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Abstract

We introduce the online stochastic Convexr Program-
ming (CP) problem, a very general version of stochas-
tic online problems which allows arbitrary concave ob-
jectives and convex feasibility constraints. Many well-
studied problems like online stochastic packing and
covering, online stochastic matching with concave re-
turns, etc. form a special case of online stochastic CP.
We present fast algorithms for these problems, which
achieve near-optimal regret guarantees for both the i.i.d.
and the random permutation models of stochastic in-
puts. When applied to the special case online pack-
ing, our ideas yield a simpler and faster primal-dual
algorithm for this well studied problem, which achieves
the optimal competitive ratio. Our techniques make ex-
plicit the connection of primal-dual paradigm and online
learning to online stochastic CP.

1 Introduction

The theory of online matching and its generalizations
has been a great success story that has had a significant
impact on practice. The problems considered in this
area are largely motivated by online advertising, and the
theory has influenced how real advertising systems are
run. As an example, the algorithms given by Devanur
et al. [18] are being used at Microsoft, by the “delivery
engine” that decides which display ads are shown on its
“properties” such as webpages, Skype, Xbox, etc.

In one of the most basic problem formulations in
online advertising, an “impression” can be allocated to
one of many given advertisers, assigning an impression ¢
to advertiser a generates a value v,;, and an advertiser a
can be allocated at most G, impressions. The goal is to
maximize the value of the allocation. In another variant,
advertisers pay per click and have budget constraints on
their total payment, instead of the capacity constraints
as above. More sophisticated formulations consider the
option to show multiple ads on one webpage, which
means you can pick among various configurations of ads.
Each configuration still provides some value which is to
be maximized, and advertisers have either capacity or
budget constraints.

While the algorithm in Devanur et al. [18] (DJSW
algorithm) is used in practice, the actual problem has
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some aspects that are not captured by the formulations
considered there. For instance, the actual objective
function is not just a linear function, such as the
sum of the values. There is a penalty for “under-
delivering” impressions to an advertiser that increases
with the amount of under-delivery. This translates
into an objective that is a concave function of the
total number of impressions assigned to an advertiser.
Another consideration is the diversity of the impressions
assigned. An advertiser targeting a certain segment of
the population expects a representative sample of the
entire population [24]. In order to avoid deviating from
this ideal too much, there are certain (convex) penalty
functions in the objective that punish such deviations.
The ‘essentially linear’ formulations of online matching
or online packing/covering considered in the literature
cannot handle these extensions. In this paper, we
consider a very general online convex programming
framework that can incorporate these extensions, and
present optimal algorithms for it.

An important practical consideration in the design
of online algorithms is that the time taken by the
algorithm in a single step should be very small. For
instance, the decision to allocate an impression must
be made in “real-time”, in a matter of milliseconds.
The DJSW algorithm satisfies this requirement, but
requires solving an LP ever so often, to estimate the
value of an optimum solution. In this paper, we give
an algorithm that only requires solving a single LP (for
online packing problems), making it even faster than
the DJSW algorithm. This improvement comes from
the fact that in our algorithm the error in the estimate
of the optimal solution only occurs in the second order
error bounds and hence we can tolerate much bigger
errors in such an estimate.

From a theoretical point of view, two closely related
online stochastic input models have been studied, the
random permutation and the i.i.d. model. In the
random permutation model, an adversary picks the set
of inputs, which are then presented to the algorithm
in a random order. In the i.i.d. model, the adversary
picks a distribution over inputs that is unknown to the
algorithm, and the algorithm receives i.i.d. samples
from this distribution. The random permutation model
is stronger than the ii.d. model, any algorithm that
works for the random permutation model also works
for the i.i.d model. The difference between these two



models is like the difference between sampling with
and without replacement. This intuition says that
the two models should be very similar to each other,
but the DJSW algorithm was only known to work
for the i.i.d model, not for the random permutation
model. Earlier algorithms by Devanur and Hayes
[15], Agrawal et al. [3], Feldman et al. [22] worked for the
random permutation model but gave worse guarantees.
Recently Kesselheim et al. [33] gave an algorithm that
matched the optimal guarantee of Devanur et al. [18] for
the random permutation model, but their algorithm has
to solve an LP in every step, making it not practical.
To summarize, the DJSW algorithm is fast and works
for the i.i.d. model but not for the random permutation
model. The algorithm by Kesselheim et al. [33] works
for the random permutation model but is slow. We
get the best of both worlds, our algorithm is fast, and
works for the random permutation model. Moreover,
our proof formalizes the intuition mentioned earlier that
the difference between i.i.d and the random permutation
models is like the difference between sampling with and
without replacement.

In terms of techniques, the earlier algorithms used
dual variables to guide the allocation, whereas the
algorithm of Kesselheim et al. [33] uses a primal only
approach, and their result seemed to suggest that
primal-only algorithms were more powerful than primal-
dual algorithms. Our algorithms are primal-dual, and
our results show that primal-dual algorithms are equally
powerful. In fact, even though the DJSW algorithm
could be interpreted as a primal-dual algorithm, duality
was never used in the analysis. Our algorithm is
a true primal-dual algorithm in the sense that we
explicitly make use of the duality. Also, starting from
Mehta et al. [39], it was suspected that there is some
relation between these problems and online learning or
the “experts” problem, but no formal connection was
known. We show such a formal connection, all of our
algorithms actually use blackbox access to algorithms
for solving online learning problems. We show how
getting better guarantees for these problems boils down
to getting better “low-regret” guarantees for certain
online learning problems. This also gives much simpler
proofs than earlier papers.

To summarize, our contributions are as follows.

1. We present algorithms with optimal guarantees for
a very general online convex programming problem,
in a stochastic setting.

2. Our algorithms are primal-dual algorithms that are
fast and simple, and work for the random permu-
tation model. Our proof techniques formalize the
intuition that the random permutation and the i.i.d
models are not that different.

3. We establish a formal connection between these

problems and online learning.

1.1 Other Related Work The seminal paper of
Mehta et al. [39] introduced the so called “Adwords”
problem, motivated by the allocation of ad slots on
search engines, and started a slew of research into
generalizations of the online bipartite matching problem
[32]. For the worst-case model, the optimal competitive
ratio is 1—1/e, which can be achieved for a fairly general
setting [10, 2, 20, 19]. A special case of an objective with
a concave function was considered in Devanur and Jain
[16].

In order to circumvent the impossibility results in
the traditional worst-case models, stochastic models
such as the random permutation model and the i.i.d
model were introduced [25, 15, 42, 18]. The dominant
theme for these stochastic models has been asymptotic
guarantees, that show that the competitive ratio tends
to 1 as the “bid-to-budget” ratio tends to 0 (as was
first shown by Devanur and Hayes [15]). The focus
then is the convergence rate, the rate at which the
competitive ratio tends to 1 as a function of the bid-
to-budget ratio. Feldman et al. [22], Agrawal et al.
[3] gave improved convergence rates for the random
permutation model and generalized the result to an
online packing problem. Recently, Chen and Wang [13]
extended these ideas to the concave returns problem of
Devanur and Jain [16]. Devanur et al. [18] gave the
optimal convergence rate for the online packing problem
in the closely related i.i.d. model. Kesselheim et al.
[33] matched these bounds for the random permutation
model, and further improved the bounds either when
the bid-to-budget ratio is large, or when the instances
are sparse. This line of research has also had significant
impact on the practice of ad allocation with most of the
big ad allocation platforms using algorithms influenced
by these papers [23, 31, 14, 12, 11].

Some versions of these problems also appear in liter-
ature under the name of ‘secretary problems’. However
the dominant theme in research on secretary problems is
to aim for a constant competitive ratio while not making
any assumption about “bid-to-budget” ratio (a notable
exception is [34]).

Another interesting line of research has been for
the case of bipartite matching. Feldman et al. [21],
Bahmani and Kapralov [8], Manshadi et al. [38] gave
algorithms with competitive ratios better than 1 — 1/e
for the known distribution case, and Karande et al.
[30], Mahdian and Yan [36] did the same for the random
permutation model. Other variations such as models for
combining algorithms from worst-case and average case,
and achieving simultaneous guarantees have also been
studied [37, 40].

A closely related problem is called the “Bandits
with Knapsacks” problem [7], which is similar to the
online stochastic packing problem. The bandit aspect is



different: the algorithm picks an “arm” of the bandit at
each time, and makes observations (cost, reward, etc.),
which are i.i.d samples that depend on the arm. There is
persistence in the available set of choices across time as
the arms are persistent. In the online packing problem,
the set of options in one time step are unrelated to
the other time steps. Due to this, the main aspect
of the bandit problem, the explore-exploit trade off in
estimating the expectations of the observations for all
arms, is absent from the online packing problem.

In an earlier paper [4], we generalized Bandits with
Knapsacks to include general convex constraints and
concave rewards, which is analogous to our generaliza-
tion of the online packing to online convex programming
here. Our high level ideas of using Fenchel duality for
‘linearization’ and online learning algorithms for esti-
mating the dual variables is inspired by the use of simi-
lar ideas in [4]. Consequently, we obtain algorithms that
are very similar looking to those in [4]. There are some
significant differences in the proof techniques, however,
due to the differences in the two problems mentioned
in the previous paragraph. Also, the analysis for the
random permutation model, and our adaptations (for
the online packing problem) to get competitive ratios
instead of regret bounds, were entirely absent from [4].

The online packing problem is also closely related
to the Blackwell approachability problem [9]. The use
of online learning algorithms to solve the Blackwell
approachability problem [1] is similar to our use of
online learning algorithms.

Concurrently and independently, Gupta and Moli-
naro [26] found results for online linear programming
that are similar to some of ours: they also show how
to get competitive ratio bounds for the online packing
problem in the random permutation model via a con-
nection to the experts problem. For the guarantees that
hold “in expectation”, their bounds are the same as
ours. For the guarantees that hold “with high probabil-
ity”, they show bounds without an extra v/log T factor
that we get. They do not consider the more general
convex programming framework.

1.2 Organization: The Preliminaries section (Sec-
tion 2) contains the problem and the input model defini-
tions, the statement of the main result and some back-
ground material on online learning and Fenchel duality.
Section 4 illustrates the basic ideas using a special case
with only convex feasibility constraints. Section 5 gives
the algorithm, results and proof techniques for the gen-
eral online stochastc convex programming. Section 6
gives tighter bounds for the special case of the online
packing problem.

2 Problem definition and main results

The following problem captures a very general setting
of online optimization problems with global constraints
and utility functions.

DEFINITION 1. [ONLINE STOCHASTIC CONVEX PRO-
GRAMMING] We receive an initial input of a concave
function f over a bounded domain C R®, which we may
assume is [0,1]% w.lo.g, and a convex set S C [0,1]%.
Subsequently we proceed in steps, at every time step t =
1,...,T, we receive a set Ay C [0,1]¢ of d-dimensional
vectors. We have to pick one vector ’UI € A; before pro-
ceeding to time step t + 1, using only information until
time t. Let v, =+ Zthl vi. The goal is to

avg *

mazimize f(v]:wg) subject to vfwg € s.

We assume that the instance is always feasible, i.e.,
there is a choice of vy € Ay Y t such that % Zthl v €8.

2.1 Stochastic Input Models: In the random per-
mutation (RP) model, there are T sets X1, ..., X1 fixed
in advance but unknown to the algorithm, and these
come in a uniformly random order (given by a random
permutation 7) as the sequence A; = X (1),..., Ap =
Xr(r)- The number of time steps 7' is given to the al-
gorithm in advance. In the i.i.d, unknown distribution
(IID) model, there is a distribution D over subsets of
[0,1]¢, and for each ¢, A; is an independent sample from
D. The distribution D is unknown to the algorithm.

It is known that the RP model is stronger than
the IID model. The IID model can be thought of
as a distribution over RP instances and therefore any
guarantee for the RP model also carries over to the
IID model. Henceforth, we will consider the RP model
by default, unless otherwise mentioned.

2.2 Benchmarks. We measure the performance of
an algorithm with respect to a benchmark. The bech-
mark for the RP model is the optimal offline solution,
i.e. the choice v; € A; that maximizes the function f of
the average of these vectors while making sure that the
average lies in S. We denote the value of this solution
as the benchmark, OPT. This is a deterministic value
since it does not depend on the randomness in the in-
put, which is in the order of arrival. For the IID model,
the offline optimal actually depends on the randomness
in the input, and OPT denotes the expected value of
the offline optimal solution.

2.3 Performance Measures. While the standard
measure in competitive analysis of online algorithms is
a multiplicative error w.r.t the benchmark, we mostly
adopt a concept of additive error that is common in
online learning, called the regret. Since we make no
assumptions about f, it could even be negative, so
an additive error is more appropriate. For certain



special cases where multiplicative errors or competitive
ratios are more natural or desirable, we discuss how
our algorithms and analysis can be adapted to get such
guarantees. We define the following two (average) regret
measures, one for the objective and another for the
constraint." Let d(v,S) denote the distance of the
vector v from the set S, w.r.t. a given norm || - ||.

avg-regret,; (T) = OPT — f(v;vg)5 and

d(vl,,,S).

avg?’

avg-regret,(T) =

2.4 Main Results. We now state the most general
result we prove in this paper.

THEOREM 2.1. There is an algorithm (Algorithm 5.1)
that achieves the following regret guarantees for the

Online Stochastic Convex Programming problem, in the
RP model.

E[avg-regret, (T)]

(Z+Ly0( g)

(49

where C' depends on the norm || - || used for defining
distance.  For FEuclidean norm, C = dlog(d). For
Lo norm, C = log(d). The parameter Z captures
the tradeoff between objective and constraints for the
problem, its value is problem-dependent and is discussed
in detail later in the text. L 1is the Lipschitz constant
for f w.r.t. the same norm || - || as used to measure the
distance.

Elavg-regrety(T)] =

In the main text we provide more detailed result state-
ments, which will also make clear the dependence of our
regret bounds on the regret bounds available for on-
line learning, and implications of using different norms.
These regret bounds can also be converted to high prob-
ability results, with an additional /logT factor in the
regret. This extra factor comes from simply taking a
union bound over all time steps. A more careful anal-
ysis could possibly get rid of this extra factor, as was
shown in Gupta and Molinaro [26] in case of online lin-
ear programming.

These bounds are optimal, and this follows easily
from an easy modification of a lower bound given by
Agrawal et al. [3] for the online packing problem.

We also consider the following interesting special
cases.

Feasibility problem: In this case, there is no
objective function f, and there is only the constraint
given by the set S. The goal is to make sure that

TIn online learning, the objective value is the sum of reward

in every step, which scales with T', and the regret typically scales
with vT. But in our formulation, the objective f(% > UI) is
defined over average observations, therefore, to be consistent with
the popular terminology, we call our regret ‘average regret’.

the average of the chosen vectors lies as close to S as
possible, i.e., minimize d('vlwg., S).

Linear objective: In this case, we assume that
each vector v € A; has an associated reward r € [0, 1].
The objective is to maximize the total reward while
making sure that the average of the vectors lies in S.
This can be thought of as the special case where the
vector you get is (v,r), and the constraint is only on
the subspace defined by all coordinates of this vector
except the last, while the objective is just the sum (or
linear function) of its last coordinates.

Online Packing/Covering LPs: This is a well
studied special case of linear objective. The packing
constraints ), vI < B1 are equivalent to using con-
straint set S of the form {v : 0 < v < 21}, where 1 is
the vector of all 1s and B > 0 is some scalar. In this
case, we also assume that the sets A; always contain
the origin, which corresponds to the option of “doing
nothing”. The covering constraints are obtained when
Sis {v:v> 21}

For online packing, we provide the following tighter
guarantee in terms of competitive ratio.

THEOREM 2.2. For online stochastic packing problem,
Algorithm 0.1 achieves a competitive ratio of 1 —
O(e) in the RP model, given any ¢ > 0 such that
min{B, TOPT} > log(d)/e*. Further, the algorithm has
fast per-step updates, and needs to solve a sample LP at
most once.

3 Preliminaries

3.1 Fenchel duality. As mentioned earlier, our al-
gorithms are primal-dual algorithms. For the online
packing problem, the LP duality framework (which is
very well understood) is sufficient but for general con-
vex programs we need the stronger framework of Fenchel
duality. Below we provide some background on this use-
ful mathematical concept. Let h be a convex function
defined on [0, 1]?. We define h* as Fenchel conjugate of
ha

h*(0) := maXyE[O,l]d{y -0 —h(y)}

For a given norm || - ||, we denote by || ||, the dual norm
defined as:
lyll. = max Ty
@:||2|| <1

Suppose that at every point x, every supergradient g,
of h has bounded dual norm ||g,||«+ < L. Then, the
following dual relationship is known between h and h*.

LEMmMA 3.1. h(z) = mang”*SL{O cZ— h*(O)}

A special case is when h(x) = d(x,S) for some
convex set S. This function is 1-Lipschitz with respect
to norm || - || used in the definition of distance. In



this case, h*(0) = hg(0) := maxycs 6 - y, and Lemma
3.1 specializes to the following derivation which also
appears in Abernethy et al. [1].

d(ac, S) = maX||g||*§1{0 B hs(e)}

3.2 Strong convexity/Smoothness Duality. We
first define strong convexity and smoothness.

DEFINITION 2. A function h : X — R is §-strongly

convex w.r.t. a norm || - || if Va,y € X,z € Oh(x),
B
hy) = h(@) > z- (y — @) + Sllz -yl

Equivalently for any x,y in the interior of X, and all
€ (0,1), we have that

Moz +(1—a)y) > oh(z)+(1—a)h(y)
Dot -a)lle -yl

A function h is B-strongly concave if and only (—h) is
B-strongly conver.

DEFINITION 3. A function h : X — R is §-strongly
smooth w.r.t. a norm || -|| if h is everywhere differen-
tiable, and for all x,y € X, we have

—h(x)

The following lemma can be derived from the proof of
Theorem 6 in [29]. A proof is given in Appendix B.1 for
completeness.

v,y € X [hly) ~h(@) - Vhiz) - (y—2)| < 2 |lz—y]*

LEMMA 3.2. If h is convex and B-strongly smooth with
respect to norm || - ||, then h*(0) = maxgzepg,174{0 - T —
h(x)} is %—strongly convez with respect to norm || - ||«
on domain Vj, = {Vh(z) : = € [0,1]¢}.

3.3 Online Learning. A well studied problem in
online learning, called the Online Convex Optimization
(OCO) problem, considers a T round game played
between a learner and an adversary (nature), where
at round ¢, the player chooses a 6; € W, and then
the adversary picks a concave function ¢.(0¢) : W —
R. The player’s choice 8; may only depend on the
adversary’s choices in the previous rounds. The goal of
the player is to minimize regret defined as the difference
between the player’s objective value and the value of the
best single choice in hindsight:

9:(04)

M-

= Imax E t
GGW g

Some popular algorithms for OCO are online mirror
descent (OMD) algorithm and online gradient descent,
which have very fast per step update rules, and provide
the following regret guarantees. More details about
these algorithms and their regret guarantees are in
Appendix B.2.

LEMMA 3.3. [/1] There is an algorithm for the
OCO problem that achieves regret

R(T) = O(GVDT),

where D is the diameter of W and G is an upper bound
on the norm of gradient of g4(0) for all t. The value of
these parameters are problem specific.

In particular, following corollary can be derived, which
will be useful for our purpose. Details are in Appendix
B.2.

COROLLARY 3.1. For g4(0) of form g.(0) = 6 - z —
h*(@) and W = {6 : ||0||. < L}, where h is an
L-Lipschitz function, OCO algorithms achieve regret
bounds of R(T) < O(L\dT) for Eucledian norm, and

O(L+/log(d)T) for Le

For optimization over a simplex, the multiplicative
weight update algorithm is very fast and efficient: the
step t update of this algorithm takes the following form,
given that 0 < ¢,(0;) < M and a parameter € > 0,
(3.1)

Wt 5 M
Ori1,) = = /
J :
Zj W, j

, where w; ; = wy—1 ;(1+ e)gt(ej)

The algorithm has the following stronger guarantees.

LEMMA 3.4. [5] For domain W = {||0]|y = 1,0 > 0},
given that 0 < ¢4(0;) < M, and for all € > 0, using the
multiplicative weight update algorithm we obtain that for
any 8 € W,

th (6:) > (1 —¢) (th >_]\4ln(£l+1)’

For strongly concave functions, even stronger loga-
rithmic regret bounds can be achieved.

LEMMA 3.5. [27] Suppose that g; is H-strongly concave
for allt, and G > 0 is an upper bound on the norm of
the gradient, i.e. ||Vg:(0)|| < G, for all t. Then the
online gradient descent algorithm achieves the following
guarantees for OCO: for all T > 1,

2
R(T) < %log(T).

4 Feasibility Problem

It will be useful to first illustrate our algorithm and
proof techniques for the special case of the feasibility
problem. In this special case of online stochastic
CP, there is no objective function f, and the aim
of the algorithm is to have wl, wve be in the set S.
The performance of the algorithm is measured by the
distance from the set S, i.e., d('v:;\,yS). We assume
that the instance is always feasible, i.e., there exist
v € Ay V t such that Y, v} € S.



The basic idea behind our algorithm is as follows.
Suppose that instead of minimizing a convex function
such as d(v],,, S) we had to minimize a linear function
such as 0 - vlvg. This would be extremely easy since the
problem then separates into small subproblems where
at each time step we can simply solve min e 4, 6 - v
In fact, convex programming duality guarantees exactly
this — that there is a 6, such that an optimal (i.e.,
feasible) solution is v; = argmingea, 0* - v, however,
we don’t know 0. This is where online learning comes
into play. Online learning algorithms can provide a 6y
at every time ¢ using only the observations before time
t, which together provide a good approximation to the
best € in hindsight.

ALGORITHM 4.1. (FEASIBILITY PROBLEM)
Initialize 6.
for allt=1,...,7 do
Set ’UI = argmingea, 0; - v
Choose 8,1 by doing an OCO update with g;(0) =

0 -v| — hg(0), and domain W = {||6]|, < 1}.
end for
Here || - ||« is the dual norm of || - ||, the norm

used in the distance function. The updates required for
selecting 641, given 8; and g,(+), are given as Equation
B.3 and Equation 3.1 for OMD and multiplicative
weight update algorithm, respectively. As discussed
there, these updates are simple and fast, and do not
require solving any complex optimization problems.

THEOREM 4.1. Algorithm /.1 achieves the following
regret bound for the Feasibility Problem in the RP model
of stochastic inputs:

E[d(v],,9)]

R(T)
0O (T + [|14l|

Here R(T) denotes the regret for OCO with functions
g¢(0) and domain W, as defined in Section 3.3. And,
s <1 is the coordinate-wise largest value a vector in .S
can take. This parameter can be used to obtain tighter
problem-specific bounds.

Elavg-regrety(T)] =

IN

s log(d))
T .

Proof. From Fenchel duality, and by OCO guarantees,

(vl S) = — hs(0)

max 6 - vl
l6|l. <1 ave

= ”éﬁﬁa}élfzg

T ; 9:(0¢) + ?R(T).

IN

In Lemma 4.1, we upper bound E[£ 3, g:(6;)] to obtain
the statement of the theorem.

LEmMMA 4.1. E>°, 0:(6:)] < O(||14||/slog(d)T),

where s = maxycgmax;v; < 1, and || - || is the norm
used in the distance function.

Proof. Let F;_1 denote the observations and decisions
until time ¢ — 1. Note that 8; is completely determined
by Fi—1. Let vx, denote the option chosen to satisfy
request X; by the offline optimal (feasible) solution, and
let v; = vy,. Then, since 4, = X, for s =1,...,T
with equal probability, we have that E[v}] = %(vx, +

..+vx,) € S. Therefore, due to the manner in which

’UI was chosen by the algorithm, we have that

Elg:(6:)|Fi—1] = E[6;-v] — hs(8,)|Fi-1]
< E[0;-vi — hs(0:)|Fi—1]
= Ot . E['Uﬂ — hs(Bt)

+ 0 - (E[v;|Fia] — E[v])
Now, by the Fenchel dual representation of distance, for
any v, 8" such that [|6']. < 1, d(v, S) = max)jg||,<1 0 -
v—hg(0) > 0 -v—hg(8'). Using this observation along
with E[v;] € S, we obtain from above,

Elge(0¢)|Fi—1] < d(E[v{],S) + 6 - (E[vy|Fi—1] —
0+ 0¢ - (Elvi|[Fi-1] — E[v]])

[E[vF|Fi1] = B[],

where the last inequality used the condition |6, < 1.

Note that wunder independence assumption
(IID model), we would have E[v;|Fi—1] = E[v}],
so that the above inequality would suffice to give the
required bound. However, in random permutation
(RP) model, the observations till time ¢ — 1 restrict
the set of possible permutations. Conditional on
realization Ay = X 1y,..., A1 = Xy—1) until time
t — 1, for a given orderlng w, we have that A; is
one of the remaining sets with equal probability. So,
E[v}|Fi—1] = T—#t-s-l(”xm) + ...+ vx, ), for any
ordering 7 that agrees with F;_; on the first ¢ — 1
indices.

Next, we bound the gap ||E[v}|F;—1] —E[v}]|| under

random permutation assumption. For any given order-
vXx +...+vx
(1) (t)
t

(4.2)

IN

ing 7, define wy . = . Also, for given
ordering 7, define 7’ as the reverse ordering. Then,
Elv}|Fi—1] = Wr—_i+1,4/, for any ordering 7 that agrees
with F;_1 on the first ¢ — 1 indices. Now, the input or-
dering 7 observed by the algorithm agrees with all the
filtrations Fi,..., Fr_1, and therefore taking 7’ as the
reverse of this ordering, we have that

T T
YBR[ Fa] —ERill = D Wr—ir1m —ER]|
t=1 t=1

= ZIIWt ~ — E[v]]|

Elv;])



Due to the random permutation assumption, the input
ordering 7, and hence the reverse ordering 7’ in above,
is a uniformly random permutation. Also, taking
expectation over uniformly random permutations o,

E[wio] = Lyt dvxg) E[v}]. And, therefore,

T T
S IE[; | Fioa] —Efll = > [Iwex — Elwo]|
(4.3) )

where 7 is a uniformly random permutation. Taking
outer expectations, and using (4.2), this implies,

IA

E[Y " 9:(6:)] E lz IE [vf [ Fia] — E[v7]]l

t

E [Z Iwir E[wt,A] .

t

Observe that for uniformly random permutation m,
W can be viewed as the average of t vectors sam-
pled uniformly without replacement from the ground
set {vx,,...,vx;} of T vectors. We use Chernoff-
Hoeffding type concentration bounds for sampling with-
out replacement (refer to Appendix C for details), to
obtain,

slog(d)
t

(44)  E[lwer — E[weo]ll] < O(][14]] ).
The lemma statement then follows by summing up these
bounds over all ¢.

REMARK 1. [RP vs. IID] For the IID model, since
Elvy|Fi—1] = Elv;], we would get ) ,E[g,(6:)] <
0 directly from FEquation (4.2). Thus, the quantity

ER_ [E[vf | Fia] =E[of]]l] < O(||1all/sT'log(d)) char-

acterizes the gap between IID and RP models.

REMARK 2. [High probability bounds] The above anal-
ysis can be extended to bound the sum of conditional
expectations Y, E[g,(0:)|Fi—1] < >, [[Wer — Elwe o]l
by O(||Lal|\/T log(dT/p)) with high probability 1 — p.
As a result, we obtain a high probability regret bound
of O(]|114]| M). Details are in Appendiz C. For
the IID model, this sum of conditional expectations is

bounded by 0, so the resulting high probability bounds
are slightly stronger, with no extra \/log(T) factor.

5 Online stochastic convex programming

In this section, we extend the algorithm from previ-
ous section to the general online stochastic Convex Pro-
gramming (CP) problem, as defined in Section 2. Recall
that the aim here is to maximize f (vzvg) while ensuring

vivg €Ss.

A direct way to extend the algorithm from the
previous section would be to reduce the convex program
to the feasibilty problem with constraint set S’ = {v :
flv) > OPT,v € S}. However, this requires the
knowledge of OPT. If OPT is estimated, the errors
in the estimation of OPT at all time steps t would
add up to the regret, thus this approach would tolerate
very small O(%) per step estimation errors. In this
section, we propose an alternate approach of combining
objective value and distance from constraints using a
parameter Z, which will capture the tradeoff between
the two quantities. We may still need to estimate
this parameter Z, however, Z will appear only in the
second order regret terms, so that a constant factor
approximation of Z will suffice to obtain optimal order
of regret bounds. This makes the estimation task
relatively easy and enable us to get better problem
specific bounds. As a specific example, for the online
packing problem, we can use Z = (%% so this
approach requires only a constant factor approximation
of OPT and the resulting algorithm obtains the optimal
competitive ratio. (See Section 6 for more details.)

To illustrate the main ideas in our algorithm, let us
start with the following assumption.

ASSUMPTION 1. Let OPT’ denote the optimal value
of the offline problem that mazximizes f(% >, vi) with
feasibility constraint relazed to d(# >, v, S) < 6. We
are given a Z > 0 such that that for all 6 > 0,

(5.5) OPT’ < OPT + Z6.

In fact, such a Z always exists, as shown by the following
lemma.

LEMMA 5.1. OPT’ is a non-decreasing concave func-
tion of the constraint violation §, and its gradient at
6§ = 0 is the minimum value of Z that satisfies the prop-
erty (5.5). This gradient is also equal to the value of
the optimal dual variable corresponding to the distance
constraint.

The proof of this lemma is provided in Appendix D.
This fact is known for linear programs.

Below, we present an algorithm (Algorithm 5.1) for
online stochastic CP assuming we are given parameter
Z as in Assumption 1. This algorithm is based on the
same basic ideas as the algorithm for the feasibility
problem in the previous section. Here, we linearize
both objective and constraints using Fenchel duality,
and estimate the corresponding dual variables using
online learning as blackbox. And, we use parameter
Z to combine objective with constraints. The resulting
algorithm has very efficient per-step updates and does
not require solving a (sample) CP in any step, and
we prove that it achieves the regret bound stated in
Theorem 2.1.



The regret of this algorithm (as stated in Theorem
2.1) scales with the value of Z, and it is desirable to
use as small a value of Z as possible. If such a Z is
not known, in Appendix F we demonstrate how we can
approximate the optimal value of Z up to a constant
factor by solving a logarithmic number of sample CPs
overall.

ALGORITHM 5.1. (ONLINE CONVEX PROGRAMMING)

Initialize 64, ¢ .

for allt=1,...,7 do
Choose option

vl = argmaxyea, —¢, - v — 2(Z + L)0; - v.

Choose 01 by doing an OCO update for g:(0) =
0 -v] — hg(0) over domain W = {||6]], < 1}.
Choose ¢, by doing an OCO update for 1,(¢) =
¢ vf — (~1)*(¢) over domain U = {||@ll. < L}.

end for

A complete proof of Theorem 2.1, along with a more
detailed theorem statement, is provided in Appendix
E. Here, we provide the proof for the simpler case of
linear objective discussed in Section 2. In this setting,
each option in A; is associated with a reward r in
addition to the vector v. And, at every time step
t, the player chooses (rz ,'UI), in order to maximize
€ 5. ( We will use rf,,

to denote =, i) The proof for this special case
will illustrate the main ideas required for proving regret
bounds for the online CP problems with ‘objective plus
constraints’, over and above the techniques used in the
previous section for the case of ‘only constraints’.

For this special case, Algorithm 5.1 reduces to the
following:

1 T ; ;
7 >, Tt while ensuring v:,fwg

ALGORITHM 5.2. (LINEAR OBJECTIVES)

Initialize 0.

for allt=1,...,T do
Choose option

(’I“I, 'UI) = argmax(, vyeq, I — 226; - v.

Choose ;41 by doing OCO update with ¢;(8) =
6 -v] — hg(0), and domain W = {||6]|, < 1}.

end for

THEOREM 5.1. Given Z that satisfies Assumption 1,
Algorithm 5.2 achieves the following regret bounds for
online stochastic CP with linear objective, in RP model:

Elavg-regret, (T)] < “O(R(T)+ Q(T)) and

E[avg-regret,(T)] < -O(R(T) + Q(T)).

Here, QT) =  O([Ldly/sTlog@), s =
max,es max; v;, and R(T) denotes the OCO re-
gret for g:(-) over domain W.

Hl= NN

Proof. Denote by (ry,v}) the choice made by the offline
optimal solution to satisfy request A;. Then,

E[r;] = OPT, and E[v]] € S,

where expectation is over A; drawn uniformly at ran-
dom from Xy,..., Xp.

Lemma 5.2 upper bounds ", E[2Z¢,(0;) — ri 4 7]
by 2ZQ(T) = 2Z0(||14]|v/slog(d)T), using exactly
the same line of argument as the proof of Lemma 4.1.
Therefore, using E[r;] = OPT, the expected average
reward obtained by the algorithm can be lower bounded
as

Elrl,) > OPT + 22 S Blgu(0.)] - 22 Q(T).

As in the proof of Theorem 4.1, using Fenchel duality
and OCO guarantees, it follows that d(v;fwg, S) <
(% %t 9:(6,) + +R(T), which gives,

5.6
Elrlys] = OPT+(2Z)E[d(v],,, S)| - 22 R(T) — £ Q(T)

Now, we use Assumption 1 to upper bound the reward

obtained by the algorithm in terms of OPT and distance

from set S. In particular, for ¢ := ]E[d('vlvg,S)], since

d(E[vl,,], 8) < E[d(v]y,, 5)] =9,

(5.7)

E[rl,,] < OPT’ < OPT+Z6 = OPT+Z E[d(v],,, S)]-

Combining inequalities (5.6) and (5.7), we obtain
Eld(v,, 8)] < 2R(T) + £Q(T),

and from (5.6), using the fact that E[d(v],,, S)] > 0, we
get that

E[rlyg] = OPT — 3 - (R(T) + Q(T)).
This gives the theorem statement.

LEMMA 5.2. E[Y,2Z¢:(6;)) — ol +

O(Z|[1a]l\/sT log(d))-

The proof of the above lemma follows exactly the same
line of argument as the proof of Lemma 4.1. We omit
it for brevity.

] <

6 Online stochastic packing

Recall that the online stochastic packing problem is
a special case of the online stochastic CP with linear
objectives, with S = {y : y < £1}. However,
the performance of an algorithm for online stochastic
packing is typically measured by competitive ratio,
which is the ratio of total expected reward obtained
by the online algorithm to the optimal solution or
benchmark. The benchmarks in online packing are
defined as sum of rewards, where as we defined OPT



as the average reward. Therefore, in our notation,
the competitive ratio for the online packing problem
is given by E;ZO‘PCE] E[%O%:,}TZ]. The competitive
ratio we obtain is 1 — O(e), for any € > 0 such that
min{ B, TOPT} > log(d)/e>.

Another important difference is that for online
packing the budget is not allowed to be violated at
all, while online CP allows a small violation of the
constraint. A simple fix to make sure that budgets
are not violated is to simply stop whenever a budget
constraint is breached.? Another change we make to
the algorithm is that we use a slightly different function
in the OCO algorithm. We will use

B

9:(0) = (v} - =

T)'a

over the domain ||0]|; < 1,0 > 0. This domain is
the convex hull of all the basis vectors and the origin,
therefore we can use the multiplicative weight update
algorithm as our OCO algorithm, which provides strong
guarantees (refer to Lemma 3.4, here M = 1).

Finally, as with the previous algorithms, we state
the algorithm assuming we are given the parameter Z.
We then show how to estimate Z to desired accuracy
using only an O(e?log(1/€)) fraction of samples and
solving an LP only once (in Lemma 6.4), assuming that
min{B, TOPT} > 10&d)

We now state the algorithm below for the online
stochastic packing problem:

ALGORITHM 6.1. (ONLINE PACKING)
Initialize 6, = Z=1.
Initialize Z such that TO% <Z< O(l)%.
for allt=1,...,7 do
Choose option
(rl,v)) = arg max(, yea, 17 — 20 - v}.
If for some j = 1..d, Zf/gt ’UI/ -e; > B then EXIT.
Update 6.1 using multiplicative weight update:
Vj=1l.dw, =w1,(1+e¢vieB/T

and
W, 5

Viji=1.d,0i41;= 24w, )
J'=

end for

Strictly speaking, if we use the first few requests as
samples to estimate Z, then we need to ignore these re-
quests, and bound the error due to this. However, since
the number of samples required is only O(€%log(1/e))
fraction of all requests, this error is quite small relative
to the guarantee we obtain, which is a competitive ratio
of 1 — O(e). We therefore ignore this error for the ease
of presentation.

?Note that such a stopping rule does not make sense for a

general S. If S is downwards closed, then one can consider similar
stopping rules in those cases as well.

Let 7 be the stopping time of the algorithm. Denote
by (rf,vf) the choice made by the offline optimal
solution to satisfy request A;. We begin with the
following lemma which is similar to Lemma 4.1.

LEMMA 6.1.

5: - B
E[T“}—tfl] > TOPT+Z E 0, E[v;f _ 1?‘]_}71]
t=1

-> Q)
t=1

where Q(t) = Z||E[v;] — E[vi|Filll + [E[rf] -

E[rf[Fi-1]]-

Proof. If A; is drawn uniformly at random from
Xi,...,Xr, then E[r;] = OPT, and E[vj] < £1. The
algorithm chooses (r],v}) = arg max(,yea, © — Z(0 -
v). By the choice made by the algorithm

ri—20,-v]) > rf—2(6,-v))

E[rf — Z(8; - v])|Feca] > E[r}|Fioi]
—Z(0: - Elvy|Fi-1])
> E[ry] - Z(6; - E[v;])

—Q(t)
> OPT - 26, - % — Q)

Summing above inequality for ¢ = 1 to 7 gives the

lemma statement.

LEMMA 6.2.
i B 7B, log(d+1)
EB- 2 >(1—e)(B- 2y =221
— t (vt T ) = ( 6)( T ) €

Proof. Recall that g:(0:) = 6; - (vl — %1), therefore

the LHS in the required inequality is Y ;_, ¢:(6;). Let
0" := argmax|g||, <1,0>0 21 9¢(0). We use the regret
bounds for the multiplicative weight update algorithm
given in Lemma 3.4, to get that >, ; ¢:(6:) > (1 —
) Y1y gu(67) — L,

Now either Z;l(vz -ej) > B for some j at the
stopping time 7, so that >, _; ¢:(0") > >",_; g:(e;) >
B-E. Or, 7 =T,57_,(v]); < B for all j, in which
case, the maximizer is 8" = 0. Therefore we have that
7 1 9:(6%) > B — T2, which completes the proof of
the lemma.

Now, we are ready to prove Theorem 2.2, which
states that Algorithm 6.1 achieves a competitive ratio
of 1 — O(e), given min{B,TOPT} > lof—&‘) for the
online stochastic packing problem in RP model.



Proof of Theorem 2.2. Substituting the inequality
from Lemma 6.2 in Lemma 6.1, we get

ET:E[TH}—:&—J > TOPT+(1—€)ZB (1 _ %)

T

ZQ

Now, using Z < O(1)T9ET and B > lof#, we get

1 1 TOPT 1 1

og(d+1) <o) (33 og(d+1)
€ €

Also, Z > TO%. Substituting in above,

1og (d+1)

Z = O(e)TOPT.

ZE fF] > (1-erOPT + (1— € OPT(T — 1)
—O()TOPT — Z Q)
> (1-0(¢))TOPT — ZT:Q(,:)

Then, taking expectation on both sides, E[Y_;_; rI] >
(1-0(e)TOPT —E[3;_, Q(t)].

Just like in the proof of Lemma 4.1, we can bound
EN_, Q)] < Z||lat1|leoy/sTlog(d + 1) which is
O(e)TOPT, using the fact that for S = {y : y < 21},
the parameter s = max; yes y; = 2,

that Z < O(1)T9ET ¢ > %
proof.

We now show how to compute a Z as required
using the first O(e?1og(1/€)) requests as samples. For
convenience, let OPTgyy := TOPT denote the optimum
for the sum. We first state a lemma that relates the
optimum value of an offline packing instance to the
optimum value on a sample of the requests. The proof
of this is along the lines of a similar lemma (Lemma 14)
n [17], and we present the proof in Appendix G for the
sake of completeness.

ILat1]loe =1, and

. This completes the

LEMMA 6.3. For all p € (0,1],
0 <1 /1og(%)) such that for all § € (0,1], given a ran-

dom sample of 0T requests, one can compute a quantity
OPT such that with probability 1 — p,

1. OPT > OPTsyy — v/ OPTsuy /6.
oPT

2. 1+77/\/7 < OPTspu + URY; OPTSUM

LEMMA 6.4. Given a random sample of O(e?1og(1/¢))
fraction of requests, one can compute a quantity Z such
that with probability at least 1 — €2,

there exists n =

Proof. We use Lemma 6.3 with p = € and § =
4n?e?/log(d).  Then, from the assumption that
min{B,OPTg} > log(d)/e?, we have that § >
4% JOPTsyy, and § > 4n?/B. Therefore, we get that
with probability at least 1 — €2,

OPT > OPTgyy — 7/ OPTsuy /8
> OPTsum — OPTgu0/2 = OP Ty /2.
Also,
OPT < (1+ n/@)(OPTsUM + n\/OPT—bU\[/(S)

IN

1
(OPTSUM + §OPTSUM)

IN

3
2
9
4OPTEU\[

Therefore Z := 20PT/B satisfies the conclusion of
the lemma. Finally, note that § = 4n%¢%/log(d) =

O (¢ 1og(2)/ log(d)) = O(e?log(1/e) -

7 Stronger bounds for smooth functions

We show that when f is a strongly smooth function,
and, instead of distance function a strongly smooth
function is used to measure regret in constraint vi-
olation, then stronger regret bounds of O(logT) can
be achieved in IID case. Intuitively, this is be-
cause as discussed in Section 2, the dual of strongly
smooth functions is strongly convex, and for strongly
convex/concave functions, stronger logarithmic regret
guarantees are provided by online learning algorithms.

More precisely, consider the following smooth ver-
sion of Online Convex Programming problem.

DEFINITION 4. [ONLINE STOCHASTIC SMOOTH CON-
VEX PROGRAMMING] Let f be a 3-smooth concave func-
tion. And, let h be a B-smooth convex function At time
t, the algorithm needs to choose ’UI € A; to minimize
regret defined as

avg-regret, (T) =
avg-regrety(T) =

Here, v}, = th Lv5,v avg = Tzf 11)1 Also,
assume that there exist vy € At for all t, such that

h(% > ve) =0.
Note that we do not require Lipschitz condition for f
or h. We make an additional assumption.

ASSUMPTION 2. Let V¢ and V4 denote the set of gra-

dients of functions f and g, respectively, on domain
[0,1)4, i.e

Vs
Vg

{Vf(@): 2 e [0,1]%, and,
{Vg(x): = €[0,1]%}.
Assume that the sets cl(V¢) and cl(Vg4) are convex and

easy to project upon. Here cl(S) denotes the closure of
set S.



This assumption is true for many natural concave
utility and convex risk functions, in particular, for all
separable smooth functions. Now, an algorithm similar
to Algorithm 5.1 can be used for this problem. One
change we make is that we perform online learning for
g¢ and 9 on domain V4 and V;, respectively, which is
possible because from Assumption 2, these domains are
convex and easy to project upon.

ALGORITHM 7.1. (ONLINE SMOOTH CP)

Initialize 61, ¢;.

forallt=1,...,T do
Choose vector

’UI = argmaxyca, —@; - v — 220 - v.

Choose 0,41 by doing an OCO update for ¢;(0) =
6 - vl — hg(6) over domain V.
Choose ¢, by doing an OCO update for 1;(¢) =
¢-v] — (—f)*(¢) over domain V.

end for

THEOREM 7.1. Under Assumption 2, and given Z that
satisfies Assumption 1, Algorithm 7.1 achieves the fol-
lowing regret for the Online Smooth Convex Program-
ming problem, in the stochastic IID input model.

7.0 (0107%(T)> ’
o(e5m).

Elavg-regret, (T)] =
E[avg-regret,(T)] =

where C' = B||14]|.

Proof. The proof follows from the proof of Theorem
2.1 on observing that stronger OCO regret bounds of
O(log(T')) are available for strongly convex functions.
More precisely, in case of IID inputs, the proof of Theo-
rem 2.1 can be followed as it is to achieve the following
regret bounds. (These are same as in the detailed state-
ment of Theorem 2.1, provided in Appendix E, but with
Q(T) = 0 due to IID assumption.)

Elavg-regret, (T)] < % CO(R(T)) + O(R,:,ET))’
! R(T)

Elavg-regret, (T)] O(R(T)) + %O(

S =i )7
T T

Here R(T) is OCO regret for the problem of maximizing
concave function ¢,(0) = 6 - v, — h*(0), R'(T) is
OCO regret for the problem of maximizing concave
function ¥ (¢p) = ¢-v: — (—f)*(¢). Now, using Lemma
3.2, given that h and f are [-strongly smooth, g; and
iy are %—strongly concave over domain V4, and Vy
respectively. Also, the gradient of these functions is
some v € [0,1]¢, so that the norms of gradients are
bounded by ||14].

Therefore, using online learning guarantees for
smooth functions from Lemma 3.5, along with G =

|1a4ll, H = 1/8, we get R(T) = O(||14]|*BlogT), and
R'(T) = O(||14]*BlogT). The theorem statement is
obtained by substituting these OCO regret bounds in
above.

In above, observe that Assumption 2 was required be-
cause Lemma 3.2 provided strong convexity of g:(-) and
1(+) only on the domains V, and V, respectively. We
conjecture that it is possible to remove this assumption
to get similar regret guarantees for the smooth case.
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A Concentration Inequalities

LEMMA A.1. [28], Theorem 4 Let X = (x1,...,zx) be
a finite population of N real points, X1,..., X, denote

a random sample without replacement from X, and
Y1,...,Y, denote a random sample with replacement
from X. If £ : R — R is continuous and convez, then

E[(Y X)) < B[S Vo).

LEMMA A.2. [28] Let X = (x1,...,zNn) be a finite
population of N real points, X1,...,X, denote a ran-
dom sample without replacement from X. Let a =

. 1 N
miny<;<ny i, b = maxi<i<yz; and p = w1 Xi.
Then, for all e > 0,

1« 2ne?

LEMMA A.3. (Multiplicative wversion) Let X =
(z1,...,2N) be a finite population of N real points, and
X1,..., X, denote a random sample without replace-
ment from X. Let a = minj<,<n z;, b = maxi<i<n Z;
and p = vazl X;. Then, for all e > 0,

Pr <| ZXz‘ —pul > €M> < exp (—3(17'“@2) .
i=1

COROLLARY A.l. (to Lemma A.3) Let X =
(z1,...,2N) be a finite population of N real points, and
X1,..., X, denote a random sample without replace-
ment from X. Let a = minj<,<n z;, b = maxi<i<n T;
and p = Zf\il X;.  Then, for all p > 0, with
probability at least 1 — p,

1> X — pl < (b—a)y/3ulog(1/p)
=1

Proof. Given p > 0, use Lemma A.3 with

(b o), [Blos(l/p)
6_(b ) L )

to get that the probability of the event | 1" | X; —pu| >

ep = (b—a)y/3plog(l/p) is at most
exp (_3(17@)2) = exp (—log(1/p)) = p.

LEMMA A.4. [35, 6, 7] Consider a probability distribu-
tion with values in [0,1], and expectation v. Let U be
the average of N independent samples from this distri-
bution. Then, with probability at least 1 — e~ for
all v >0,

(A1) | —v| <rad(9,N) < 3rad(v, N),
where rad(v, N) = \/ % + . More generally this result
holds if X1,...,Xn € [0,1] are random variables, N =

SN Xy, and Nv =N B[X(| Xy, ..., X 4]

B Preliminaries
B.1 Strong smoothness/Strong convexity dual-
ity.

Proof of Lemma 3.2 Given h is convex and fS-strong



smooth with respect to norm || - ||. We prove that h*,
defined as

h*(0) = max {y-0 — h(y)},

y€[o,1]¢

is %—strongly convex with respect to norm || - ||« on
domain Vj, = {Vh(z) : z € [0,1]?}.

For any 8,¢ € V5, 0 = Vh(z), p = Vh(x) for some
z,x € [0,1]%. And, therefore,

W(0)— h*(9) - (0— )
= h*(Vh(z)) = h*(Vh(x)) —z - (Vh(z) — Vi(z))
= z-Vh(z)—h(z)

—(x - Vh(x) — h(z)) —x - (Vh(z) — Vh(x))
= z-Vh(z) = h(z)+ h(x) —z - Vh(z)
= (z2—z) (Vh(z) = Vh(z))

—(h(2) = h(z) - Vh(z)(2 - 2))
= (2—2) (Vh(z) - Vh(z)) - g(z — @),

where we define

9(y) = h(x +y) — h(z) - (Vh()) - y.

Now, for any ¢,

g (p) = szpw-y—g(y)

= ¢y —gy")
where y* is such that ¢ = Vg(y*) = Vh(z + y*) —
=z

Vh(x). Therefore, for ¢ = Vh(z) — Vh(x), y*
so that,

9" (Vh(z) = Vh(z)) = (Vh(z) = Vh(z)) (z - =)

—g(z —x).
Substituting in (B.2), we get
h*(0) = h*(¢) — - (6 — ¢)
= 9°(Vh(z) = Vh(z))
9°(0 —9)
By smoothness assumption, g(y) < 5||y|[>. This
implies that ¢*(0) > i”@“f because the conjugate of

B times half squared norm is 1/ times half squared of
the dual norm. This gives

* * 1 2
W(0) —h(¢) = - (6 - ¢) = 55116 — Sl

This completes the proof.

B.2 Online learning. A popular algorithm for
OCO is the online mirror descent (OMD) algorithm.
The OMD algorithm with regularizer R(0) uses the fol-
lowing fast update rule to select player’s decision 041
for this problem:

011 =

(B.3) Y1 =

The maximization problem in above is particularly
simple when domain W is of form ||@]] < +, and
this is the main use case of this algorithm in this
paper. Further, for domain W of form [|0]]s < L,
and R(0) = ||0]|3, this simply becomes online gradient
descent. OMD has the following guarantees for this
problem:

LemmaA B.1. [/1]

1
arg max HR(O) —6-y,,,, where

Yy, — 2¢, and z; € 0g:(0y)

R(T) < = + TG,

=T

where D = (maxgr R(6") — ming ey R(6')),
LT Nzll? < G for = € 9gi(6:), and R is a
1-strongly-convex function with respect to norm || - ||..

Now, to derive Corollary 3.1, observe that for W =
{l|6]]2 < L}, Euclidean regularizer R(6) = ||0]|3 gives
R(T) < LGVT, with G* = d > 37 ||z|3, when
z € [0,1]% And, for W = {||6]|y < L,6 > 0},
entropic regularizer R(0) = ), 0;log; gives R(T) <
G+/LTlog(d), where G* = 1 > %EtT:l ||2¢]]2,, when
2t € [0, l]d

C Sampling without replacement bounds for
Section 4
Proof of Equation (4.4). Let w = E[w, | = E[v;].
To bound the quantity E[||w; . — w]||], note that wy ,
can be viewed as the average of ¢ vectors sampled
uniformly without replacement from the ground set
{vx,,...,vx,} of T vectors.
Now, let wy . ; denote the 4" component of vector
W . Then, by applying concentration bounds from
Corollary A.1, we get that

3wj log(d/p)

t )
with probability 1 — £ for all p € (0,1). From the
condition w = E[v;] € S, we have w; < max,cgv; < s.
Taking union bound over d, for every p € (0,1), we have
that with probability 1 — p,

|We,mj —wj| <

3slog(d/p)
[Wer —wll < [[14]] P

And, integrating over p, we obtain,

slog(d)

Eflwe,r — wl] < O(ILally/ =

).



High Probability bounds. For high probability
bounds, firstly from Equation (4.2) and (4.3),

ZE[Qt(atﬂfpl] < Z |E[v} [ Fi—1] — E[v7]]l

> wir —wl,
t

for uniform at random orderings 7.
Then, as in above, using Corollary A.1 we obtain
that for every ¢, with probability 1 — £

3slog(dT/p)
wem —wll < [ Lally) ———-
Taking union bound over ¢ = 1,...,7T, and summing

over t we obtain that with probability 1 — p,

ZE[gt(et)‘ftfl] < ZIIWt,W—wH
O([[1allv/T log(dT'/ p)).

Now, using Lemma A.4 for dependent random
variables X, = ¢,(0), with | X;| = |0, - v} — hs(8;)| <
14|/, we have,

> 9:(8:) = > Elge(0:)[Fi—1] < O(||1allv/Tlog(1/p))

with probability at least 1 — p.
Combining the above observations, we obtain that
with probability 1 — p,

S™ 0:(64) < O(I1ally/ Tog{@T/7).

D Proof of Lemma 5.1

The offline optimal solution needs to pick vy €
Conv(X;) to serve request type X;, where Conv(X;)
denotes the convex hull of set X;. Therefore, OPT? is
defined as

FF 3200

maX{y, cConv(X,)}
d(% Zt V¢, S) S (S

oPT?

= min max
A20 {e=41 3", v¢,w:€Conv(Xy)}
f(x) = Ad(x,S) + o)}

= min max min
A>0 {z=L 3, vi,v€Conv(X,)} @]« <L,||6]]. <1

F(¢) — 6@ — A0 @+ Ahs(6) + 0 }

min max
A>0,|[@][«<L,||0]]+ <1 {z=2 3, v¢,v¢€Conv(Xy)}
ff(P)—d-x— A0 -+ \hg(0)+ N}
{ (&) + Ahs(0)

min
A>0,]|¢][«<L,[|0]]. <1

T
1
+ D Moo~ = A8) + 3 }

(D.4)

where, recall that for any convex set X, hx(0) was
defined as hx(0) := max,cx 0 - v. Because a linear
function is maximized at a vertex of a convex set,

hconv(x,)(—@ — AO) is same as hx,(—¢ — A@). This
allows us to rewrite the expression for OPT % as

6 _ . *
OPT" = ,\20,||¢||131§HL1,H9H*S1{ f7(@)+ Ahs(6)
1 T
(D.5) o D hx (b —20) +0) }

t=1

From above, it is clear that OPT? is a non-
decreasing concave function of §, with gradient as
A*(6) > 0, where A*(§) is the optimal dual variable
corresponding to the distance constraint. And,

. OPT° —OPT _,
lim ———————— =\
5—0 1)

where A\* is the optimal dual variable for OPT (i.e., the
case of § = 0). This proves the lemma.

E Proof of Theorem 2.1

We provide proof of a more detailed theorem statement.

THEOREM E.1. Given Z that satisfies Assumption 1,
Algorithm 5.1 achieves the following regret bounds for
online stochastic CP, in RP model:

Elavg-regret, (T)] < ,
O (R(T) + QT)) + O(Ff1),

Elavg-regrety(T)] <
L OR(T) + QT)) + i OCZ),

where Q(T) = O(||14]|\/sT log(d)), R'(T) is the regret
bound for OCO on (-), R(T) is the regret bound for
OCO on ¢:(+). And, s <1 is the coordinate-wise largest
value a vector in S can take.

Then, substituting OCO regret bounds from Corollary
3.1 gives the statement of Theorem 2.1.

Proof. Denote by (v;) the choice made by the offline

{ optimal solution to satisfy request A;. Then,

f(E[v}]) > OPT, and E[v}] € S,

where expectation is over A; drawn uniformly at ran-
dom from Xy,..., Xr.
Lemma E.1 provides

FERT) + 7 S0 Elt(d,) +2(Z + L)gu(6,)]
Q)

<(Z+1L)



where Q(T') = O(||14]|\/slog(d)T). Using Fenchel
duality and OCO guarantees, it follows that

1
— i
161, <1ngt - d(?zt:vtvs

=300 + ZR(T)

IN

. ol
Hdgﬂg&%(@ =-f(7 > vl

t

Then, using above observations, along with f(E[v
OPT, we obtain

i) =

OPT — E[f(% zt: o) +2(Z + L)E[d(% Zt: v, 9)]
< 2(27;”(9@) L R(T)) - %R’(T).
This gives
E[f(% S o)) > OPT+2(Z+L)E d(% S ol )]
222D o) + rary)
(E.6) —%R’(T)

Now, we use Assumption 1, to upper bound the reward
obtained by the algorithm in terms of OPT and distance
from set S. In particular, we obtain that for § :=

Bld(} Y, v}, S),
Bl (Y ol < (L5 Y o)
< OPT’
< OPT+ 7%
(E.7) _ OPT+Z-E[d(%ZvI,S)}

Combining the above two inequalities, we obtain
Z v}, S

And, from (E.6) (using E[d(

2
< Z(R(T) +Q(T)) +

%ZtUI,S)] Z O)a

This gives the theorem statement.

< % ¥¢t(0t)+;R/(T)~

LEMMA E.1.

FERT) + 7 SO Elt(6,) +2(Z + L)gu(6,)]

< (7 + D)O(I11v/5TTog(d).

Proof.
Yi(py) +2(Z + L)g:(6:)
= ¢l = (=1)(®) +2(Z+ L)(6: - v} — hs(6:))
< @vp = (=f)(@) + 22+ L)(0; - v; — hs(6y)).
E[t(¢y) +2(Z + L)gu(01)| Fr—1]
< ¢ Elvi|Fea] = (=) (1)
+2(Z + L)(0: - Elvy|Fi-1] — hs(6:))
< —f(E[v]) + ¢, - (Evf|Fia] — Elvf])
+2(Z + L)0: - (E[vi|Fia] — E[v;])
where the last inequality uses ¢, - E[vi] — (—f)*(¢;) <

—f(E[vf]) (using Fenchel duality) and 6, - E[v}] —
hs(0:) < d(E[v{],S) = 0. Then, as in proof of
Lemma 4.1, E[}", ||E[v}|F;—1] — E[vf]]|]] can be upper
bounded by O(1/||14]|sT log(d)). Using this along with
observation that ||¢.||« < L,||0:|« < 1, we get the
desired lemma statement.

F Estimating the parameter Z

Let Z* denote the minimum value of Z that satisfies the
property in Equation (5.5). As discussed in the proof of
Lemma 5.1, Z* = X\*, the value of optimal dual variable
corresponding to feasibility constraint. To obtain low
regret bounds, ideally we would like to use Z = Z*
in Algorithm 5.1, which would provide the minimum

possible regret bound of O((Z* + L)\/g) in objective

according to Theorem 2.1. The regret in constraints
does not depend on Z. However, in the absence of
knowledge of Z*, we need to obtain a good enough
approximation. Following lemma provides a relaxed
condition to be satisfied by Z in order to obtain the
same order of regret bounds, as those obtained with
7 =7*.

LEMMA F.1. Assume that Z > 0 satisfies the following
property, for all § > 3y where v = ||14]] log dT) ,
OPT’ — OPT*
1)
Then, Algorithm 5.1 using such a Z will achieve an
expected regret bound of O((Z* + L)~y) in objective, and

O(7) in constraints.
To compare with Theorem 2.1, note that v =

O(\/CIO%M), therefore, using such a Z degrades the
log(T)) factor.

<Z=0(2"+1L).

regret bounds by only an O(



Proof. Recall that in the proof of Theorem 2.1, the
condition OPT? < OPT + Z6 was used in the following
way. We had the inequality,

OPTEULeS] > E[f (vl )]
> OPT +2(Z + L)E[d(v],,,S)]
(F.9) —U(T),
where £(T) = O((Z + 1),/$). Then, we applied
OPTE®L] < OPT + ZE[d(v],,, S)], to obtain
OPT+ ZE[d(v],,, S)] > OPT+2(Z + L)E[d(v],,, )] —
UT), yielding E[d(v],y, )] < 74 O(UT)) = O/ ).

Now, we will show that it suffices to have Z >
OPT?—OPT>Y

———F5——, for § > 3v to obtain the given regret
bounds.

We first bound E[avg-regrety(T)] = E[d(v],,, S)].
Starting with Equation F.9, observe that if

E[d(vivg, S)] < 3y, then the distance is bounded
by O(7) as required anyway, therefore, assume that
§ = E[d(v] V}vgs S)] > 3v. Then, from the given property
of Z we have OPTE[d(”ng’S)] — OPT? < OPT? + 76 =
OPT? + ZE[d(v],,, S)]. Substituting back in Equation
(F.9), we get

avg7

OPT? + ZE[d(v],,, S)]
> OPT+2(Z + L)E[d(v],,, S)] — (T)

which gives

(Z + L)E[d(v],,, 5)] {T) + OPT?* —
UT)+ 22"y

O(Z+ L)y)+2Z"

OPT

INIA

Then, using Z = O(Z* + L), we get

Elavg-regret,(T)] E[d(vlvg, S)]

C'log(T)

= 0y = 0| =5,

The bound on E[avg-regret,(T)] depends only on the
upper bound on Z used, and Z = O(Z* + L) makes this

regret bound to be O((Z* + L) \@)

Next, we provide method for estimating a Z that
satisfies the property stated in Lemma F.1. Define

Ad max SEST )
{v,€Conv(A;)} t=1 "t
OPT (n) Zt (v, S) <6
(F.10)
with OPT(n) denoting OIADTé(n) for 6 = 0.

We will divide the timeline into phases of size
1,1,2%,22,....,2",.... Note that phase r > 2 consists

of T, = 2772 time steps, and there are T} time steps
before phase r. The first phase of a single step, we
make an arbitrary choice. Then, in every phase r > 2,
we will rerun the algorithm, using Z constructed using
observations from the previous 7). time steps as

(OPT(T3) — OPT(T3))

(F.11) Z = 5

+ 2L

with 7y = |[14]|y/ 28T

ALGORITHM F.1. [ALGORITHM FOR ONLINE CP
WITH Z ESTIMATION]
Choose any option in the first step.
for all phases r = 2,...,log(T) + 1 do
COMPUTE Z using observations in steps 1 to
T.=2""2 a5
(OPT(T,) — OPT(T}))
v

Z = + 2L

with vy = [|14][ /255

Run Algorithm 5 1 for T, steps t {T, +
1,...,2T,} of phase r using Z as computed above.
end for

We prove the following lemma regarding the esti-
mate Z used in above. Here we use the observation that
in RP model, the first n time steps provide a random
sample of observations from the T observations.

LEMMA F.2. For all p > 0 and for all natural numbers

log( d/ p)

n, let v = ||14]| , and

(OPT" (n) — OPT (n))

Y
Then, for all § > 3, with probability 1 — O(p),

Z = + 2L.

(OPT® — OPT?)
5

< Z <O(L+ 2.

The proof of above lemma is provided later. We now

state the regret bounds for Algorithm F.1.

THEOREM F.1. Algorithm F.1 has an expected regret of
O(/$) in the objective and (Z* + L)O(\ﬁ) in the

T T
constraints.

Proof. For phase r > 2, using n = 2" 2 = TT7 the
number of time steps in phase r, and p = TQ, from
Lemma F.2 we obtain that with probability 1 — O(75),

Z available to phase r satisfies the property required
by Lemma F.1 (with T substituted by T;.), which gives
the following regret bounds for phase 7: let v, (r) be
the average of played vectors in the 7, time steps of



phase r. Let F,_; denote the history till phase r — 1.
Then, with probability 1 — O(7s ) the history F,_1 is

such that in phase r the regret in distance is bounded

by E[d(v],,(r), )| Fea] < O(/£).

probability O(T2) the distance can be at most T.||14]|.

With remaining

Let 'vavg denote the average of played vectors from the
entire period of T" time steps. Then, we get that total
regret,
||1d|| log(T)+1 T
E[d(vgvgvs)] < T + 7;2 ?]E[d(vlvg(r), Sl
10g(T)+1
Hld”
< + Z 72
~ |C
= 0O/ =)
(/=)

Similarly, we obtain bounds on regret in the objective,

OPT — E[f(v],,)]
1 log(T)+1T
< = - _ T
< gt 2 FOPT-EfeLM)
log(T)+1
1 T, . - [T Tl
< = r Il
< 7t X FE@ DG )

Proof. [Proof of Lemma F.2] From Lemma 5.1, oPT?

is concave in §, therefore, for all § > 3
(OPT? — OPT??)
5 <

(OPT® — OPT?)
0 — 2y
(OPT*" — OPT?)
> :

So, it suffices to prove that

(OPT? —
gl

27y
OPT™) < 7 < O(L+ Z*).

In Lemma F.4 and Lemma F.5, we prove that for every
d > 7, with probability 1 — O(p)

OPT’ ™7,
opT’ "

oPT’ + Iy >
OPT’ + Ly >

(F.12)

Using above for § = 4v, and § = 2+, respectively, we
get

(OPT"(n) — OPT"(n))
Y

OPT?7)

Z = + 2L

(OPT?" —
5

In Lemma F.6, we prove that for any ¢ > =,

(F.13) OPT’ < OPT + O(8(Z* + L))

Using this along with opT’ > OPT — L~ from the first
inequality in Equation (F.12), we get

—opPT’

¥

(OPT + 44O(Z* + L)) —
v

A4y
PT
Z:O

(OPT — L)

= O(Z"+1L).

C T4l This completes the proof.
7. 1)

LeEMMA F.3. Given fired {v;}]_,, and a vector p, for

all p > 0 and n € [T], let v = ||14]] %. Then
for a uniformly random permutation over 1,...,T, with
probability 1 — O(p), the following holds for the first n
time steps.

1 n 1 T
HE;’Ut—T;’UtH <7

<llee+-

1 & 1 «
. ZhAt (/'l') T el ZhAt(”)
ntzl Tt:1

Proof. The first inequality is obtained by simple appli-
cation of Chernoff-Hoeffding bounds (Lemma A.2) for
every coordinate vy j, which gives

E Ut,j —

with probability 1 — O(p/d). Then taking union bound
over the d coordinates, we get the required inequality.

The second inequality follows using Chernoff-
Hoeffding bounds (Lemma A.2) for bounded random
variables Y; = ha, (1), where [Yi| = [ha, (18)] < ||l
[|14]| (from the definition of the dual norm). This gives
with probability 1 — O(p),

T

E Ut,j

t 1

< . /log(d/p)

— )

n

18 1 &
E ZhAt(N) - T ZhAt(N)
t=1 t=1
1 n
= \gZ(Yt—
t=1
log(1/p)
< (- 11y 222
< HNH*’V

LEMMA F.4. For all p > 0 and n € [T], let v =
[|14]| M For all § > ~, with probability 1 —O(p),

OPT (n) > OPT™ — Ly,



A
Proof. To prove OPT (n) > OPT’™" — L~, we prove

that there exists a feasible primal solution of opT’ (n)
that is at most ~ distance from the optimal primal
solution of OPT°~Y . Then, the lemma follows from
the L-Lipschitz property of f.

Let {v;}X_; be the optimal primal solution for
OPT®~7, so that d(3 Zle vy, S) < § — . Then,

1 n
d(ﬁ tha S)
t=1

1 1 <& 1 <&

< Hﬁzvt*?thHer(?th,S)
t=1 t=1 t=1

< v+ (0-7) =4,

where we used the concentration bouds from Lemma
F.3 to bound ||2 >0 v, — 7 23:1 v¢|| by 7. There-
s
fore, {v;}}—, is a primal feasible solution of OPT (n)
with objective value f(L1 31 vy) > f(5 S v —
T T
LH% Db Ve — % Do vl = fg% D=1 v) — Ly
OPT°~" — L. Therefore, OPT > SEYTv) >
OPT®™7 — Ln.

LEMMA F.5. For all p > 0 and n € [T], let v =
[|1q]| W. For all § > ~, with probability 1 —O(p),

OPT’ + Ly > O]ADTé_’Y(n).

Proof. Define S° as the set {v : d(v,S) < 6}. Then,
using the derivation in Equation (D.5), we have that

OPT®? = i * Ahgs (0
oo fein oo LT (@) + Miss (6)

1 T
g 2o hal-6=26) ).

Let \*, 8%, ¢* be the optimal dual solutions in above.
Then,

A 6=y .
OPT '(n) = min
A>0,||$l.<L,||6]]. <1

1 n
#2620}

< fH(P7) + AN hgs—(07)
1 n
+— ; ha,(—¢* — A\*6%)

Now, using concentration bounds from Lemma F.3 for
the sum of h4,’s, we obtain,

") < @)+ Nhsi—s (67)

OPT
1 T
+f§hm(—¢ —A"07)

Y167 + [l [])-

{1 (6) + Mg (6) OPT'(n) <

Now, observe that for any 0, hgs(0) > hgs—~(0) +
7|10]|«. To see this, let v be the maximizer in the
definition of hgs—~, i.e., v = argmax,cgs—~ u- 0. Then
consider v/ = v + 'yﬁ. We have that |[v/ — || = 7,
so that v € S%7 implies that v € S°. Therefore
hso(8) > v -8 = v+ 0+ )10l = hsi— (8) +1/6]]..
Substituting, we get,
L Sy
OPT '(n) <

F1(@") + X hgs (87) = 32|67
1 T
T 2 - NO)

YN0 + [[@"]]+)
OPT’ +7|¢*|].
< OPT’4+~L

LEMMA F.6. For all § > ~, with probability 1 — O(p),
-
OPT (n) < OPT+25(L+ Z*)
Proof. Using the derivations in Equation (D.5),

oPT’(n) = { £*(¢) + Mhs(6)

min
A>0,]|¢||«<L,[10]]. <1

+%ZhAt(—¢—)\0) +0A},

t=1

Let \*, ¢*, 8" denote the optimal dual solution for OPT,
then,

OPT (n) < f*(¢") + Ahs(67)

n

1
+- > ha(—¢" —X0%) + 6N
t=1

Now, using concentration bounds from Lemma F.3 for
the sum of hy,’s, we obtain,

(") + A\hs(67)
T

1 * * )k
72 ha(-¢ - X0

YO + 1|7 []4) + 0A
OPT + y(A"[|07[ | + [[@"[]+) + oA"
OPT + (L + A\*)y + 0\

OPT + 2(L + \*)§
OPT + 20(L + Z*)

IAIA

G Proof of Lemma 6.3

Given an instance of the online packing problem, recall
that (ry,v}) denotes the optimal offline solution. Then
OPTgyn = Zthl ry, and Zthl v} < Bl. Given p > 0,

3log(4£2),

let n = = Let the given random subset



of § fraction of requests be I'. Define OPT to be
1/6 times the optimum wvalue of the following scaled
optimization problem: pick (rf,vi) for each t € T, to
maximize the total reward ), 7§ such that Y oter v) <
(6B +nVéB)1.

The bounds we need on OPT follow from consider-
ing the optimal primal and dual solutions to the given
packing problem restricted to the sample and using
Corollary A.1 to bound their values on the sample. Ap-
plying Corollary A.1 to the set of r; for all ¢ € [T] we
get that with probability at least 1 — p/(d + 2),

*
i

tel

SOP Ty — \/360PTSUM log(4£2)

Y

= 6OPTsun — 7/0OPTyom.

Similarly, applying Corollary A.1 to each co-ordinate of
the set of v;s, and taking a union bound, we get that
with probability at least 1 — pd/(d + 2),

Y vi < (6B +4/30Blog(H2)1

=
= (0B+nVéB)1.

Therefore with probability 1 — p(d + 1)/(d + 2) both
the inequalities above hold and (7}, v} ):cr is a feasible
solution to the scaled optimization problem used to
define OPT. Hence

SOPT >3 "7} > 6OPTyuy — n1/60PTypy

tel’

and the first bound on OPT follows from dividing the
above inequality throughout by 4. For the second
bound, we need to consider the dual of the packing prob-
lem. The packing problem has the following natural LP
relaxation. (The dual LP follows.)

T
minZﬁt +B6-1
t=1

stVe,VveA,Bi>r(v)—v-0,
YVt 6 >0,0>0.

First of all, we ignore the integrality gap and assume
that the value of the optimal dual (and primal) solution
is equal to the optimal value OPTgy, for the offline
packing problem. Let (8;)L,, (0;)?:1 be the optimal
dual solution for the given instance, and OPTgyy,y =
> B¢ +22; BO;. It can be shown that 8; € [0,1] for
all ¢: all the constraints involving f; are of the form
Bt > (+) so at least one of these constraints is tight for
the optimal solution. Also for each of these constraints,
the RHS is at most 1, and one of the constraints is
B¢ > 0. Further note that these constraints are local,
i.e., they only depend on the request indexed by t. This
means that (8f)scr, (07)7=, is a feasible solution to the
dual of the scaled optimization problem. The objective
value of this solution to this dual is

> Bf+ Y (6B +nViB)0; > 6OPT.
tel j

Using Corollary A.1 on the set of §}'s, we get that with
probability at least 1 — p/(d + 2),

> B <

tel

T
5 Z B + \/360PTSUM IOg(%)
t=1

T
= 53787 +1y/50P T
t=1

Putting the two inequalities above together,

> Br+0Y B

tel j

T

§ Z B + Z B@; + 1V dOP Ty
t=1 J

= 60PTguy + n 0OPTgyu.

The lemma follows by taking the union bound over
the probabilities for the two inequalities as required.
Finally, we ignored the integrality gap, but it is easy
to show that this gap is at most 1 — &, which can be

B>
absorbed in the 1+ 1/v/0B factor.

SOPT -
1+n/véB

IN



	Introduction
	Other Related Work
	Organization:

	Problem definition and main results
	Stochastic Input Models:
	Benchmarks.
	Performance Measures.
	Main Results.

	Preliminaries
	Fenchel duality.
	Strong convexity/Smoothness Duality.
	Online Learning.

	Feasibility Problem
	Online stochastic convex programming
	Online stochastic packing 
	Stronger bounds for smooth functions
	Concentration Inequalities
	Preliminaries
	Strong smoothness/Strong convexity duality.
	Online learning.

	Sampling without replacement bounds for Section 4
	Proof of Lemma 5.1
	Proof of Theorem 2.1
	Estimating the parameter Z
	Proof of Lemma 6.3

