scales with £. For any two FVs
yi and yj, IPE between the inner product in CA (i.e., )?inj)
and the inner product in NA (i.e., y;ryj) is given by

IPE = |§i" ¥ — ¥{'il / (vi'3)- ®

We study the scaling characteristics of IPE with respect to
the dimensionality of ®. We explore this tradeoff for the
spike-sorting application in Section VI-C and for the seizure
detection application in Section VII-A.

C. Inference Performance With Respect to ¢

Recall that ¢ = N/M quantifies the amount of compression
achieved by compressive sensing. As ¢ becomes larger, we
expect the performance of RA and CA to deteriorate with
respect to NA. The first question that arises is: till what value
of ¢ do RA and CA remain competitive with NA for an
application of interest? The second question is: as we increase
the value of &, does CA remain competitive with RA? If it
does, then computations can viably be performed on the sensor
node, with the additional benefit of computational energy
reduction (due to the fewer operations required in CA). This
suggests a new design approach to energy-constrained sensor
nodes, wherein devices can be more computationally powerful,
thanks to energy savings enabled by the explicit use of efficient
representations for the embedded signals; this approach to
energy reduction can be exploited alongside algorithmic and
architectural optimizations. We explore these questions for the
two case studies in Sections VI-C and VII-B, respectively.

D. Inference Performance With Respect to v

Recall that v = N/K provides us with a knob to obtain
additional computational energy savings in our CA approach
since the approximate solution permits a smaller H matrix.
These savings come at the cost of accuracy. The first question
is what would the impact on performance and computational
energy be if we simultaneously turn the v and ¢ knobs?
The second question is how the accuracy and energy savings
compare to the case where an exact solution is used for H?
For the two case studies, we explore these scaling trends in
Sections VI-C and VII-B, respectively.
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VI. CASE STUDY I: NEURAL PROSTHESIS WITH
COMPRESSIVELY SENSED SPIKES

In this section, we use the case study of a neural-prosthesis
system to validate the system-level tradeoffs arising from the
proposed approach. We derive the compressed-domain equiva-
lent of a square matrix H, which computes the DWT of spike
signals. We study the impact of the exact and approximate
solutions for H on system performance. We also analyze the
IPE and SNR trends in NA and CA.

A. Neural Prosthesis System

In a control system for neural prosthesis, a passive transpon-
der is used to transmit spike data serially, thus requiring
buffering over all channels, at data rates up to 1 Mb/s [31].
Many modern systems thus detect and align spikes on the
implant before transmission [32]. This can significantly reduce
the data rates. Spikes are then sorted on an external head stage
before analysis. This step comprises feature extraction and
clustering [33]. DWT and K-means are two widely used algo-
rithms for feature extraction and clustering, respectively [34].
After sorting, the data rates can become significantly lower.
Spike trains from each sorted cluster can then be analyzed to
extract statistical parameters, such as the spike count (SC),
neuron firing rate (FR), interspike interval (ISI), coefficient of
variation (CV), and so on. These parameters eventually steer
an algorithm for prosthesis control [35], [36].

In CA, we first detect and align spikes on the implant. We
then compressively sense each detected spike through random
projections. This process can potentially help alleviate the
bandwidth requirements of a passive transponder. We then
perform spike sorting directly on compressively-sensed data.
This can be done either on the external head stage or on
the implant itself. If done on the implant, it permits real-
time operation by avoiding reconstruction, while potentially
reducing the computational energy of spike sorting. Our results
below suggest that the computational energy can be reduced
substantially. If done on the head stage, CA can reduce the
communication constraints of the implant drastically (due to
compressive sensing). This implies that low-energy or zero-
energy communication links (e.g., based on passive impedance
modulation [31]) may be viable. The cost, however, is a small
increase in computational energy (for the random projection of
data) on the implant. In Section VI-C, we evaluate the benefits
in computational energy delivered by CA in this context. Next,
we formulate feature extraction as a matrix operation to enable
a transformation to CA.

B. Formulating DWT as a Matrix Operation

Fig. 5 shows the computations we focus on for spike sorting
and analysis. The DWT function shown can be implemented
as a filter bank [37]. To enable a transformation to CA,
however, we require DWT to be formulated as a matrix
operation H. We describe the formulation of DWT as a matrix
operation in Appendix D. Given the DWT formulation in NA,
we can derive the corresponding DWT transformation H in
the compressed domain based on the approach presented in
Section IV.
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Fig. 5. DWT feature extraction in the neural-prosthesis system; the DWT
operation is formulated as a matrix H in NA, and a corresponding matrix H
is derived for CA.

C. Experimental Results

In this section, we compare the experimental results for
NA, RA, and CA. We begin by describing our spike sorting
framework and discussing how the representative parameters
(SC, CV, and FR) for prosthetic control are computed.

The spike sorting and analysis system of Fig. 5 are imple-
mented in MATLAB. For our experiments, we use four records
(named as E1, E2, D1, and D2) from the data set in [34]. We
first process each record to detect and align spikes using the
thresholding algorithm described in [34]. This process results
in a window of 64 samples per spike (denoted by vector x).
In NA, we then process the detected spikes by a matrix H
to extract specific signal features. H corresponds to the DWT
matrix, which is derived from four levels of decomposition
of a Haar mother wavelet. In CA and RA, however, we first
project the detected spikes using a matrix @ to obtain the
compressively-sensed signal X = ®x. We choose each entry
of @ from a uniform distribution U(—1, +1) to facilitate an
efficient implementation. In RA, before performing compu-
tations, we reconstruct signal xg from X and then apply H.
In CA, however, we directly apply matrix H to compressed
signal X. We then sort the extracted wavelet features (in NA,
RA, and CA) into three clusters using the K-means algorithm.
Finally, for each spike cluster, we derive SC, CV, and FR.

1) Baseline Performance of the Spike Sorting Algorithm:
Next, we describe how SC, CV, and FR can be computed and
what their values are using the various analyses (NA, CA,
and RA). SC is simply determined by counting the number
of spikes in each cluster after K-means. The first step in
computing CV is to determine the ISI histogram. We then
model the envelope of the histogram as a Poisson distribution.
We directly use this model to determine CV, which is defined
as the ratio of the standard deviation to the mean of the
distribution function of the ISI histogram. To compute FR for
each class, we first determine the number of spikes, which
occur in nonoverlapping windows—each of width 300 ms. We
then use a Gaussian filter with a length (L) of 30 and variance
(o) of 3 to smooth the binned FR estimates. The bin-width and
smoothing filter parameters are chosen empirically to avoid
discontinuities in the FR curve. The mean FR is then computed
from the smoothed curve. Fig. 6 shows the performance of the
spike sorting approach in comparison with the ground truth
(GT) values. The GT values are obtained using annotations
that identify the true cluster association for each spike in the
database. The end-to-end performance values for CA and RA
(with no compression) are also shown. We observe that the
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Fig. 8. Mean IPE in CA is close to the mean IPE in RA.

performance of all four approaches are close to one another.
Next, we study the performance metrics of Section V (namely
SNR, IPE, and performance of CA, RA, and NA) when we
scale & and v.

2) Scaling in SNR With Respect to £: Since the performance
in CA and RA is related to our ability to reconstruct the
FVs, we analyze the error introduced in each approach. Fig. 7
shows the mean SNR computed over spikes in all the four
records. We observe that the SNR in RA is close to the
SNR in CA. Although our ability to reconstruct features
governs the performance trends in CA and RA, the inner-
product between the features is the key parameter used in the
K-means algorithm. Next, we study the IPE scaling of FVs
with increasing ¢&.

3) IPE With Respect to ¢: Fig. 8 shows the IPE evaluated
from the entire spike database. We see that the IPE in CA
is only 19% even at ¢ = 24x (RA has a similar error).
At ¢ = 24x, only three compressively sensed samples per
spike are used for CA processing (compared with 64 samples
for NA). In RA, we used gradient projection to reconstruct a
sparse representation of spikes [14]. Also, we obtained IPE
using tenfold cross-validation on the total spike data. In each
iteration, we learnt a new sparse dictionary ¥ from K-SVD
using 90% of the total spike data [10].

Accuracy of the spike sorting algorithm in NA is close to the ground truth (GT). Also shown are performance values for CA and RA at

4) Inference  Performance  With ¢:  With  fewer
compressively-sensed samples (i.e., larger ¢), we expect
the accuracy of SC, CV, and FR estimates to deteriorate in
RA and CA. Since H is a square processing matrix in the
neural prosthesis application, we use the exact solution for
H (from Section IV-A). Fig. 9 and Table I show the mean
and standard deviation of the estimation errors for CA and
RA, respectively. We use three methods for reconstructing
the spikes from X, namely basis pursuit [14], /;-Magic [38],
and SPG-Lasso [39]. However, the results for only basis
pursuit, which performs better than the other two algorithms,
are shown in Fig. 9 and Table I. Each performance metric
is obtained for the exact solution (i.e., & = v case). The
estimation errors are with respect to GT and averaged over
one hundred different choices of ®. We observe that the
performance trends for both CA and RA show only a small
variance across ¢. The performance degrades gracefully,
e.g., even at ¢ = 24x, the mean estimation errors with
respect to GT for SC, CV, and FR are 8.65%, 5.06%, and
9.96% (standard deviation: 0.81%, 0.30%, and 0.89%) in CA
and 6.66%, 4.91%, and 7.54% (standard deviation: 0.69%,
0.12%, and 0.92%) in RA, respectively. Thus, the exact
solution enables CA to perform nearly as well as RA. Since
compression does not introduce significant errors, we can
significantly compress the spikes before transmitting them
to the external head stage. We next study the performance
trends in CA under an approximate solution for H (from
Section IV-B).

5) Inference Performance With v: Since the approximate
solution permits a smaller H matrix, it enables additional
savings in computational energy. However, as described in
Section IV-B, due to the approximation required in ¥, this
can impose a performance cost. Fig. 10 shows trends in
performance as we simultaneously scale the projection factor
v and compression factor ¢. The points corresponding to
the exact solution for X are shown as black squares along
the diagonal. Fig. 10 also indicates that the degradation in
the three parameters (i.e., SC, CV, and FR) is small with
increasing values of v. For example, for both SC and FR
(left and right plots), v = 9x (at { = 6x) incurs very
little error, yet enables 54x reduction in the size of the
transformation matrix for CA processing; CV incurs somewhat
higher error, but still quite small (<3.5%). Note that there
are several local minima shown in the contour plots of
Fig. 10. These minima occur since the performance metrics
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TABLE I
STANDARD DEVIATION IN THE PERFORMANCE OF SPIKE SORTING ACROSS ONE HUNDRED DIFFERENT CHOICES OF ®
% Error in SC % Error in CV % Error in FR
E=1x[ 3% | 6x | 9% | 12X | ISX [ 18x | 21X [24x [£=1X| 3X | 6X [ 9% | 12X [ 15x | 18X 21X [ 24X |& = 1x| 3x | 6% | Ox [12x | 15x | I8x | 21x | 24X
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Fig. 10. Scaling with v: SC and FR performance in CA is retained up to v = 6x. The exact solution is also shown in (b) with dark boxes. The cases of

v < ¢&, which are not favorable for low-energy operation, are blocked out. A shows the separation between adjacent contours. (a) % error in mean SC (CA).

(b) % error in mean CV (CA). (c) % error in mean FR (CA).
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are dependent on one another; attempting to optimize one
metric results in a degradation in others. Ideally, it is preferred
to optimize all metrics simultaneously, which is achieved by
the exact solution. For fixed ¢ and v, the local minima tend
to remain practically unchanged with different choices of

H and ©. This behavior is observed since the JL lemma
provides low variance in the IPE values [29].

VII. CASE STUDY II: EPILEPTIC SEIZURE DETECTION
USING COMPRESSIVELY-SENSED EEG
In this section, we present a second case study. The
Nyquist-domain processing matrix H we consider is non-
square. We thus derive the compressed-domain equivalent
matrix H using the solution in Section I'V-C. First, we describe

Spectral-energy feature extraction in NA can be represented as a product of the decimation matrix Dgs12 and an FIR bandpass filter (BPF) H*.

the Nyquist-domain algorithm for seizure detection, which
employs patient-specific classifier training [40].

Fig. 11 shows the baseline algorithm for seizure detection.
A two-second epoch from each EEG channel is processed
using eight BPFs with passbands of 0-3 Hz, 3-6 Hz, ...,
21-24 Hz. The spectral energy from each filter is then
represented by summing the squared value of the output
samples to form a FV, which is then used for classification
by a support-vector machine (SVM) classifier. The feature-
extraction process represents a special case of nonlinear
processing (i.e., we handle this by deriving a random pro-
jection and use the JL lemma to represent the signal energy).
Further, note that since the feature-extraction process for this
particular application involves spectral-energy extraction after
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filtering, the energy in the filtered EEG signal from each filter
corresponds to one dimension of the FV. This operation can
be represented as an inner-product computation: yjj = f;J.rfij.
Relating the entire feature-extraction process with the stages
in Fig. 4, we observe that there is an additional inner-product
computation involved before classification. Thus, for this case
study, the IPE metric defined in Section V directly represents
the error in the signal features.

The baseline detector in NA is validated on 558 h of EEG
data from 21 patients (corresponding to 148 seizures) in the
CHB-MIT database [41]. For every patient, up to 18 channels
of continuous EEG is processed using eight BPFs, leading to
an FV dimensionality of 144. The Nyquist-domain detector has
been demonstrated to achieve an average latency, sensitivity,
and specificity of 4.59 s, 96.03%, and 0.1471 false alarms/h,
respectively [40].

A. Formulating Feature Extraction as a Matrix Operation

To enable a transformation to the compressed domain,
we focus on computations in the feature-extraction stage of
Fig. 11. Note that to enable efficient processing with a low-
order FIR filter, we downsample the EEG signals before
filtering. Since the BPFs in the filter bank have a maximum
cutoff frequency of 24 Hz and EEG signals in the CHB-MIT
database are sampled at 256 Hz, we downsample the data
from each channel by a factor of 4. For each data channel,
one EEG epoch (corresponding to 512 Nyquist samples) thus
results in 128 decimated samples. These samples are then
processed with eight BPFs of order 64. To represent the
BPF computations as a matrix operation, we generalize our
formulation in (21) [Section VI-B handled decimation of an
N-sample signal by 2x]. We define a new decimation matrix
Dy4s12, which acts upon a 512-sample EEG epoch to give
128 decimated samples. Suppose we represent one EEG epoch
from the jth channel as xj. Then, Dygs12 acts upon X;j to
give us 128 samples. Further, suppose we represent each
64-order BPF before energy accumulation as a convolution
matrix Hi*, 0 <i <7, of dimensionality 128 x 128—observe
that in H' each row is a shifted version of the previous row. We
can then represent the decimation plus filtering operation in the
feature-extraction stage as the following cascaded operation:

(10)

where fjj is the filtered EEG data derived from the ith
filter acting upon the jth EEG channel. The Nyquist-domain
processing matrix for each BPF can thus be defined as H; =
Hi*D4512. This matrix is rectangular and has a dimensionality
of 128 x 512.

Next, we investigate the variation of IPE with & as well as its
correlation with the performance of the end-to-end algorithm.

fij = Hi Dys12 X;

B. Experimental Results

In this section, we study the error in the FVs (represented by
IPE) and the performance of the end-to-end system. We will
see that the performance does not correlate directly with the
IPE because the information content of the features is what
controls the performance of the system [6]. This behavior,

Fig. 12. Mean IPE computed across ten different pairs of ® and &®. The
variation in the mean IPE values shown in the figure corresponds to the
21 patients in the CHB-MIT database. Mean IPE in CA is close to the mean
IPE in RA.

which is unlike the previous case study, is due to the presence
of the spectral-energy operation in the feature-extraction stage.
We thus also study the variation in mutual information with
respect to ¢ in CA and compare it with that in RA.

In CA, we derive compressed-domain processing matri-
ces Hj from the corresponding rectangular NA matrices Hj
using the solution in Section I'V-C. Note that H; has K x M [or
N(1/v+1/¢)] entries. As in NA, we then obtain the processed
signal from each filter as f.J =H; ¢ xj, where the processing
matrix Hj acts directly on the compressively-sensed signal
(I>XJ We then derive a CA estimate of the spectral energy
as ylJ = f fi;j.

1) IPE Wlth Respect to ¢: The error in the FVs (IPE) is
defined as IPE = ||yj;j—yijll /yij. We expect the error to increase
with increasing compression (¢ > 1x). For our experiments,
we keep v = 1x and scale ¢. The computational savings in
CA thus increase with & [I-ii has N(1/v+1/¢) entries]. Fig. 12
shows the trend in the IPE. The plot also shows the variation
in the IPE across all patients in the database. We observe that
the IPE is <19.5% upto ¢ = 51x, at which point we only
transmit and process 10 EEG samples per epoch. The figure
also shows the IPE in RA, where we reconstruct each epoch
using gradient projection [14]. For each patient, we learn a
new sparse dictionary ¥ from K-SVD using tenfold cross-
validation [10]. We observe that IPE in CA is close to the IPE
in RA, thus validating the solution for ﬁi in Section IV-C. We
next proceed to study the impact of the error in the FVs on
overall system accuracy.

2) Inference Performance With Respect to & and v: To
evaluate the performance of the compressed-domain detector,
we derive FVs from the CHB-MIT database. We use these
FVs to train and test the SVM classifier in a patient-specific
manner. We employ a leave-one-out cross-validation scheme
for measuring the performance of the detector. Fig. 13 and
Table II show the scaling in mean and standard deviation of
the performance metrics in CA computed across ten different
pairs of ® and ®. The performance of the compressed-domain
detector is very close to the Nyquist case at ¢ = 1x. For CA,
at a compression of 1x, the sensitivity is 95.53%, latency is
4.59 s, and the number of false alarms is 0.1538/h. These
performance numbers begin to degrade with both ¢ and v.
The corresponding numbers at £ = 21x are 94.43%, 4.70 s,
and 0.1543/h, respectively. As described in Section IV-C,
v = 1 x gives the lowest approximation error to the JL lemma.
Thus, the performance is highest at v = 1x and begins to
degrade at higher values of v. At higher values of ¢ (which also
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Fig. 13. Mean performance of the seizure-detection algorithm in CA computed across ten different pairs of @ and ®. The variation in the mean performance
values shown in the figure corresponds to the 21 patients in the CHB-MIT database. Performance is maintained up to ¢ = 21x.

TABLE I

STANDARD DEVIATION ACROSS TEN DIFFERENT PAIRS OF ® AND ® IN THE MEAN INFERENCE PERFORMANCE
(MEAN COMPUTED ACROSS THE 21 PATIENTS) OF THE SEIZURE DETECTOR IN CA AND RA

Sensitivity (%) False Alarms/ Hr. Latency (seconds)

E=| Ix [ 3X | Ox | ISX [ 21X | 27X [ 33X [39% | 45X [ SIx | IX | 3x | 9% | 15X | 21X [27x | 33X |39 [45x | 51x | 1x | 3x | Ox | 15X | 21X |27x|33x | 39x | 45X | 51X
CA|[0.43|0.57|1.22(1.84|2.77|2.36(3.36|3.24|3.99 (4.79]0.01 | 0.01 | 0.03| 0.03 | 0.05 [ 0.05| 0.06 | 0.07 [0.08 | 0.11 {0.10|0.11|0.19 [0.52|0.54{0.73|1.09| 1.27 | 1.42| 1.47
RA[0.88|1.10|1.65(2.14|2.25|2.96|3.45|3.54|3.50(4.44|0.00|0.02 |0.02]0.02|0.06 {0.06]|0.09|0.11 {0.11]0.15]0.09]|0.23]0.35]0.69 |0.76|1.22|1.17 | 1.50| 1.43 | 1.79
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Fig. 14. Variation in the performance of seizure detector across different patients at v = 1x. The stochastic nature of the JL lemma results in nonuniform

error values.
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Fig. 15. Mean performance in RA computed across ten different pairs of ® and @ is close to the performance in CA. The variation in the mean performance
values shown in the figure corresponds to the 21 patients in the CHB-MIT database.
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Fig. 16. Mean mutual information across ten different pairs of ® and ®.
The variation in the mean information values shown in the figure corresponds
to the 23 patients in the CHB-MIT database. Mean mutual information in
CA and RA follows the performance trends.

give corresponding energy savings), the degradation in sensi-
tivity is modest. For instance, at v = 1x, the degradation is
1.1% when ¢ = 21 x, beyond which it begins to drop more sig-
nificantly. The scaling in the number of false alarms per hour
and the latency also follows a similar trend. The mean latency
of detection increases by 2.41% while the specificity of the

(b) CA Processor: Seizure Detection
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algorithm degrades by only 0.33% at & = 21 x. Fig. 14 shows
the variation in the performance at v = 1x for one pair of
® and ®. We observe that the stochastic nature of the
JL lemma leads to nonuniform errors in the performance
metrics. Fig. 15 shows the performance in RA. We observe that
it is close to the performance of CA. These trends, however, do
not correlate with the IPE in Fig. 12. For example, at ¢ > 39x,
IPE in RA is almost constant ~16%, but the difference in



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHOAIB et al.: SIGNAL PROCESSING WITH DIRECT COMPUTATIONS ON COMPRESSIVELY SENSED DATA 11

performance for values of ¢ > 33x is significant. Next, we
study the information content in the FVs, which has been
shown to be a metric that directly indicates the end-to-end
performance of the detector [6].

3) Mutual Information With Respect to &: Mutual infor-
mation between the FVs and the class labels acts as an
indicator for the performance of a classifier [6]. High mutual
information results in better performance. Fig. 16 shows the
variation in mutual information of the FVs in RA and CA
versus ¢. We see that the inference performance is high
until a mutual information falls below a specific level. This
value is specific to the application data and the classifier
used. For instance, from Figs. 13, 15, and 16, we observe
that the performance degrades only minimally up to & =
21x, which corresponds to a mutual information value of
~(0.15 bits. Hence, based on the mutual information results for
the multirate system presented in this section, we can conclude
that very limited degradation is seen up to large compression
factors. Thus, this limited degradation in information supports
the CA system model.

VIII. HARDWARE ANALYSIS

In this section, we present an analysis of the hardware
complexity of CA and compare it with that of NA. We
observe that the number of computations required in CA can
be substantially lower. However, there is an increased cost in
storage that is required to accommodate the extra coefficients
in H.

Fig. 17(a) and (b) show architectural block diagrams of CA
processors for spike sorting and seizure detection, respectively.
In these processors, different values of ¢ and v impact only the
multiply-accumulate (MAC) units and the memory where the
H coefficients reside. Recall from Sections VI-C and VII-A
that four levels of decomposition with a (order-2) Haar wavelet
and eight 64-order BPFs are required for the two applications,
respectively.

Fig. 18(a) and (b) show the scaling in the estimated number
of MAC operations and the memory required, respectively, for
the spike sorting application. The estimates for NA are given
using different pairs of wavelet order and decomposition level.
We observe that the number of MAC operations required by
the exact solution (¢ = v) is below that of NA for & > 5x.
This is true for wavelets of all orders and for all decomposition
levels. However, the memory required in CA is higher than
that required by low-order wavelets. For instance, for two
levels of decomposition using an order-3 wavelet, ¢ is greater
than 11x for the exact solution. This increase in memory can
be addressed by using a higher value of v, which results in
smaller H matrices; there is thus a tradeoff between memory
size and accuracy. Fig. 18(c) and (d) show the estimated
MAC operations and the memory requirement for the seizure-
detection application, respectively. We again observe a similar
computation-memory tradeoff. In this case, since we process
multiple data channels, substantial scaling in v (> 21x) is
required to match the memory of NA. However, as shown in
Section VII-B, such a high scaling leads to a very suboptimal
detector performance.

We observe from this section that although CA provides
substantial savings in computation and communication ener-
gies, it potentially requires more data storage than NA.
Consequently, architectures and technologies that address the
memory energy and footprint can play an important role in
the proposed approach.

IX. CONCLUSION

Sparsity of signals provides an opportunity to efficiently rep-
resent sensor data. Compressive sensing is one technique that
exploits signal sparsity in a secondary basis to achieve very
low-energy compression at the cost of high complexity in sig-
nal reconstruction. The energy for reconstruction can present
a significant barrier to signal analysis, which is becoming
increasingly important in emerging sensor applications. In this
paper, we presented an approach to derive computations that
can be performed directly on compressively-sensed signals.
Our approach not only circumvents the energy imposed by
signal reconstruction, but also enables computational energy
savings by processing fewer signal samples. Through analyt-
ical validations, we observed that this approach can achieve
error bounds in feature estimates that are very close to the
expected lower limit. We validated our approach with two case
studies, namely spike sorting for neural prosthesis and EEG
classification for seizure detection. For the neural-prosthesis
application, our experimental results suggest that we can
process up to 54x fewer samples while restricting detection
errors to under 3.5%. Using our approach, the reduction in the
communication energy can also be significant. For instance,
in the seizure-detection application, the detection error was
under 2.41% when we used ~21x fewer transmitted EEG
samples. The proposed approach thus provides an approach
for signal-processing systems that addresses system-resource
constraints, such as energy and communication bandwidth,
through efficient signal representation. This is in contrast to
efforts that focus on efficient architectures and algorithms
alone.

APPENDIX A

DERIVATION OF EXACT SOLUTION FOR H
WHEN H 1S SQUARE

The intuition behind solving for a projection of y instead
of y itself in (4) is that many machine-learning stages (e.g.,
SVMs) that act after feature extraction do not use the exact
value of y but only its distance from other vectors. Thus, the
Euclidean distance between FVs is the metric we should aim
to preserve. The distance between any two FVs, y1 and y», is
given by the inner product, y;ryz. The corresponding distance
in the compressed domain is given by

¥1'v2 = (©y1)T(@y2) = yf (©T0)y,. (11)

The right-hand side will be equal to the inner product y’lry2
of NA if ®T® is equal to the N x N identity matrix I. Thus,
to solve for ® and H exactly in (4), we have to solve the
following constrained optimization problem:

argmin |@TO — 1|3 such that ©H = H®. (12)
(C)
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Fig. 18.
CA incurs fewer computations than NA at the cost of increased storage.

Assuming H is a square matrix, we can obtain the SVD of
®H ! as VSUT, where V and U are orthogonal matrices (i.e.,
UTU = VTV =1) and S is an M x M diagonal matrix formed
by the singular values of ®H~1. We thus have the following
relationship for @T@:

0Te = HeH HTHeH ! = USVTHTAVS)UT. (13)

The distance from the above matrix to the identity will be at
least the rank deficiency of U. The lower bound in (12) will
thus be achieved if we set K = M (or v = &)

H=S"'VT and © =H®H L. (14)

APPENDIX B

DERIVATION OF APPROXIMATE SOLUTION FOR H
WHEN H 1S SQUARE

According to the JL. lemma [29], yAlTyAz in (11) will be
approximately equal to yfyz, if the entries of the auxiliary
matrix @ are drawn from the normal distribution N (0, 1) [30].
Thus, we can solve the following modified problem:

Find © and H such that ©H = H® and © ~ N(,1).

Suppose ® and H comprise row vectors @iT and ﬁiT , 1€

[1, K], where 9? e RN and hiT e RM, We have the following
representation:

T (T

N 01 hl N

O = : H= :

— T __ hiT —

Ox (K xN) hg (K xM).

Given the above formulation, we can simplify and represent
the ith row of (4) as follows:

6fH=h! = 6;= Dh (15)

where DT = ®H~!. Note that D in the above equation is of
dimensionality N x M. Suppose the SVD of D is USVT, where
orthogonal matrices U and V are of dimensionality N x M and
M x M, respectively, and the diagonal matrix S, comprising
the singular values of D, is of dimensionality M x M. Then,
we can simplify (15) as follows:

0; = Dh; = USVTh;. (16)

Number of MAC operations and memory costs, shown for spike sorting [(a) and (b), respectively] and seizure detection [(c) and (d), respectively].

Since we seek 6; ~ N(0, IN), to preserve the inner products
according to the JL lemma, we draw H; from N (0, X), where
¥ = VS 2VT, Then, we derive each row of ® based on (16).
This choice of ﬁ,-, in fact, gives the exact JL solution for H
according to the following corollary.

Corollary 1 (JL Solution for H): Given orthogonal matrices
U, V of dimension N x M and M x M, respectively, and
an M x M diagonal matrix of singular values S. Then, ﬁi ~
N(0, X), where X = VS—2VT and fli e RM gives the solution
for 6; = USVTﬁi such that the entries of the row vector ®;
are drawn i.i.d from the multivariate normal N (0, IN).

Proof: We complete the proof by deriving the mean
and variance of h;j under the assumption of 8 ~ N (O, Iy).
Consider the following equation:

0; = USVTh; = Uy (17)

where z; = SVTﬁi is an M-dimensional vector of random

variables. Since 6§; ~ N(O, IM) and U is a constant matrix,

zi ~ N(0, In). Further, since h; = VS—1z, we can compute

the mean of fli as | [fl,] =K [i,] = 0, and the variance of fli
as follows:

E [hih{] = E[VS'zizf ST'VT]

= VS E [ziz] ]S7'VT

= Vs 2T, [

Thus, the approximate solution for matrix H is of dimension
K x M, where K < M (or v > ¢).

APPENDIX C
SOLUTION FOR H WHEN H 18 NONSQUARE
To solve (12) for ® and H, we take the transpose of (4)
and multiply with itself, obtaining the following relationship:
(OH)T(OH) = (H®)T(H®)
H'OTOH = ¢TH Ho

RQPTOTOPQRT = USVTHTHVSUT (18)

where H = PQRT and ® = VSU are the SVDs of H and @,
respectively. Since H is of dimensionality L x N (L < N),
P, Q, and R is of dimensionality L x L, L x L, and N x L,

respectively. Similarly, since ® is of dimensionality M x N
(M < N), U, S, and V are of dimensionality N x M, M x
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M, and M x M, respectively. If we let ©® = BQ !PT and
H = AS~!'VT in (18), we have the following relationship:

RBTBRT = vATAUT
= UTRBTBRTU = ATA

where A and B are unknown matrices that need to be deter-
mined. We can invoke the JL lemma and draw the K x L
elements of ® from N (0, 1). We can thus solve for the K x L
matrix B = OPQ and use the above equation to derive the
K x M matrix A = BRTU. Finally, we obtain the K x M
matrix H = AS~1VT,
APPENDIX D
FORMULATING DWT AS A MATRIX OPERATION

In the filter bank implementation, the DWT of a signal is
derived by passing it through a series of filters. First, vector
x is passed simultaneously through a low pass filter (LPF)
and a high pass filter (HPF). Each of these filters has half
the bandwidth of the signal. Thus, the output of these filters
are downsampled by 2x without the risk of aliasing. This
comprises one level of wavelet decomposition. The process
is repeated with the LPF outputs to achieve higher levels of
decomposition [37]. To formulate the entire process as a matrix
operation in NA, we note that the processing between a vector
of filter coefficients g and the N-sample spike vector x can be
represented as a convolution operation

9]

Z=g*xX = Z gln — klx[k] = GNnx

k=—00

19)

where z is the filtered signal of N samples and GN is the
N x N convolution matrix whose rows are shifted versions
of the coefficient vector g. For the DWT algorithm, GII;I and
Gl}\lI can be used to represent the LPF and HPF operations,
respectively. After the filtering process, we can then implement
downsampling by 2x at each level of decomposition through
an N/2 x N matrix D2 N

1 0O 0 O 0

0 0 1 0 0
DN =

0 0 0 0

(N/2xN).

Using a cascade of D-G operators, we can thus represent
the full DWT operation in NA as the following linear trans-

formation:
H,
y = Hx = X (21
H,
| Hia |
- “NxN L INx1

where y is the N-sample DWT of spike samples x. For L
levels of decomposition, sub-matrices H, (1 <n < L+1) are

given by
D2 NG ifn=1
n-2 L ° .
Hn — kI;IO (DZ,N/ZkGN/2k§D2,N/2“_1GN/zn—l) if 2 <n<L
fra L .
H (DZ,N/ZkGN/zk) ifn=L+1.
[ k=0
Each pair of matrices, GII\} 12 and Gg 120> in the above equation

is designed to be a quadrature mirror filter based on standard
mother wavelets, e.g., Haar, Daubechies, Coiflet, biorthogonal
wavelet, and so on [37].
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