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Abstract 

This paper presents a deep semantic simi-

larity model (DSSM), a special type of 

deep neural networks designed for text 

analysis, for recommending target docu-

ments to be of interest to a user based on a 

source document that she is reading. We 

observe, identify, and detect naturally oc-

curring signals of interestingness in click 

transitions on the Web between source and 

target documents, which we collect from 

commercial Web browser logs. The DSSM 

is trained on millions of Web transitions, 

and maps source-target document pairs to 

feature vectors in a latent space in such a 

way that the distance between source doc-

uments and their corresponding interesting 

targets in that space is minimized. The ef-

fectiveness of the DSSM is demonstrated 

using two interestingness tasks: automatic 

highlighting and contextual entity search. 

The results on large-scale, real-world da-

tasets show that the semantics of docu-

ments are important for modeling interest-

ingness and that the DSSM leads to signif-

icant quality improvement on both tasks, 

outperforming not only the classic docu-

ment models that do not use semantics but 

also state-of-the-art topic models. 

1 Introduction 

Tasks of predicting what interests a user based on 

the document she is reading are fundamental to 

many online recommendation systems. A recent 

survey is due to Ricci et al. (2011). In this paper, 

we exploit the use of a deep semantic model for 

two such interestingness tasks in which document 

semantics play a crucial role: automatic highlight-

ing and contextual entity search. 

Automatic Highlighting. In this task we want 

a recommendation system to automatically dis-

cover the entities (e.g., a person, location, organi-

zation etc.) that interest a user when reading a doc-

ument and to highlight the corresponding text 

spans, referred to as keywords afterwards. We 

show in this study that document semantics are 

among the most important factors that influence 

what is perceived as interesting to the user. For 

example, we observe in Web browsing logs that 

when a user reads an article about a movie, she is 

more likely to browse to an article about an actor 

or character than to another movie or the director. 
Contextual entity search. After identifying 

the keywords that represent the entities of interest 

to the user, we also want the system to recommend 

new, interesting documents by searching the Web 

for supplementary information about these enti-

ties. The task is challenging because the same key-

words often refer to different entities, and interest-

ing supplementary information to the highlighted 

entity is highly sensitive to the semantic context. 

For example, “Paul Simon” can refer to many peo-

ple, such as the singer and the senator. Consider 

an article about the music of Paul Simon and an-

other about his life. Related content about his up-

coming concert tour is much more interesting in 

the first context, while an article about his family 

is more interesting in the second. 

At the heart of these two tasks is the notion of 

interestingness. In this paper, we model and make 

use of this notion of interestingness with a deep 

semantic similarity model (DSSM). The model, 

extending from the deep neural networks shown 

recently to be highly effective for speech recogni-

tion (Hinton et al., 2012; Deng et al., 2013) and 

computer vision (Krizhevsky et al., 2012; Mar-

koff, 2014), is semantic because it maps docu-

ments to feature vectors in a latent semantic space, 

also known as semantic representations. The 

model is deep because it employs a neural net-

work with several hidden layers including a spe-

cial convolutional-pooling structure to identify 

keywords and extract hidden semantic features at 

different levels of abstractions, layer by layer. The 

semantic representation is computed through a 

deep neural network after its training by back-

propagation with respect to an objective tailored 



to the respective interestingness tasks. We obtain 

naturally occurring “interest” signals by observ-

ing Web browser transitions, from a source docu-

ment to a target document, in Web usage logs of a 

commercial browser. Our training data is sampled 

from these transitions. 

The use of the DSSM to model interestingness 

is motivated by the recent success of applying re-

lated deep neural networks to computer vision 

(Krizhevshy et al. 2012; Markoff, 2014), speech 

recognition (Hinton et al. 2012), text processing 

(Collobert et al. 2011),  and Web search (Huang 

et al. 2013). Among them, (Huang et al. 2013) is 

most relevant to our work. They also use a deep 

neural network to map documents to feature vec-

tors in a latent semantic space. However, their 

model is designed to represent the relevance be-

tween queries and documents, which differs from 

the notion of interestingness between documents 

studied in this paper. It is often the case that a user 

is interested in a document because it provides 

supplementary information about the entities or 

concepts she encounters when reading another 

document although the overall contents of the sec-

ond documents is not highly relevant. For exam-

ple, a user may be interested in knowing more 

about the history of University of Washington af-

ter reading the news about President Obama’s 

visit to Seattle. To better model interestingness, 

we extend the model of Huang et al. (2013) in two 

significant aspects. First, while Huang et al. treat 

a document as a bag of words for semantic map-

ping, the DSSM treats a document as a sequence 

of words and tries to discover prominent key-

words. These keywords represent the entities or 

concepts that might interest users, via the convo-

lutional and max-pooling layers which are related 

to the deep models used for computer vision 

(Krizhevsky et al., 2013) and speech recognition 

(Deng  et al., 2013a) but are not used in Huang et 

al.’s model. The DSSM then forms the high-level 

semantic representation of the whole document 

based on these keywords. Second, instead of di-

rectly computing the document relevance score 

using cosine similarity in the learned semantic 

space, as in Huang et al. (2013), we feed the fea-

tures derived from the semantic representations of 

documents to a ranker which is trained in a super-

vised manner. As a result, a document that is not 

highly relevant to another document a user is read-

ing (i.e., the distance between their derived feature 

                                                           
1 We stress here that, although the click signal is available to 

form a dataset and a gold standard ranker (to be described in 

vectors is big) may still have a high score of inter-

estingness because the former provides useful in-

formation about an entity mentioned in the latter. 

Such information and entity are encoded, respec-

tively, by (some subsets of) the semantic features 

in their corresponding documents. In Sections 4 

and 5, we empirically demonstrate that the afore-

mentioned two extensions lead to significant qual-

ity improvements for the two interestingness tasks 

presented in this paper.  

Before giving a formal description of the 

DSSM in Section 3, we formally define the inter-

estingness function, and then introduce our data 

set of naturally occurring interest signals. 

2 The Notion of Interestingness 

Let 𝐷  be the set of all documents. Following 

Gamon et al. (2013), we formally define the inter-

estingness modeling task as learning the mapping 

function: 

 𝜎: 𝐷 × 𝐷 → ℝ+   

where the function 𝜎(𝑠, 𝑡) is the quantified degree 

of interest that the user has  in the target document 

𝑡 ∈ 𝐷 after or while reading the source document 

𝑠 ∈ 𝐷. 

Our notion of a document is meant in its most 

general form as a string of raw unstructured text. 

That is, the interestingness function should not 

rely on any document structure such as title tags, 

hyperlinks, etc., or Web interaction data. In our 

tasks, documents can be formed either from the 

plain text of a webpage or as a text span in that 

plain text, as will be discussed in Sections 4 and 5. 

2.1 Data 

We can observe many naturally occurring mani-

festations of interestingness on the Web. For ex-

ample, on Twitter, users follow shared links em-

bedded in tweets. Arguably the most frequent sig-

nal, however, occurs in Web browsing events 

where users click from one webpage to another 

via hyperlinks. When a user clicks on a hyperlink, 

it is reasonable to assume that she is interested in 

learning more about the anchor, modulo cases of 

erroneous clicks. Aggregate clicks can therefore 

serve as a proxy for interestingness. That is, for a 

given source document, target documents that at-

tract the most clicks are more interesting than doc-

uments that attract fewer clicks1.  

Section 4), our task is to model interestingness between un-

structured documents, i.e., without access to any document 

structure or Web interaction data. Thus, in our experiments, 



We collect a large dataset of user browsing 

events from a commercial Web browser. Specifi-

cally, we sample 18 million occurrences of a user 

click from one Wikipedia page to another during 

a one year period. We restrict our browsing events 

to Wikipedia since its pages tend to contain many 

anchors (79 on average, where on average 42 have 

a unique target URL). Thus, they attract enough 

traffic for us to obtain robust browsing transition 

data2. We group together all transitions originat-

ing from the same page and randomly hold out 

20% of the transitions for our evaluation data 

(EVAL), 20% for training the DSSM described in 

Section 3.2 (TRAIN_1), and the remaining 60% 

for training our task specific rankers described in 

Section 3.3 (TRAIN_2). In our experiments, we 

used different settings for the two interestingness 

tasks. Thus, we postpone the detailed description 

of these datasets and other task-specific datasets 

to Sections 4 and 5. 

3 A Deep Semantic Similarity Model 

(DSSM) 

This section presents the architecture of the 

DSSM, describes the parameter estimation, and 

the way the DSSM is used in our tasks. 

                                                           
we remove all structural information (e.g., hyperlinks and 

XML tags) in our documents, except that in the highlighting 

experiments (Section 4) we use anchor texts to simulate the 

candidate keywords to be highlighted. We then convert each 

3.1 Network Architecture 

The heart of the DSSM is a deep neural network 

with convolutional structure, as shown in Figure 

1. In what follows, we use lower-case bold letters, 

such as 𝐱, to denote column vectors, 𝑥(𝑖) to de-

note the 𝑖𝑡ℎ element of 𝐱, and upper-case letters, 

such as 𝐖, to denote matrices. 

Input Layer 𝐱. It takes two steps to convert a doc-

ument 𝑑, which is a sequence of words, into a vec-

tor representation 𝐱 for the input layer of the net-

work: (1) convert each word in 𝑑 to a word vector, 

and (2) build 𝐱 by concatenating these word vec-

tors. To convert a word 𝑤 into a word vector, we 

first represent 𝑤 by a one-hot vector using a vo-

cabulary that contains 𝑁  high frequent words 

(𝑁 = 150K in this study). Then, following Huang 

et al. (2013), we map 𝑤 to a separate tri-letter vec-

tor. Consider the word “#dog#”, where # is a word 

boundary symbol. The nonzero elements in its tri-

letter vector are “#do”, “dog”, and “og#”. We then 

form the word vector of 𝑤 by concatenating its 

one-hot vector and its tri-letter vector. It is worth 

noting that the tri-letter vector complements the 

one-hot vector representation in two aspects. First, 

different OOV (out of vocabulary) words can be 

represented by tri-letter vectors with few colli-

sions. Second, spelling variations of the same 

word can be mapped to the points that are close to 

each other in the tri-letter space. Although the 

number of unique English words on the Web is 

extremely large, the total number of distinct tri-

letters in English is limited (restricted to the most 

frequent 30K in this study). As a result, incorpo-

rating tri-letter vectors substantially improves the 

representation power of word vectors while keep-

ing their size small.  

To form our input layer 𝐱 using word vectors, 

we first identify a text span with a high degree of 

relevance, called focus, in 𝑑  using task-specific 

heuristics (see Sections 4 and 5 respectively). Sec-

ond, we form 𝐱 by concatenating each word vec-

tor in the focus and a vector that is the summation 

of all other word vectors, as shown in Figure 1. 

Since the length of the focus is much smaller than 

that of its document, 𝐱 is able to capture the con-

textual information (for the words in the focus) 

Web document into plain text, which is white-space to-

kenized and lowercased. Numbers are retained and no stem-

ming is performed. 
2 We utilize the May 3, 2013 English Wikipedia dump con-

sisting of roughly 4.1 million articles from http://dumps.wiki-

media.org. 

 
Figure 1: Illustration of the network architec-

ture and information flow of the DSSM 

 

http://dumps.wikimedia.org/
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useful to the corresponding tasks, with a manage-

able vector size. 

Convolutional Layer 𝐮 . A convolutional layer 

extracts local features around each word 𝑤𝑖 in a 

word sequence of length 𝐼  as follows. We first 

generate a contextual vector 𝐜𝑖  by concatenating 

the word vectors of 𝑤𝑖 and its surrounding words 

defined by a window (the window size is set to 3 

in this paper). Then, we generate for each word a 

local feature vector 𝐮𝑖  using a tanh  activation 

function and a linear projection matrix 𝐖𝑐, which 

is the same across all windows 𝑖 in the word se-

quence, as: 

𝐮𝑖 = tanh(𝐖𝑐
T𝐜𝑖) , where 𝑖 = 1 … 𝐼 (1) 

Max-pooling Layer 𝐯. The size of the output 𝐮 

depends on the number of words in the word se-

quence. Local feature vectors have to be com-

bined to obtain a global feature vector, with a 

fixed size independent of the document length, in 

order to apply subsequent standard affine layers. 

We design 𝐯 by adopting the max operation over 

each “time” 𝑖 of the sequence of vectors computed 

by (1), which forces the network to retain only the 

most useful, partially invariant local features pro-

duced by the convolutional layer: 

𝑣(𝑗) = max
𝑖=1,…,𝐼

{u𝑖(𝑗)} (2) 

where the max operation is performed for each di-

mension of 𝐮 across 𝑖 = 1, … , 𝐼 respectively.  

That convolutional and max-pooling layers are 

able to discover prominent keywords of a docu-

ment can be demonstrated using the procedure in 

Figure 2 using a toy example. First, the convolu-

tional layer of (1) generates for each word in a 5-

word document a 4-dimensional local feature vec-

tor, which represents a distribution of four topics. 

For example, the most prominent topic of 𝑤2 

within its three word context window is the first 

topic, denoted by 𝑢2(1), and the most prominent 

topic of 𝑤5 is 𝑢5(3). Second, we use max-pooling 

of (2) to form a global feature vector, which rep-

resents the topic distribution of the whole docu-

ment. We see that 𝑣(1) and 𝑣(3) are two promi-

nent topics. Then, for each prominent topic, we 

trace back to the local feature vector that survives 

max-pooling: 

𝑣(1) = max
𝑖=1,…,5

{𝑢𝑖(1)} = 𝑢2(1)  

𝑣(3) = max
𝑖=1,…,5

{𝑢𝑖(3)} = 𝑢5(3). 
 

Finally, we label the corresponding words of these 

local feature vectors, 𝑤2 and 𝑤5, as keywords of 

the document.  

Figure 3 presents a sample of document snip-

pets and their keywords detected by the DSSM ac-

cording to the procedure elaborated in Figure 2. It 

is interesting to see that many names are identified 

as keywords although the DSSM is not designed 

explicitly for named entity recognition. 

Fully-Connected Layers 𝐡  and 𝐲 . The fixed 

sized global feature vector 𝐯 of (2) is then fed to 

several standard affine network layers, which are 

stacked and interleaved with nonlinear activation 

functions, to extract highly non-linear features 𝐲 

at the output layer. In our model, shown in Figure 

1, we have: 

𝐡 = tanh(𝐖1
T𝐯) (3) 

𝐲 = tanh(𝐖2
T𝐡) (4) 

where 𝐖1 and 𝐖2 are learned linear projection matri-

ces. 

3.2 Training the DSSM 

To optimize the parameters of the DSSM of Fig-

ure 1, i.e., 𝛉 = {𝐖𝑐 , 𝐖1, 𝐖2}, we use a pair-wise 

rank loss as objective (Yih et al. 2011). Consider 

a source document 𝑠  and two candidate target 

documents 𝑡1 and 𝑡2, where 𝑡1 is more interesting 

than 𝑡2  to a user when reading 𝑠. We construct 

two pairs of documents (𝑠, 𝑡1) and (𝑠, 𝑡2), where 

the former is preferred and should have a higher 
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Figure 2: Toy example of (upper) a 5-word 

document and its local feature vectors ex-

tracted using a convolutional layer, and (bot-

tom) the global feature vector of the document 

generated after max-pooling. 

 

 



interestingness score. Let ∆ be the difference of 

their interestingness scores: ∆ = 𝜎(𝑠, 𝑡1) −
𝜎(𝑠, 𝑡2) , where 𝜎  is the interestingness score, 

computed as the cosine similarity: 

𝜎(𝑠, 𝑡) ≡ sim𝛉(𝑠, 𝑡) =
𝐲𝑠

T𝐲𝑡

‖𝐲𝑠‖‖𝐲𝑡‖
 (5) 

where 𝐲𝑠 and 𝐲𝑡 are the feature vectors of 𝑠 and 𝑡, 

respectively, which are generated using the 

DSSM, parameterized by 𝛉. Intuitively, we want 

to learn 𝛉 to maximize ∆. That is, the DSSM is 

learned to represent documents as points in a hid-

den interestingness space, where the similarity be-

tween a document and its interesting documents is 

maximized.  

We use the following logistic loss over ∆ , 

which can be shown to upper bound the pairwise 

accuracy: 

ℒ(∆; 𝛉) = log(1 + exp(−𝛾∆)) (6) 

                                                           
3 In our experiments, we observed better results by sampling 

more negative training examples (e.g., up to 100) although 

this makes the training much slower. An alternative approach 

The loss function in (6) has a shape similar to the 

hinge loss used in SVMs. Because of the use of 

the cosine similarity function, we add a scaling 

factor 𝛾 that magnifies ∆ from [-2, 2] to a larger 

range. Empirically, the value of 𝛾 makes no dif-

ference as long as it is large enough. In the exper-

iments, we set 𝛾 = 10. Because the loss function 

is differentiable, optimizing the model parameters 

can be done using gradient-based methods. Due to 

space limitations, we omit the derivation of the 

gradient of the loss function, for which readers are 

referred to related derivations (e.g., Collobert et 

al. 2011; Huang et al. 2013; Shen et al. 2014). 

In our experiments we trained DSSMs using 

mini-batch Stochastic Gradient Descent. Each 

mini-batch consists of 256 source-target docu-

ment pairs. For each source document 𝑠, we ran-

domly select from that batch four target docu-

ments which are not paired with 𝑠  as negative 

training samples3 . The DSSM trainer is imple-

mented using a GPU-accelerated linear algebra li-

brary, which is developed on CUDA 5.5. Given 

the training set (TRAIN_1 in Section 2), it takes 

approximately 30 hours to train a DSSM as shown 

in Figure 1, on a Xeon E5-2670 2.60GHz machine 

with one Tesla K20 GPU card. 

In principle, the loss function of (6) can be fur-

ther regularized (e.g. by adding a term of 𝐿2 norm) 

to deal with overfitting. However, we did not find 

a clear empirical advantage over the simpler early 

stop approach in a pilot study, hence we adopted 

the latter in the experiments in this paper. Our ap-

proach adjusts the learning rate 𝜂  during the 

course of model training. Starting with 𝜂 = 1.0, 

after each epoch (a pass over the entire training 

data), the learning rate is adjusted as 𝜂 = 0.5 × 𝜂 

if the loss on validation data (held-out from 

TRAIN_1) is not reduced. The training stops if 

either 𝜂  is smaller than a preset threshold 

(0.0001) or the loss on training data can no longer 

be reduced significantly. In our experiments, the 

DSSM training typically converges within 20 

epochs. 

3.3 Using the DSSM 

We experiment with two ways of using the DSSM 

for the two interestingness tasks. First, we use the 

DSSM as a feature generator. The output layer of 

the DSSM can be seen as a set of semantic fea-

tures, which can be incorporated in a boosted tree 

is to approximate the partition function using Noise Contras-

tive Estimation (Gutmann and Hyvarinen 2010). We leave it 

to future work.  

… the comedy festival formerly known as 

the us comedy arts festival is a comedy 

festival held each year in las vegas 

nevada from its 1985 inception to 2008 

. it was held annually at the wheeler 

opera house and other venues in aspen 

colorado . the primary sponsor of the 

festival was hbo with co-sponsorship by 

caesars palace . the primary venue tbs 

geico insurance twix candy bars and 

smirnoff vodka hbo exited the festival 

business in 2007 and tbs became the pri-

mary sponsor the festival includes 

standup comedy performances appearances 

by the casts of television shows… 

 

… bad samaritans is an american comedy 

series produced by walt becker kelly 

hayes and ross putman . it premiered on 

netflix on march 31 2013 cast and char-

acters . the show focuses on a community 

service parole group and their parole 

officer brian kubach as jake gibson an 

aspiring professional starcraft player 

who gets sentenced to 2000 hours of com-

munity service for starting a forest 

fire during his breakup with drew prior 

to community service he had no real am-

bition in life other than to be a pro-

fessional gamer and become wealthy 

overnight like mark zuckerberg as in 

life his goal during … 

Figure 3: A sample of document snippets and 

the keywords (in bold) detected by the DSSM. 

 

 



based ranker (Friedman 1999) trained discrimina-

tively on the task-specific data. Given a source-

target document pair (𝑠, 𝑡), the DSSM generates 

600 features (300 from the output layers 𝐲𝑠 and 𝐲𝑡 

for each 𝑠 and 𝑡, respectively). 

Second, we use the DSSM as a direct imple-

mentation of the interestingness function 𝜎. Re-

call from Section 3.2 that in model training, we 

measure the interestingness score for a document 

pair using the cosine similarity between their cor-

responding feature vectors (𝐲𝑠 and 𝐲𝑡). Similarly 

at runtime, we define 𝜎 =  sim𝛉(𝑠, 𝑡) as (5). 

4 Experiments on Highlighting 

Recall from Section 1 that in this task, a system 

must select 𝑘 most interesting keywords in a doc-

ument that a user is reading. To evaluate our mod-

els using the click transition data described in Sec-

tion 2, we simulate the task as follows. We use the 

set of anchors in a source document 𝑠 to simulate 

the set of candidate keywords that may be of in-

terest to the user while reading 𝑠, and treat the text 

of a document that is linked by an anchor in 𝑠 as a 

target document 𝑡. As shown in Figure 1, to apply 

DSSM to a specific task, we need to define the fo-

cus in source and target documents. In this task, 

the focus in s is defined as the anchor text, and the 

focus in t is defined as the first 10 tokens in t. 
We evaluate the performance of a highlighting 

system against a gold standard interestingness 

function 𝜎′ which scores the interestingness of an 

anchor as the number of user clicks on 𝑡 from the 

anchor in 𝑠 in our data. We consider the ideal se-

lection to then consist of the 𝑘 most interesting 

anchors according to 𝜎′. A natural metric for this 

task is Normalized Discounted Cumulative Gain 

(NDCG) (Jarvelin and Kekalainen 2000). 

We evaluate our models on the EVAL dataset 

described in Section 2. We utilize the transition 

distributions in EVAL to create three other test 

sets, following the stratified sampling methodol-

ogy commonly employed in the IR community, 

for the frequently, less frequently, and rarely 

viewed source pages, referred to as HEAD, 

TORSO, and TAIL, respectively. We obtain 

these sets by first sorting the unique source docu-

ments according to their frequency of occurrence 

in EVAL. We then partition the set so that HEAD 

corresponds to all transitions from the source 

pages at the top of the list that account for 20% of 

the transitions in EVAL; TAIL corresponds to the 

transitions at the bottom also accounting for 20% 

of the transitions in EVAL; and TORSO corre-

sponds to the remaining transitions. 

4.1 Main Results 

Table 1 summarizes the results of various models 

over the three test sets using NDCG at truncation 

levels 1, 5, and 10. 

Rows 1 to 3 are simple heuristic baselines. 

RAND selects 𝑘  random anchors, 1stK selects 

the first 𝑘 anchors and LastK the last 𝑘 anchors.  

The other models in Table 1 are boosted tree 

based rankers trained on TRAIN_2 described in 

Section 2. They vary only in their features. The 

ranker in Row 4 uses Non-Semantic Features 

(NSF) only. These features are derived from the 

 # Models HEAD TORSO TAIL 

   @1 @5 @10 @1 @5 @10 @1 @5 @10 

sr
c 

 o
n

ly
 

1 RAND 0.041 0.062 0.081 0.036 0.076 0.109 0.062 0.195 0.258 

2 1stK 0.010 0.177 0.243 0.072 0.171 0.240 0.091 0.274 0.348 

3 LastK 0.170 0.022 0.027 0.022 0.044 0.062 0.058 0.166 0.219 

4 NSF 0.215 0.253 0.295 0.139 0.229 0.282 0.109 0.293 0.365 

5 NSF+WCAT 0.438 0.424 0.463 0.194 0.290 0.346 0.118 0.317 0.386 

6 NSF+JTT 0.220 0.302 0.343 0.141 0.241 0.295 0.111 0.300 0.369 

7 NSF+DSSM_BOW 0.312 0.351 0.391 0.162 0.258 0.313 0.110 0.299 0.372 

8 NSF+DSSM 0.362 0.386 0.421 0.178 0.275 0.330 0.116 0.312 0.382 

sr
c+

ta
r 

9 NSF+WCAT 0.505 0.475 0.501 0.224 0.304 0.356 0.129 0.324 0.391 

10 NSF+JTT 0.345 0.380 0.418 0.183 0.280 0.332 0.131 0.321 0.390 

11 NSF+DSSM_BOW 0.416 0.393 0.428 0.197 0.274 0.325 0.123 0.311 0.380 

12 NSF+DSSM 0.554 0.524 0.547 0.241 0.317 0.367 0.135 0.329 0.398 

Table 1: Highlighting task performance (NDCG @ K) of interest models over HEAD, TORSO and 

TAIL test sets. Bold indicates statistical significance over all non-shaded results using t-test (𝑝 =
0.05). 

 

 



source document s and from user session infor-

mation in the browser log. The document features 

include: position of the anchor in the document, 

frequency of the anchor, and anchor density in the 

paragraph.  

The rankers in Rows 5 to 12 use the NSF and 

the semantic features computed from source and 

target documents of a browsing transition. We 

compare semantic features derived from three dif-

ferent sources. The first feature source comes 

from our DSSMs (DSSM and DSSM_BOW) us-

ing the output layers as feature generators as de-

scribed in Section 3.3. DSSM is the model de-

scribed in Section 3 and DSSM_BOW is the 

model proposed by Huang et al. (2013) where 

documents are view as bag of words (BOW) and 

the convolutional and max-pooling layers are not 

used. The two other sources of semantic features 

are used as a point of comparison to the DSSM. 

One is a generative semantic model (Joint Transi-

tion Topic model, or JTT) (Gamon et al. 2013). 

JTT is an LDA-style model (Blei et al. 2003) that 

is trained jointly on source and target documents 

linked by browsing transitions. JTT generates a 

total of 150 features from its latent variables, 50 

each for the source topic model, the target topic 

model and the transition model. The other seman-

tic model of contrast is a manually defined one, 

which we use to assess the effectiveness of auto-

matically learned models against human model-

ers. To this effect, we use the page categories that 

editors assign in Wikipedia as semantic features 

(WCAT). These features number in the multiple 

thousands. Using features such as WCAT is not a 

viable solution in general since Wikipedia catego-

ries are not available for all documents. As such, 

we use it solely as a point of comparison against 

DSSM and JTT. 

We also distinguish between two types of 

learned rankers: those which draw their features 

only from the source (src only) document and 

those that draw their features from both the source 

and target (src+tar) documents. Although our 

task setting allows access to the content of both 

source and target documents, there are practical 

scenarios where a system should predict what in-

terests the user without looking at the target doc-

ument because the extra step of identifying a suit-

able target document for each candidate concept 

or entity of interest is computationally expensive.  

4.2 Analysis of Results 

As shown in Table 1, NSF+DSSM, which incor-

porates our DSSM, is the overall best performing 

system across test sets. The task is hard as evi-

denced by the weak baseline scores. One reason is 

the large average number of candidates per page. 

On HEAD, we found an average of 170 anchors 

(of which 95 point to a unique target URL). For 

TORSO and TAIL, we found the average number 

of anchors to be 94 (52 unique targets) and 41 (19 

unique targets), respectively. 

Clearly, the semantics of the documents form 

important signals for this task: WCAT, JTT, 

DSSM_BOW, and DSSM all significantly boost 

the performance over NSF alone. There are two 

interesting comparisons to consider: (a) manual 

semantics vs. learned semantics; and (b) deep se-

mantic models vs. generative topic models. On 

(a), we observe somewhat surprisingly that the 

learned DSSM produces features that outperform 

the thousands of features coming from manually 

(editor) assigned Wikipedia category features 

(WCAT), in all but the TAIL where the two per-

form statistically the same. In contrast, features 

from the generative model (JTT) perform worse 

than WCAT across the board except on TAIL 

where JTT and WCAT are statistically tied. On 

(b), we observe that DSSM outperforms a state-

of-the-art generative model (JTT) on HEAD and 

TORSO. On TAIL, they are statistically indistin-

guishable. 

We turn now to inspecting the scenario where 

features are only drawn from the source document 

(Rows 1-8 in Table 1). Again we observe that se-

mantic features significantly boost the perfor-

mance against NSF alone, however they signifi-

cantly deteriorate when compared to using fea-

tures from both source and target documents. In 

this scenario, the manual semantics from WCAT 

outperform all other models, but with a diminish-

ing effect as we move from HEAD through 

TORSO to TAIL. DSSM is the best performing 

learned semantic model. 

Finally, we present the results to justify the two 

modifications we made to extend the model of 

Huang et al. (2013) to the DSSM, as described in 

Section 1. First, we see in Table 1 that 

DSSM_BOW, which has the same network struc-

ture of Huang et al.’s model, is much weaker than 

DSSM, demonstrating the benefits of using con-

volutional and max-pooling layers to extract se-

mantic features for the highlighting task. Second, 

we conduct several experiments by using the co-

sine scores between the output layers of DSSM 

for 𝑠 and 𝑡 as features (following the procedure in 

Section 3.3 for using the DSSM as a direct imple-

mentation of 𝜎). We found that adding the cosine 



features to NSF+DSSM does not lead to any im-

provement. We also combined NSF with solely 

the cosine features from DSSM (i.e., without the 

other semantic features drawn from its output lay-

ers). But we still found no improvement over us-

ing NSF alone. Thus, we conclude that for this 

task it is much more effective to feed the features 

derived from DSSM to a supervised ranker than 

directly computing the interestingness score using 

cosine similarity in the learned semantic space, as 

in Huang et al. (2013). 

5 Experiments on Entity Search 

We construct the evaluation data set for this sec-

ond task by randomly sampling a set of documents 

from a traffic-weighted set of Web documents. In 

a second step, we identify the entity names in each 

document using an in-house named entity recog-

nizer. We issue each entity name as a query to a 

commercial search engine, and retain up to the 

top-100 retrieved documents as candidate target 

documents. We form for each entity a source doc-

ument which consists of the entity text and its sur-

rounding text defined by a 200-word window. We 

define the focus (as in Figure 1) in 𝑠 as the entity 

text, and the focus in 𝑡 as the first 10 tokens in 𝑡. 

The final evaluation data set contains 10,000 

source documents. On average, each source docu-

ment is associated with 87 target documents. Fi-

nally, the source-target document pairs are labeled 

in terms of interestingness by paid annotators. The 

label is on a 5-level scale, 0 to 4, with 4 meaning 

the target document is the most interesting to the 

source document and 0 meaning the target is of no 

interest. 

We test our models on two scenarios. The first 

is a ranking scenario where 𝑘  interesting docu-

ments are displayed to the user. Here, we select 

the top-𝑘 ranked documents according to their in-

terestingness scores. We measure the performance 

via NDCG at truncation levels 1 and 3. The sec-

ond scenario is to display to the user all interesting 

results. In this scenario, we select all target docu-

ments with an interestingness score exceeding a 

predefined threshold. We evaluate this scenario 

using ROC analysis and, specifically, the area un-

der the curve (AUC). 

5.1 Main Results 

The main results are summarized in Table 2. Rows 

1 to 6 are single model results, where each model 

is used as a direct implementation of the interest-

ingness function 𝜎. Rows 7 to 9 are ranker results, 

where 𝜎 is defined as a boosted tree based ranker 

that incorporates different sets of features ex-

tracted from source and target documents, includ-

ing the features derived from single models. As in 

the highlighting experiments, all the machine-

learned single models, including the DSSM, are 

trained on TRAIN_1, and all the rankers are 

trained on TRAIN_2. 

5.2 Analysis of Results 

BM25 (Rows 1 and 2 in Table 2) is the classic 

document model (Robertson and Zaragoza 2009). 

It uses the bag-of-words document representation 

and the BM25 term weighting function. In our set-

ting, we define the interestingness score of a doc-

ument pair as the dot product of their BM25-

weighted term vectors. To verify the importance 

of using contextual information, we compare two 

different ways of forming the term vector of a 

source document. The first only uses the entity 

text (Row 1). The second (Row 2) uses both the 

entity text and and its surrounding text in a 200-

word window (i.e., the entire source document). 

Results show that the model using contextual in-

formation is significantly better. Therefore, all the 

other models in this section use both the entity 

texts and their surrounding text. 

WTM (Row 3) is our implementation of the 

word translation model for IR (Berger and Laf-

ferty 1999; Gao et al. 2010). WTM defines the in-

terestingness score as: 

𝜎(𝑠, 𝑡) = ∏ ∑ 𝑃(𝑤𝑡|𝑤𝑠)𝑃(𝑤𝑠|𝑠)𝑤𝑠∈𝑠𝑤𝑡∈𝑡 ,  

# Models @1 @3 AUC 

1 BM25 (entity)  0.133 0.195 0.583 

2 BM25 0.142 0.227 0.675 

3 WTM 0.191 0.287 0.678 

4 BLTM 0.214 0.306 0.704 

5 DSSM 0.259* 0.356* 0.711* 

6 DSSM_BOW 0.223 0.322 0.699 

7 Baseline ranker 0.283 0.360 0.723 

8 7 + DSSM(1) 0.301# 0.385# 0.758# 

9 7 + DSSM(600) 0.327## 0.402## 0.782## 

Table 2: Contextual entity search task perfor-

mance (NDCG @ K and AUC). * indicates sta-

tistical significance over all non-shaded single 

model results (Rows 1 to 6) using t-test (𝑝 <
0.05). # indicates statistical significance over re-

sults in Row 7. ## indicates statistical signifi-

cance over results in Rows 7 and 8. 

 

 
 



where 𝑃(𝑤𝑠|𝑠) is the unigram probability of word 

𝑤𝑠 in 𝑠, and 𝑃(𝑤𝑡|𝑤𝑠) is the probability of trans-

lating 𝑤𝑠 into 𝑤𝑡, trained on source-target docu-

ment pairs using EM (Brown et al. 1993). The 

translation-based approach allows any pair of 

non-identical but semantically related words to 

have a nonzero matching score. As a result, it sig-

nificantly outperforms BM25. 

BTLM (Row 4) follows the best performing 

bilingual topic model described in Gao et al. 

(2011), which is an extension of PLSA (Hofmann 

1999). The model is trained on source-target doc-

ument pairs using the EM algorithm with a con-

straint enforcing a source document 𝑠 and its tar-

get document 𝑡 to not only share the same prior 

topic distribution, but to also have similar frac-

tions of words assigned to each topic. BLTM de-

fines the interestingness score between s and t as: 

𝜎(𝑠, 𝑡) = ∏ ∑ 𝑃(𝑤𝑡|𝜙𝑧)𝑃(𝑧|𝜃𝑠)𝑧𝑤𝑡∈𝑡 .  

The model assumes the following story of gener-

ating 𝑡 from 𝑠. First, for each topic 𝑧 a word dis-

tribution 𝜙𝑧 is selected from a Dirichlet prior with 

concentration parameter 𝛽 . Second, given 𝑠 , a 

topic distribution 𝜃𝑠  is drawn from a Dirichlet 

prior with parameter 𝛼 . Finally, 𝑡  is generated 

word by word. Each word 𝑤𝑡 is generated by first 

selecting a topic 𝑧  according to 𝜃𝑠 , and then 

drawing a word from 𝜙𝑧 . We see that BLTM 

models interestingness by taking into account the 

semantic topic distribution of the entire docu-

ments. Our results in Table 2 show that BLTM 

outperforms WTM by a significant margin in 

both NDCG and AUC. 

DSSM (Row 5) outperforms all the competing 

single models, including the state-of-the-art topic 

model BLTM. Now, we inspect the difference be-

tween DSSM and BLTM in detail. Although both 

models strive to generate the semantic representa-

tion of a document, they use different modeling 

approaches. BLTM by nature is a generative 

model. The semantic representation in BLTM is a 

distribution of hidden semantic topics. Such a dis-

tribution is learned using Maximum Likelihood 

Estimation in an unsupervised manner, i.e., max-

imizing the log-likelihood of the source-target 

document pairs in the training data. On the other 

hand, DSSM represents documents as points in a 

hidden semantic space using a supervised learning 

method, i.e., paired documents are closer in that 

latent space than unpaired ones. We believe that 

the superior performance of DSSM is largely due 

to the fact that the model parameters are discrimi-

natively trained using an objective that is tailored 

to the interestingness task.  

In addition to the difference in training meth-

ods, DSSM and BLTM also use different model 

structures. BLTM treats a document as a bag of 

words (thus losing some important contextual in-

formation such as word order and inter-word de-

pendencies), and generates semantic representa-

tions of documents using linear projection. 

DSSM, on the other hand, treats text as a sequence 

of words and better captures local and global con-

text, and generates highly non-linear semantic 

features via a deep neural network. To further ver-

ify our analysis, we inspect the results of a variant 

of DSSM, denoted as DSSM_BOW (Row 6), 

where the convolution and max-pooling layers are 

removed. This model treats a document as a bag 

of words, just like BLTM. These results demon-

strate that the effectiveness of DSSM can also be 

attributed to the convolutional architecture in the 

neural network, in addition to being deep and be-

ing discriminative. 

We turn now to discussing the ranker results in 

Rows 7 to 9. The baseline ranker (Row 7) uses 158 

features, including many counts and single model 

scores, such as BM25 and WMT. DSSM (Row 5) 

alone is quite effective, being close in perfor-

mance to the baseline ranker with non-DSSM fea-

tures. Integrating the DSSM score computed in (5) 

as one single feature into the ranker (Row 8) leads 

to a significant improvement over the baseline. 

The best performing combination (Row 9) is ob-

tained by incorporating the DSSM feature vectors 

of source and target documents (i.e., 600 features 

in total) in the ranker. 
We thus conclude that on both tasks, automatic 

highlighting and contextual entity search, features 

drawn from the output layers of our deep semantic 

model result in significant gains after being added 

to a set of non-semantic features, and in compari-

son to other types of semantic models used in the 

past. 

6 Related Work 

In addition to the notion of relevance as described 

in Section 1, related to interestingness is also the 

notion of salience (also called aboutness) (Gamon 

et al. 2013; 2014; Parajpe 2009; Yih et al. 2006). 

Salience is the centrality of a term to the content 

of a document. Although salience and interesting-

ness interact, the two are not the same. For exam-

ple, in a news article about President Obama’s 

visit to Seattle, Obama is salient, yet the average 

user would probably not be interested in learning 

more about Obama while reading that article.  



There are many systems that identify popular 

content in the Web or recommend content (e.g., 

Bandari et al. 2012; Lerman and Hogg 2010; 

Szabo and Huberman 2010), which is closely re-

lated to the highlighting task. In contrast to these 

approaches, we strive to predict what term a user 

is likely to be interested in when reading content, 

which may or may not be the same as the most 

popular content that is related to the current docu-

ment. It has empirically been demonstrated in 

Gamon et al. (2013) that popularity is in fact a ra-

ther poor predictor for interestingness. The task of 

contextual entity search, which is formulated as an 

information retrieval problem in this paper, is also 

related to research on entity resolution (Stefanidis 

et al. 2013).  

Latent Semantic Analysis (Deerwester et al. 

1990) is arguably the earliest semantic model de-

signed for IR. Generative topic models widely 

used for IR include PLSA (Hofmann 1990) and 

LDA (Blei et al. 2003). Recently, these models 

have been extended to handle cross-lingual cases, 

where there are pairs of corresponding documents 

in different languages (e.g., Dumais et al. 1997; 

Gao et al. 2011; Platt et al. 2010; Yih et al. 2011). 
By exploiting deep architectures, deep learning 

techniques are able to automatically discover from 

training data the hidden structures and the associ-

ated features at different levels of abstraction use-

ful for a variety of tasks (e.g., Collobert et al. 

2011; Hinton et al. 2012; Socher et al. 2012; 

Krizhevsky et al., 2012; Gao et al. 2014). Hinton 

and Salakhutdinov (2010) propose the most origi-

nal approach based on an unsupervised version of 

the deep neural network to discover the hierar-

chical semantic structure embedded in queries and 

documents. Huang et al. (2013) significantly ex-

tends the approach so that the deep neural network 

can be trained on large-scale query-document 

pairs giving much better performance. The use of 

the convolutional neural network for text pro-

cessing, central to our DSSM, was also described 

in Collobert et al. (2011) and Shen et al. (2014) 

but with very different applications. The DSSM 

described in Section 3 can be viewed as a variant 

of the deep neural network models used in these 

previous studies. 

7 Conclusions 

Modeling interestingness is fundamental to many 

online recommendation systems. We obtain natu-

rally occurring interest signals by observing Web 

browsing transitions where users click from one 

webpage to another. We propose to model this 

“interestingness” with a deep semantic similarity 

model (DSSM), based on deep neural networks 

with special convolutional-pooling structure, 

mapping source-target document pairs to feature 

vectors in a latent semantic space. We train the 

DSSM using browsing transitions between docu-

ments. Finally, we demonstrate the effectiveness 

of our model on two interestingness tasks: auto-

matic highlighting and contextual entity search. 

Our results on large-scale, real-world datasets 

show that the semantics of documents computed 

by the DSSM are important for modeling interest-

ingness and that the new model leads to signifi-

cant improvements on both tasks. DSSM is shown 

to outperform not only the classic document mod-

els that do not use (latent) semantics but also state-

of-the-art topic models that do not have the deep 

and convolutional architecture characterizing the 

DSSM. 

One area of future work is to extend our 

method to model interestingness given an entire 

user session, which consists of a sequence of 

browsing events. We believe that the prior brows-

ing and interaction history recorded in the session 

provides additional signals for predicting interest-

ingness. To capture such signals, our model needs 

to be extended to adequately represent time series 

(e.g., causal relations and consequences of ac-

tions). One potentially effective model for such a 

purpose is based on the architecture of recurrent 

neural networks (e.g., Mikolov et al. 2010; Chen 

and Deng, 2014), which can be incorporated into 

the deep semantic model proposed in this paper. 
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