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Abstract—This paper presents a novel method to learn neural
knowledge graph embeddings. The embeddings are used to
compute semantic relatedness in a coherence-based semantic
parser. The approach learns embeddings directly from structured
knowledge representations. A deep neural network approach
known as Deep Structured Semantic Modeling (DSSM) is used
to scale the approach to learn neural embeddings for all of the
concepts (pages) of Wikipedia. Experiments on Twitter dialogs
show a 23.6% reduction in semantic parsing errors compared to
the state-of-the-art unsupervised approach.
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I. INTRODUCTION

With the goal of teaching machines to understand human
conversations, one of the most fundamental components of
a conversational understanding system is the semantic parser.
Conversational semantic parsers map natural language (NL) to
a formal representation of meaning, typically defined by the
intent of the user and the associated arguments of the intent
(slots or concepts) [1].

Considerable advancements in semantic parsing have been
made possible by the availability of massive volumes of
data from web search engines. The data is composed of
unstructured and semi-structured queries and documents from
the web. User clicks on documents provide a (weak) semantic
annotation of the query. Our recent work has shown significant
progress in leveraging these weak click labels to semantically
parse conversational queries [2], [3], [4], [5], [6].

With the recent emergence of very large-scale semantic
knowledge graphs (KGs) [7], it is now possible to add
structure to the machine learning procedures developed above.
Specifically, we have developed methods to enrich KGs with
automatically annotated training data through unsupervised
data mining methods. The methods have been applied to
queries (single turns in a conversation) [8], [9], [10], [11],
[12], [13], [14], [15] as well as over multiple queries in a
conversation [16].

Recent work in [17], [18] showed that a deep neural
network (DNN) can be used to directly encode KGs for
semantic parsing. By leveraging our prior work, this paper
extends these KG methods in several ways. While the approach
in [17] is single-relation Question Answering, our approach is
large-scale multi-concept (entity, relation, fact) open domain
semantic parsing. Our approach is web-scale, learning neural
embeddings for all the concepts of Wikipedia in the open

source Freebase KG [7]. Also, while the other approaches rely
on supervised training, our approach is unsupervised. Also, our
approach is applied to the Wikification (concept linking) of
Twitter Tweets as opposed to the Question Answering prob-
lem. And finally, we have extended the KG-based semantic
parsing methods to multi-turn (Twitter) dialogs.

II. TASK DEFINITION

This paper focuses on the task of semantically parsing
human dialogs (spoken or text). With the proliferation of
mobile devices and services/Apps such as Twitter, Skype,
and Facebook, the dominant mode of human dialog is being
redefined. We have entered a new era where an ever increasing
number of people are continuously connected through digital
conversations composed of a sequence of short messages. The
availability of large volumes of data for scientific study from
these conversations (e.g., Twitter) presents a new opportunity
for the semantic parsing community to explore the potential
of automated understanding of human dialog.

Figure 1 shows a series of tweets separated by punctuation
(or a multi-sentence tweet). We seek to semantically parse
the tweets; specifically, identify the unambiguous Wikipedia
concepts (entities, relations, and facts) present in the utterance.
The figure shows the concept mentions in bold, including
“Hawks”, “Fans”, and “slump”. Concept mentions are defined
as a natural language surface form phrase referring to a
concept. The unambiguous concept in this task is defined
as a Wikipedia page or URL (e.g.,http://en.wikipedia.org/
wiki/slump(sports)). Concept linking is completed with no
constraints on the domain or topic of conversation. This
task is often referred to as large-scale open domain entity
linking [19].

III. COHERENCE AND SEMANTIC RELATEDNESS

With multiple dialog turns in a Twitter conversation, one
can exploit the topical coherence and semantic relatedness
between concept mentions. While a single mention may be
ambiguous, multiple mentions of the same concept in different
grammatical context over a dialog often provide additional
evidence of the unambigous (Wikipedia) concept. In addition,
mentions of other semantically related concepts provide addi-
tional disamiguation evidence.

Referring again to Figure 1, topical coherence is illustrated
with the mention “Hawks”. This mention is repeated in the first
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Fig. 1: Example of Twitter tweets and the concept linking task.

and third tweet/sentence. The combination of the mentions
“Hawks”, “Fans”, and “slump” illustrate the importance of
semantic relatedness. The mention “Hawks” may refer to the
concept of an animal or the NBA team (Atlanta Hawks). The
mention “Fans” may refer to the concept of people (sports
fans) or a device for creating a current of air or breeze. The
mention “slump” may refer to the concept in sports (a period
when a player or team is not performing well) or a geological
mass movement process of hill slope failure.

Exploiting topical coherence and semantic relatedness has
resulted in improvements for Wikification on formal texts (e.g.,
News) [20], [21], [22], [23], [24]. For Twitter, however, the
brevity of a single tweet typically does not provide enough
topical context. Therefore, a method is required that captures
semantic relatedness from multiple tweets.

The unsupervised method in this paper achieves this goal.
It extends previous methods by (1) using a graph regulariza-
tion method to combine the prior popularity of the concept
with multi-turn (dialog) coherence, (2) leveraging large-scale
knowledge graphs to learn neural KG embeddings, using these
to compute semantic relatedness between mention-concept
pairs. The graph regularization method uses a graph-based
semi-supervised learning algorithm. Given a relational graph,
the method regularizes a loss function of predicted mention-
concept labels with a measure of label consistency over
the graph. The graph regularlization method jointly performs
mention detection and disambiguation, and incorporates both
local and global evidence from multiple tweets by detecting
meta path-based semantic relations from social networks. A
detailed description of the method is presented in [25].

In the next section, we detail our new approach to neural
KG embeddings and describe how the embeddings can be
combined with the graph regularization approach for semantic
parsing of twitter dialogs.

IV. KNOWLEDGE GRAPH EMBEDDINGS

Most rule-based and statistical natural language processing
(NLP) methods consider words as the lowest level atomic unit.
Each word is represented as a binary “one-hot” vector, where
the dimension of the vector is the size of the vocabulary.
This representation of words is sparse and poorly captures the
semantic relatedness between words, e.g., the AND operation

of “city” and “town” is zero (False). As a result, alternative
feature representations of words are needed that are more
compact and better capture semantic relatedness.

Deep neural networks have shown significant potential in
creating compact feature representations for many applications
- from image, speech, signal, and natural language processing.
In the 1990s, deep neural network methods were developed to
automatically discover new feature representations for robust
speaker recognition [26], [27]. In this work, neural embed-
dings were discriminatively learned without supervision from
raw acoustic features (large windows of filterbank spectral
energies). The neural embeddings yielded significant improve-
ments over previous state-of-the-art approaches. Compared to
a top performing system on the 1998 NIST Speaker Recog-
nition evaluations, the neural embeddings produced gains of
greater than 28% in error rate reductions.

Recently, neural embeddings have been applied to text
processing and used successfully to learn more effective repre-
sentations of words. These representations, called neural word
embeddings, combine vector space semantics with the pre-
diction power of probabilistic models and yield dense vector
representations. Neural embeddings for text-based language
modeling and NLP applications were developed in [28], [29],
[30]. These methods learn neural embeddings for a word
from the other words that often occur in close proximity in
documents (e.g., Wikipedia articles).

We seek to extend the word embedding methods to cre-
ate neural knowledge graph (KG) embeddings: a dense,
continuous-valued semantic vector representation of KG con-
cepts. KG concepts often consist of multiple words (e.g.,
“Microsoft Research”, “James Cameron”, “Atlanta Hawks”).
Previous extensions to word-based embeddings have typically
represented multi-word concepts as algebraic combinations
(addition) of word-level embeddings. While this approach can
work for some concepts, it often introduces noise into the
representation. For example adding the vector “Atlanta” (the
city) to the vector “Hawks” (the bird) does not result in the
vector for “Atlanta Hawks” (the basketball team).

Our approach learns neural embeddings of semantic con-
cepts directly from the KG. For each concept, we identify the
associated sub-graph of the KG and encode the knowledge as
feature vectors. These features are used as input to a DNN
that is trained to learn neural KG embeddings that represent
the semantic relatedness between KG concepts.

For this work, we use the portion of the Freebase [7] that
covers Wikipedia concepts (entities, relations, and facts) from
a Wikipedia dump on May 3, 2013. The number of entities,
entity types (e.g., person), and relations (e.g., directed by) used
in this study are shown Wikipedia Table I.

TABLE I: Statistics of Freebase-Wikipedia Concepts

Knowledge Graph Element Size
# Entities/Facts 4.12M
# Entity Types 1.57K
# Relations 3.17K



From this portion of Freebase, we generated several types
of features to be used as input to the DNN. These features
are shown in Figure 2. Given the small number of entity
types and relations, we represent these features as a 1-of-V
binary vector. With the relatively large number of entities, we
efficiently represent the entity-based features by leveraging a
method we developed in [31] called word hashing.

Fig. 2: Encoding of knowledge graph features

A. Word Hashing

Word hashing aims to reduce the dimensionality of the bag-
of-words term vectors. The specific approach we use is based
on letter n-grams. As shown in Figure 3, given a word (cat), we
first add start- and end-marks to the word (e.g., #cat#). Then,
we break the word into letter n-grams (e.g., letter trigrams:
#ca, cat, at#). Finally, the word is represented using a vector
of letter n-grams.

Fig. 3: Word hashing with letter tri-grams.

One potential problem of this method is collision, i.e., two
different words could have the same letter n-gram vector
representation. Table II shows some statistics of word hashing
on two vocabularies. Compared with the original size of the
one-hot vector, word hashing allows us to represent a sequence
of words using a vector with much lower dimensionality. For
example, each word of a 40K-word vocabulary can be repre-
sented by a 10,306-dimentional vector using letter trigrams,

giving a four-fold dimensionality reduction with few colli-
sions. The reduction of dimensionality is even more significant
when the technique is applied to a larger vocabulary. Each
word in the 500K-word vocabulary can be represented by a
30,621 dimensional vector using letter trigrams, a reduction
of 16-fold in dimensionality with a negligible collision rate of
0.0044

TABLE II: Word Hashing Collision Rate

Vocabulary Observed Tri-letters Number of
Size in Vocabulary (unique) Collisions
40K 10306 2

500K 30621 22

B. Deep Structured Semantic Models

To create the neural KG embeddings, the next step after
generating the features from the KG is to input these features
into a DNN and train the network to learn semantic relatedness
between concepts. For this work, we employ the DNN method
developed in [31] called “Deep Structured Semantic Models”
(DSSM).

The architecture for the DSSM is shown in Figure 4.
The feature generation is shown in the two bottom layers
(Feature Vector and Word Hashing). Ei and Ej represent
semantically related concepts (entities, relations, facts) and
E1, ..., En represent non-related concepts (negative examples).
Denoting x as the input term vector, y as the output vector,
li, i = 1, ..., N − 1 as the intermediate hidden layers, Wi as
the i-th weight matrix, and bi as the i-th bias term, we have

l1 = W1x (1)
li = f(Wili−1 + bi), i = 2, ..., N − 1

y = f(WN lN−1 + bN )

where we use the tanh as the activation function at the output
layer and the hidden layers li, i = 2, ..., N − 1:

f(x) =
1− e−2x

1 + e−2x
. (2)

The semantic relevance score between concepts Ei and Ej is
then measured as:

R(Ei, Ej) = cos(yEi , yEj ) =
yEj

T yEj

||yEi ||||yEj ||
(3)

where yEi and yEj are the neural embeddings of the KG
concepts Ei and Ej , respectively. The semantic relatedness of
two concepts is given by the KG as first-order related nodes
(it can also be inferred from the co-occurence of concepts
on a given Wikipedia page). Given two semantically related
concepts, the training procedure computes the posterior proba-
bility of concept Ej given Ei using a softmax function, as well
as the probabilities for the unrelated concepts E1, ..., En. The
DSSM is trained to maximize the likelihood of the related
concepts given the features created across the KG. For a
detailed description of the DSSM training procedure, we refer
the reader to [31].



Fig. 4: DSSM architecture for learning neural knowledge graph embeddings

C. Leveraging KG Embeddings with Graph Regularization

Given a KG embedding for each concept (Wikipedia page),
we leverage the embeddings to improve the graph regular-
ization approach described in Section III. The graph regu-
larization approach generates candidate lists of coherent and
semantically related concepts. In the original algorithm, the
lists are ranked according to a semantic relatedness measure as
proposed in [20], where semantic relatedness of two concepts
ci and cj is computed as

SR(ci, cj) = 1− logmax(|Ci|, |Cj |)− log |Ci ∩ Cj |
log(|C|)− logmin(|Ci|, |Cj |)

(4)

where Ci and Cj are the set of incoming links to ci and
cj , respectively. With the KG embeddings, we re-rank the
candidate concept lists by replacing the measure of semantic
relatedness of concepts with the DSSM posterior probability
estimates, shown as P (Ej |Ei) in Figure 4.

V. EXPERIMENTS

For our experiments we used a public data set (Meij et
al., 2012) including 502 tweets posted by 28 verified users.
The data set was annotated by two annotators. We used a
Wikipedia dump on May 3, 2013, which included 30 million
pages. A mention and concept pair < m, c > was judged as
correct if and only if m was linkable and c is the correct
referent concept for m. To train the DSSM, we mined 20
million positive concept pairs. The negative training pairs were
randomly sampled from across Wikipedia. Table III compares
our new semantic parsing methods with the current state-
of-the-art on this task called TagMe method by Ferragine
et al. [32]. GraphRegu is our graph regularization approach
described in Section III, and KG Embeddings is our new
neural KG embedding approach. All results are error rates

of a hard decision using the top ranked concept candidate.
For comparison, the state-of-the-art supervised method by
Meij [33] has an error rate of 31.6%.

TABLE III: Deep conversational knowledge graph (Deep
cKG) vs state-of-the-art TagMe.

Unsupervised Method Error Rate Reduction (rel.)
Baseline (TagMe) 38.1% -
GraphRegu 35.7% 6.3%

+ KG Embeddings (Entities) 31.8% 16.5%
+ KG Embeddings (Relations) 30.0% 21.3%

+ KG Embeddings (Entity Types) 29.1% 23.6%

Using only our GraphRegu method reduces (improves) the
error rate by 6.3% (relative) compared to the state-of-the-art
TagMe system. Adding our neural KG embedding approach
with first-order entities and facts in the sub-graph reduces the
error rate by 16.5%. Including the KG relations and entity
types yields a 21.3% and 23.6% error rate reduction. Our final
system (unsupervised) has an error rate that is even lower than
the state-of-the-art supervised method by Meij by 7.9% .

VI. CONCLUSION

This paper presented a new unsupervised neural knowledge
graph embedding model. The new model uses Deep Struc-
tured Semantic Modeling (DSSM) to learn the embeddings
directly from large-scale knowledge graphs that cover all of
Wikipedia. This paper also presented a semantic coherence-
based approach for concept disambiguation across multiple
dialog turns. When combined with the neural knowledge graph
embeddings, the new approach yielded a 23.6% error reduction
in the semantic parsing of Twitter dialogs.
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