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ABSTRACT

Knowledge graphs provide a powerful representation of enti-
ties and the relationships between them, but automatically construct-
ing such graphs from spoken language utterances presents the nov-
elty and numerous challenges. In this paper, we introduce a sta-
tistical language understanding approach to automatically construct
personal (user-centric) knowledge graphs in conversational dialogs.
Such information has the potential to better understand the users’ re-
quests, fulfilling them, and enabling other technologies such as de-
veloping better inferences or proactive interactions. Knowledge en-
coded in semantic graphs such as Freebase has been shown to benefit
semantic parsing and interpretation of natural language utterances.
Hence, as a first step, we exploit the personal factual relation triples
from Freebase to mine natural language snippets with a search en-
gine, and the resulting snippets containing pairs of related entities
to create the training data. This data is then used to build three key
language understanding components: (1) Personal Assertion Classi-
fication identifies the user utterances that are relevant with personal
facts, e.g., “my mother’s name is Rosa”; (2) Relation Detection clas-
sifies the personal assertion utterance into one of the predefined re-
lation classes, e.g., “parents”; and (3) Slot Filling labels the at-
tributes or arguments of relations, e.g., “name(parents):Rosa”.
Our experiments using the Microsoft conversational understanding
system demonstrate the performance of this proposed approach on
the population of personal knowledge graphs.

Index Terms— spoken language understanding, knowledge
graph, personal assertion, relation detection, slot filling

1. INTRODUCTION

With the rapid proliferation of smart phones aligned with advances in
automatic speech recognition (ASR) and machine learning technolo-
gies, virtual personal assistant (VPA) systems, such as Apple Siri and
Microsoft Cortana, have started to emerge. These systems are typi-
cally more complex than applications like voice search or voice mes-
saging, and require advanced spoken language understanding (SLU)
capabilities, which are robust to variability in natural language, ASR
noise, and spontaneous ungrammatical spoken input.

In VPA systems, at each turn, a user’s speech, Si, is recog-
nized, and then the SLU component semantically parses that into
a task-specific semantic representation of the user’s intention, Ui,
(e.g., play music or check weather) with associated arguments (e.g.,
name of the artist or location) [1]. Since SLU is not a single stand-
alone technology like speech recognition or synthesis, there is no
established definition of a semantic parse and depends on the task,

domain, or application. The dialog manager then interprets Ui and
decides on the most appropriate system action, Ai, exploiting se-
mantic context, user specific meta-information, such as geo-location
and personal preferences, and other contextual information. For ex-
ample, if the user clicks on a map on the screen and says “How much
is the cheapest gas around here?”, the system should be able to in-
terpret the domain, intent, and the associated arguments [2], like:

Domain: Local Business; Intent: Get Price
Slots: good: gas; cost relative: cheapest; location: (lat,long)

Typically, spoken dialog queries to a dialog system may be classified
as informational, transactional, and navigational in a similar way to
the taxonomy for web search [3]. Informational queries seek an an-
swer to a question, such as “find the movies of a certain genre and
director”, transactional queries aim to perform an operation, such
as “play a movie”, or “reserve a table at a restaurant”, and naviga-
tional queries aim to navigate in the dialog, such as “go back to the
previous results”. However, in the VPA systems, in addition to these
three main categories, more and more personal assertion utterances
are conveyed from the users, where users are talking about them-
selves (e.g., “I am vegetarian” or “My daughter is getting married”.
In such utterances, instead of instructing the VPA to perform some
unambiguous specific intents in users’ minds, users interact with the
VPA in a more intimate way. This is an uncharted area of research
in the SLU literature, since the users have no intention.

More formally, an assertion is defined as a declarative sentence
(instead of imperative, interrogative, or any other types). The per-
sonal assertion sentences are more focused on describing the per-
sonal facts, where the subject of the sentence is either the user (i.e.,
“i”) or somebody/something related to the user (i.e., “my wife”, “my
birthday”, etc.). While such personal information may vary greatly,
as a first step towards processing such personal assertions, we ex-
ploit the semantic knowledge graphs of the semantic web [4, 5] and
semantic search [6]. A knowledge graph is a collection of triples,
which consist of two entities linked by some relation, similar to
the well-known predicate/argument structure. An example would be
directed by (Avatar, James Cameron). A commonly used ontol-
ogy is provided in schema.org, with consensus from academia and
major search companies like Microsoft, Google, and Yahoo. In this
ontology, the personal relation types, such as education or family are
also defined for individuals. Triple stores covering various domains
have already emerged, such as freebase.org.

In this study, more specifically, we follow the Freebase seman-
tic knowledge graph schema1, including 18 types of relations about
the people.person entity, such as nationality (the country (or

1http://www.freebase.com/schema
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Number Utterance Relation Slot
1 my mother’s name is Rosa parents parents : Rosa
2 my wife her name is Amy spouse s spouse s : Amy
3 my children are Alex and Eileen children children : Alex ; children : Eileen
4 I was born on November 17 1991 in New York City date of birth date of birth : November 17 1991

place of birth place of birth : New York City
5 I work for Microsoft as a software engineer profession profession : software engineer

employment history employment history : Microsoft

Table 1. Example Utterances with Semantic Space

user 

place_of_birth 
Rosa 

parents date_of_birth 

spouse 
Amy 

children 

children 

November 17 1991 

New York City 

Alex 

Eileen Microsoft 

software engineer 
profession 

employment_history 

Fig. 1. Example Personal Knowledge Graph

countries) that the person is a citizen of), profession (the name
of the person’s primary occupation(s), during their working life),
parents (the biological parents and adoptive parents), and so on.
A list of the personal factual relations that are encountered in the
spoken utterance evaluation dataset is shown in Section 5. For illus-
tration, example utterances with defined semantic space are shown
in Table 1, and a sample user-centered knowledge graph is shown in
Figure 1 based on these utterances.

For each relation, we leverage the complete set of entities that
are connected to each other in the Freebase knowledge graph with
the specific relation, and search these entity pairs on the web using
Microsoft Bing search engine (www.bing.com). We use the snip-
pets that the search engine returns to create natural language exam-
ples that can be used as the training data for each relation, based on
our earlier work [7]. We further refine and augment the annotations
of these examples, which is similar to [8, 9].

This paradigm of constructing personal knowledge graphs in
SLU can advance the user experiences, since the SLU component
knows more about the user’s relationships and behaviors. In addi-
tion to customizing knowledge about users, it can also help enhance
the performance of SLU systems from many aspects. For example,
the SLU component may not appropriately respond to an utterance
like “show me the direction to my daughter’s school” previously.
But once the SLU has built a user-centered knowledge graph, where
“my daughter’s school” has been associated with the address of the
user’s daughter’s school, the SLU is able to interpret more utter-
ances and act accordingly by taking the advantages of possessing
more knowledge about the user. Moreover, once the VPA constructs
a user-centric knowledge graph for each user, then a global knowl-
edge network may be populated by aggregating and integrating per-
sonal knowledge graphs through entity linking. For these reasons,
we are highly motivated to research on this task.

2. RELATED WORK

Conventional SLU approaches typically focus on user intent deter-
mination and slot filling tasks. Intent determination systems have
roots in call routing systems used in call centers (e.g., Billing vs.
Sales), such as the AT&T How May I Help You system [10]. They
are usually modeled as an utterance classification task aiming at clas-
sifying a given speech utterance Si into one of M semantic classes,
Ĉr ∈ C = {C1, ..., CM} (where r is the utterance index). To this
end, researchers have tried various classification methods such as
Boosting [11, 12, 13], support vector machines (SVMs) [14], and
more recently deep learning [15, 16].

On the other hand, slot filling systems have flourished after
DARPA sponsored Airline Travel Information System (ATIS) [17]
project. These systems attempted to convert the user utterance into
an SQL query. The approaches ranged from generative models
such as hidden Markov models [18, 19], discriminative classifica-
tion methods [20, 21, 22], knowledge-based methods, probabilistic
context free grammars [23, 24], and more recently deep learning
methods [25, 26, 27]. Recently, the state of the art approach for
slot filling is framing the task as a sequence classification problem,
similar to part of speech tagging or named entity extraction, in order
to find both the boundaries and labels of phrases which are used to
fill the semantic template. The non-slot filler words are assigned to
a special null state.

Similar to the slot filling task defined in SLU, another Slot
Filling task is constructed in the Knowledge Base Population
(KBP) track, organized by U.S. NIST’s Text Analysis Confer-
ence (TAC) [28]. The KBP Slot Filling (SF) task aims at collecting
from a large-scale multi-source corpus the values (“slot fillers”) for
certain attributes (“slot types”) of a query entity, which is a person
or some type of organization. KBP2013 has defined 25 slot types
for persons (per) (e.g., age, spouse, employing organization) and
16 slot types for organizations (org) (e.g., founder, headquarters-
location, and subsidiaries). Some slot types take only a single slot
filler (e.g., per:birth place), whereas others take multiple slot fillers
(e.g., org:top employees). More information can be found in the
task definition [29]. Various approaches have been proposed to
perform the task, including information extraction [30], question an-
swering [30, 31], hand-coded heuristic rules [32, 33], pattern match-
ing [34], distant supervision [35, 36, 37, 38, 34], hybrid [30, 34],
knowledge graph based [39], etc.

As we know, knowledge graphs have been demonstrated useful
and powerful in many conversational understanding research tasks.
[7, 40] compute entity type weights to enrich semantic knowledge
graph entities with probabilistic weights for the SLU relation detec-
tion task. [41] proposes a technique to enable SLU systems to handle
user queries beyond their original semantic schemas defined by in-
tents and slots. [42] presents a full pipeline to leverage semantic
web search and browse sessions for a semantic parsing problem in
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Fig. 2. Framework of Personal Knowledge Graph Construction

multi-turn spoken dialog systems. [43, 44] present studies towards
bringing together the semantic web experience and unsupervised sta-
tistical natural language semantic parsing modeling. [9] proposes an
unsupervised training approach for SLU systems on the intent detec-
tion task, which exploits the structure of semantic knowledge graphs
from the web.

3. FRAMEWORK

In this work, we align our SLU semantic space with the back-end se-
mantic knowledge repositories such as Freebase and aim to identify
knowledge graph relations invoked in users utterances. To achieve
this goal, we propose the statistical language understanding frame-
work, as shown in Figure 2, with three key language understanding
components: Personal Assertion Detection, Relation Detection, and
Slot Filling. Each of these components will be introduced in detail
in the following respective subsection.

3.1. Personal Assertion Classification

This component aims to classify the spoken utterances into binary
classes according to the fact that the utterance depicts personal facts.
For example, one positive case could be like “i was born in 1999”,
and, on the other hand, an instance in the negative class could be
similar to “how is the weather today?”. We formulate this problem
as a binary classification task and apply Support Vector Machines
(SVM) [45, 46] framework to perform the classification.

SVMs, in their most basic formulation, are a binary classifica-
tion method based on the intuition of maximizing the margin around
the classification boundary. Given a training set of instance-label
pairs (xi, yi), i = 1, . . . , l where xi ∈ Rn and y ∈ {1,−1}l,
the Support Vector Machines require the solution of the following
optimization problem:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0.

where training vectors xi are mapped into a higher (maybe infinite)
dimensional space by the function φ. SVM finds a linear separating
hyperplane with the maximal margin in this higher space. C > 0 is
the penalty parameter of the error term.

We use linear kernels, K(xi,xj) = xTi xj , as provided in the
SVMlight [47] package, since they are extremely efficient. The out-
puts of this stage provide us with coarse-grained information on
whether we could further extract fine-grained personal factual re-
lations from next two levels.

3.2. Relation Detection

Relation detection aims to determine with relations in the part of
knowledge graph related to the utterance has been invoked in the
user utterances. For example, Table 1 shows example utterances that
invoke various relations in the knowledge graph, and one utterance
can also invoke more than one relations. Hence, the detection of
the relation as being invoked in the utterance is necessary for for-
mulating the query to the back-end. We frame this subtask as a
multi-class classification problem, and we also apply the SVMlight

package to classify each utterance into one or more relation classes.
But instead of directly using the extended algorithm, SVMmulticlass,
for multi-class scenarios, we still apply the binary, linear kernels in
the SVMlight package through a one-vs-rest approach. We construct
k SVM models where k is the number of relation classes. The ith
SVM is trained with all the examples in the ith class with positive
labels, and all other examples with negative labels. Then apply all
k SVM models on each utterance to determine which relations are
invoked in it. Depending on whether in-domain annotated data is
available or not, the models trained using training data for each rela-
tion can be used in two ways:

• Case 1: (Supervised Baseline) Use only the in-domain anno-
tated data for training and testing;

• Case 2: (Unsupervised) In cases where there is absolutely
no in-domain annotated data, the distantly mined data can be
used to build relation detection SVM models;

The formulation of the complete query to the back-end requires
detection of the invoked entities in the users utterance, in addition
to detecting the graph relations that are invoked. Hence, we will
extract the specific entities or arguments of detected relations with
the following Slot Filling component.

3.3. Slot Filling

The semantic structure of an application domain is defined in terms
of the semantic frames. The semantic frame contains several typed
components called “slots”. The task of slot filling is then to instanti-
ate the semantic frames. Check Table 1 for slot filling in the example
utterances. In this case, the semantic frame is represented as a flat
list of attribute-value pairs, similar to [48].

Following the state-of-the-art approaches for slot filling [49, 50,
among others], we use discriminative statistical models, namely
Conditional Random Fields (CRFs) [51], for modeling. More specif-
ically and formally, slot filling is framed as a sequence classification
problem to obtain the most probable slot sequence:

Ŷ = argmax
Y

p(Y |X)

where X = x1, ..., xT is the word sequence and Y = y1, . . . , yT ,
yi ∈ C is the sequence of associated class labels C.

CRFs are shown to outperform other classification methods for
sequence classification [1], since the training can be done discrimi-
natively over a sequence with sentence level optimization. The base-
line model relies on a word n-gram based linear chain CRF, imposing
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the first order Markov constraint on the model topology. Similar to
maximum entropy models, in this model, the conditional probability,
p(Y |X) is defined as [51]:

p(Y |X) =
1

Z(X)
exp(

∑
k

λkfk(yt−1, yt, xt))

with the difference that both X and Y are sequences instead of indi-
vidual local decision points given a set of features fk (such as n-gram
lexical features, state transition features, or others) with associated
weights λk. Z(X) is the normalization term. After the transition
and emission probabilities are optimized, the most probable state
sequence, Ŷ , can be determined using the well-known Viterbi algo-
rithm [52]. In this study, we follow the popular IOB (in-out-begin)
format in representing the data and use CRF++2, an open source im-
plementation of CRFs.

3.4. Knowledge Graph Population

Once the relations and the associated entities or arguments are identi-
fied from the utterances, the user-centered personal knowledge graph
would be populated with the newly extracted information and get up-
dated. Then if the user intends to talk more about himself/herself, the
system will repeat the above procedures to integrate more personal
facts into the current knowledge graphs. Otherwise, the system can
either output the knowledge graph for demonstration with better visi-
bility or store the knowledge graph into a knowledge repository such
as a knowledge base or database.

4. DATA COLLECTION

In this study, we utilize the semantic space that is defined in a knowl-
edge base, or a triple store, such as people.person related facts in
Freebase, for the SLU model to be built. A triple typically consists of
two entities linked by some relation, similar to the well-known pred-
icate/argument structure. An example would be place of birth
(Bill Gates, Seattle).

These semantic ontologies are not only used by search engines,
which try to semantically parse them, but also by the authors of
the in-domain web pages (such as imdb.com) for better visibil-
ity. While the details of the semantic web literature is beyond the
scope of this paper, it is clear that these kinds of semantic ontologies
are very close to the semantic ontologies used in goal-oriented nat-
ural dialog systems and there is a very tight connection between the
predicate/argument relations and intents, as explained below.

To create a training data set for our framework, we mine training
examples by searching entity pairs that are related to each other in
the knowledge graph on the web. As in our earlier work [9, 7], we
extract a set of entity pairs in a given domain that are connected with
a specific relation from the knowledge base3. Our approach for min-
ing examples guided by relations in the knowledge base is similar
to [53], but we directly detect relations invoked in user utterances,
instead of parsing utterances with a combinatory categorical gram-
mar [54]. Furthermore, we enhance our data with web search queries
which are inquiring similar information as dialog system users.

Assume AS is the set of all snippets returned for the pair
of entities a and b via web search4. We choose a subset of AS,
SAS, that include snippets with both entities: SAS = {s : s ∈
AS ∧ includes(s, a) ∧ includes(s, b)}, where includes(x, y)
is a binary function that has a value of 1 if string x contains y

2http://crfpp.googlecode.com
3http://www.freebase.com
4In this work, we use Bing search engine and download the top 10 results

for each entity pair.

Category Data Number

Positive web mined snippets 72, 820
pattern mined utterances 12, 989

Negative Cortana domain data 150, 915

Table 2. Training Data for Personal Assertion Classification

as a substring. One approach is using the complete strings of
the snippets for each relation as training examples. However, the
snippets can contain more than one correct relation tuples. In or-
der to capture more relations in the mined snippet sentences, we
apply an additional procedure to post-process these sentences to
augment the relation tags from Freebase, since many crawled in-
stances actually contain more than one relations. (Even though
we cannot guarantee that the augmented relations are “complete”,
because the Freebase is not complete as well as our collected
data.) For example, we extract two relations regarding “Jacques
Berthier”, which are date of birth(February 10, 1916) and
place of birth(Paris, France). This newly added step would
generate two following instances with all corresponding tags rather
than two instances with incomplete tags: Jacques Berthier was born
on <date of birth>February 10, 1916</date of birth>
in <place of birth>Paris, France</place of birth>.

5. EXPERIMENTS

5.1. Evaluation Dataset

We first create a set of test examples to evaluate each key component
of the proposed framework. To extract a set of testing instances,
we have collected a total of 10 million utterances from Microsoft
conversational understanding, Cortana, query logs. In order to mine
real cases that are personal assertions and contain personal factual
relations, we use 7 simple yet general patterns to extract a candidate
pool, where the patterns are “i am a *”, “i am from *”, “i have a
*”, “i live *”, “i was born *”, “i work *”, and “my *”. Then we
randomly sample a subset of the pooled candidate utterances, and
manually annotated each utterance with three levels of annotations,
corresponding to the three main components of our proposed frame-
work: (1) investigate whether the utterance is a personal assertion;
(2) identify the relations invoked in the utterance; and (3) tag the
entities or argument of the invoked relations in the utterance. The
final set of annotated data consists of 12, 989 examples about per-
sonal assertions, among which 1, 811 utterances contain at least one
of the predefined relations, while the remaining 11, 178 instances do
not. We then experimentally investigate the performance of each key
component based on this evaluation data set.

5.2. Personal Assertion Classification

To evaluate the performance of the Personal Assertion Classifica-
tion component, a 10-fold cross-validation approach is applied on
a combined data set, which contains the automatically mined snip-
pets from the web, the annotated utterances from Cortana query logs,
and a subset of Cortana related in-domain data. The Cortana re-
lated in-domain data consists utterances in 7 distinct domains such
as “weather” or “calendar”. We use this data as negative assertion
examples, while we label both snippets and annotated utterances as
positive training data. Table 2 shows the number of the examples
from each data source. Then the data set is randomly split into 10
equal size subsamples. Of the 10 subsamples, a single subsample is
retained as the validation data for testing the model, and the remain-
ing 9 subsamples are used as training data. The cross-validation
process is then repeated 10 times (the folds), with each of the 10
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Relation Type Count
Relation Detection Slot Filling

unsupervised supervised supervised
Precision@Count (%) Precision@Count (%) Precision (%) Recall (%) F-Measure (%)

place of birth 8 0.00 0.00 0.00 0.00 0.00
religion 8 0.00 50.00 0.00 0.00 0.00
ethnicity 17 0.00 70.59 100.0 17.65 30.00

employment history 40 7.50 52.50 50.00 12.50 20.00
nationality 47 0.00 63.83 75.00 82.98 78.79
profession 61 0.00 54.10 50.00 1.64 3.72

gender 63 6.35 82.54 90.91 47.62 62.50
date of birth 73 46.58 75.34 56.25 36.99 44.63
places lived 121 2.48 68.59 69.91 65.29 67.52
sibling s 248 86.29 90.32 85.92 71.08 77.80
children 260 23.08 87.31 80.92 47.31 59.71
parents 401 19.95 86.78 83.97 65.17 73.39
spouse s 464 82.11 94.39 86.81 68.10 76.33

Total 1811 42.85 84.32 82.01 58.58 68.34

Table 3. Performance of Relation Detection and Slot Filling

subsamples used exactly once as the validation data. The 10 results
from the folds are then combined to produce a single estimation.
The advantage of this method is that all observations are used for
both training and validation, and each observation is used for vali-
dation exactly once. Among total 236, 724 data samples, 234, 650
instances are correctly classified while only 2, 074 are classified with
wrong class labels, which achieves 99.12% accuracy. This demon-
strates the reliable performance of this SVM-based Personal Asser-
tion classifier.

5.3. Relation Detection

In order to measure the quality and effectiveness of Relation De-
tection component, the models have been trained using the snippets
mined from the web and the annotated Cortana utterances in two sce-
narios, depending on whether in-domain annotated data is available
or not:

• Case 1: (Supervised Baseline) Only use the in-domain anno-
tated Cortana utterances for both training and testing, where
a 2-fold cross-validation (handout) approach is applied. For
each fold, annotated utterances are randomly assigned to two
sets d0 and d1, so that both sets are equal size (this is usually
implemented by shuffling the data array and then splitting it
in two). Then the model is trained on d0 and tested on d1,
following by being trained on d1 and tested on d0. This has
the advantage that our training and test sets are both large,
and each data point is used for both training and validation;

• Case 2: (Unsupervised) To mimic the cases where there is
absolutely no in-domain annotated spoken data, the snippets
crawled from the web are used to build models, and gauge the
model performance on the annotated Cortana utterances;

For evaluation, we used Precision@N (P@N), where N is the
number of positive examples for that relation in the test set. Table 3
shows the detailed results in each above case, where only n-gram fea-
tures are used. The supervised method provides the upper bound of
84.32% P@N, based on manual annotations. Using the proposed un-
supervised approach results in a bootstrap model achieving 42.85%
P@N overall. However for certain classes such as sibling or
spouse, the model has performed on par with the supervised ap-
proach. For relations, requiring a named entity such as location for
place of birth or date for date of birth, we plan to use
a generic named entity tagger to improve the performance. This

is left as future research. Another promising direction is adapting
this bootstrap model with supervised data, using an online learning
mechanism, drawing learning curves for each relation. We suspect
that with few manually tagged examples, some relation types may
improve significantly, such as employment history.

5.4. Slot Filling

The Slot Filling results in each above case are also shown in Table 3.
For slot filling we only used the supervised approach, since the
semantic annotation mechanisms of the snippets and the evaluation
set are different, as they belong to different genre (e.g., Jacques
Berthier is the son of <parents>Paul Berthier<parents>
vs. my <parents>father<parents> is old). For evaluation,
the slot F-measure is used, following the literature [49] using the
CoNLL evaluation script5. We can see that the supervised approach
can achieve 68.34% F-measure in the overall performance. For most
relation types, where the context is obvious, the system achieves rea-
sonable performance levels with minimal annotations. There are few
relation types, where the task is nontrivial such as profession
relation, since profession may get invoked with a much larger
pool of expressions, such as “computer research scientist”, “heli-
copter trainer”, “international standard ballroom dancer”, and so on,
which cannot easily get trained from a small in-domain data. As part
of future research, we plan to extract these patterns from the auto-
matic annotations we mined from the snippets. Similarly, the named
entity features would help improving the overall performance.

6. CONCLUSION

In this paper, we have presented a novel SLU framework aiming to
construct personal (user-centric) knowledge graphs in spoken utter-
ances. This approach contains three main language understanding
components: Personal Assertion Classification, Relation Detection,
and Slot Filling. Our experimental results have proven the effec-
tiveness of the proposed scheme on all three levels. While relation
detection and slot filling have been studied in many SLU tasks, to
the best of our knowledge, this is a pioneering study for systemat-
ically building personal knowledge graphs in human/machine con-
versational systems.

5http://www.cnts.ua.ac.be/conll2000/chunking/
output.html
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Since the current slot filling approach cannot handle the utter-
ances that involve two or more links, we plan to integrate an infer-
ence scheme into the framework to solve sophisticated relations in-
voked in the utterances. Given “my wife was born in China”, for ex-
ample, directly link place of birth:China to spouse s node.
We are also interested in exploring the personal preferences depicted
in the utterances, such as “I am vegetarian”, since we believe this
interested in-style relation could enhance the performance of
VPA to a great extent, like recommending appropriate restaurants
in this case. In addition, we find that it is also very important to
identify the negation expression and its scope within the utterances,
which is crucial to determine whether a relation should be populated
into the knowledge graph. We plan to boost our proposed framework
towards these directions in the future work.
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