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ABSTRACT
Similarity join is the problem of finding pairs of records with simi-
larity score greater than some threshold. In this paper we study the
problem of scaling up similarity join for different metric distance
functions using MapReduce. We propose a ClusterJoin framework
that partitions the data space based on the underlying data distri-
bution, and distributes each record to partitions in which they may
produce join results based on the distance threshold. We design a
set of strong candidate filters specific to different distance functions
using a novel bisector-based framework, so that each record only
needs to be distributed to a small number of partitions while still
guaranteeing correctness. To address data skewness, which is com-
mon for high dimensional data, we further develop a dynamic load
balancing scheme using sampling, which provides strong proba-
bilistic guarantees on the size of partitions, and greatly improves
scalability. Experimental evaluation using real data sets shows that
our approach is considerably more scalable compared to state-of-
the-art algorithms, especially for high dimensional data with low
distance thresholds.

1. INTRODUCTION
Similarity join is the well known problem of finding all pairs

of records from a given set that have similarity scores greater than
a predefined similarity threshold under a given similarity function
(or distance values less than a distance threshold). It is an essential
operation in a variety of applications, including data cleaning [11],
web page deduplication [16], document clustering [8], plagiarism
detection [17], click fraud detection [18], entity resolution [26],
data integration [14], etc. As these applications need to handle in-
creasingly vast amounts of data, the problem of scaling up similar-
ity joins is getting ever more important.

Performing similarity joins on massive amounts of data presents
two key challenges. First, the data can no longer fit in the mem-
ory of one machine, which calls for workload partitioning. Given
the pairwise-comparison nature of the problem, partitioning data to
ensure load balancing while minimizing communication cost and
redundancy is difficult. The difficulty of load balancing is further
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compounded by the need to handle diverse data sets with skewed
distributions and high dimensionality. Second, since the number
of comparisons needed grows quadratically as data increases, tech-
niques that require comparing all pairs of records do not scale well.
So, another challenge is to design candidate filters that can prune
away a large fraction of candidate pairs without actually computing
their similarity. Designing filters to support a large class of useful
similarity functions is of great practical importance.

In this work we propose a general framework to compute simi-
larity joins in MapReduce on metric distance functions. While sim-
ilarity join in MapReduce has been studied [13, 18, 24, 25], most
existing approaches focus on set-based or string-based similarity
metrics (Jaccard similarity, set-based Cosine similarity, and edit
distances). In this work we focus on general metric distance, which
represent a much larger class of similarity/distance functions, in-
cluding Euclidean distance, (vector-based) Cosine similarity, Ham-
ming distance, and a variety of statistical distance functions on data
distributions such as Jensen-Shannon distance, Total Variation dis-
tance and Earth Mover distance.

Furthermore, we make two key contributions to address the chal-
lenges mentioned above. First, we design a general filter that can
prune away candidate pairs that are impossible to join given the
similarity threshold, without performing the actual comparisons.
This general filter works for any metric distance functions. We
also develop a set of bisector-based filters specific to a number of
important distance functions, including Euclidean, Hamming, To-
tal Variation, and other distance functions, that are strictly stronger
than the generic filter. Our filters are derived using a bisector-based
reasoning, which is a significant departure from the prefix/partition
based filters previously developed for set similarity.

Second, we propose a dynamic load balancing scheme that is
adaptive to data distribution and skewness, with strong probabilis-
tic load balancing guarantees. Our scheme ensures that the size of
each partition does not exceed a small factor of the desired thresh-
old with high probability. By ensuring that no worker is overloaded
with out-sized data partitions, we avoid “the curse of the last re-
ducer”, which greatly improves scalability.

At a very high level, our ClusterJoin framework works in three
phases. In the first, sampling phase, we randomly sample data
points that we call “anchor points” from the data set, These form
centers around which records can be clustered to form partitions.
Note that since the sampled data points represent the underlying
data distribution by sampling more points in dense regions and less
in sparse regions, the space partitioning induced by the set of an-
chor points tends to partition data evenly. We also sample a separate
set of “query point” from the data set and apply our candidate fil-
ters to decide whether each query point needs to be mapped to any
given anchor partition. This allows us to estimate on the size of



each anchor partition when the full data set is mapped. For parti-
tions that are estimated to be larger than a predetermined threshold,
we use 2-dimensional hashing to ensure that with high probability
the partition size does not exceed the desired threshold.

In the second phase, we use previously computed anchor parti-
tion centers and apply a set of novel candidate filter rules to process
the full data set in parallel. In this step we decide which anchor par-
titions each record needs to be mapped to in order to ensure that all
similarity pairs are discovered.

In the last phase, each machine will work on a separate anchor
partition, to perform the pairwise verification of records in the same
partition. The union of the results (matching pairs) from all parti-
tions is the output for the similarity join.

We have conducted extensive experiments for a variety of dis-
tance functions using real world data sets. Our approach is shown
to be especially effective for high dimensional data with high sim-
ilarity (low distance) thresholds, where it outperforms state-of-the-
art approaches by up to an order of magnitude, in terms of both
pruning effectiveness of filters and end-to-end runtime. Our algo-
rithm is promising not only because it is effective for a large class of
similarity functions, but also it represents an extensible framework
that can be tailored to additional metric distance functions. Over-
all, we believe ClusterJoin is a competitive approach in the complex
landscape of performing similarity join using Map Reduce.

2. RELATED WORK
The problem of performing efficient similarity joins has a wide

variety of applications. Numerous techniques have been proposed,
including prefix-based filters [11], All-pairs [6],PP-Join [27], and
many others. This long and fruitful line of work has lead to a sig-
nificant improvement in the scalability of similarity joins.

More recently, similarity join using MapReduce have attracted
significant attention, where the goal is to scale to even larger data
sets. Vernica et al. [24] are among the first to use ideas from pre-
fix filters and PP join in a MapReduce setting. Their approach is
applicable to set-based similarity metrics like Jaccard similarity.

Metwally and Faloutsos [18] propose a V-SMART-Join approach
that aggregates the contribution of similarity scores at a token level
to compute pairwise similarity. They show that their approach
works well for sparse data sets with a large alphabet. Their ap-
proach does not prune away any candidate pairs.

Afrati et al. [4] study techniques such as ball hashing and anchor
points analytically. Our Cluster-Join algorithm draws inspiration
from their anchor points approach. However, their approach can
be viewed as uniform space-partitioning, which is likely to lead to
imbalanced partition with skewed data distributions.

Okcan and Riedewald [21] design a Theta-Join framework that
can handle joins for arbitrary predicates. Their approach is very
general and is capable of handling any joins. However this ap-
proach cannot prune away candidate pairs.

Very recently, Wang et al. [25] develop MAPSS using a distance-
based filter that is applicable to any metric distance functions. In
comparison, we develop an extensible framework that uses bisec-
tors to design an array of distance specific filters. Combining the
more powerful filters with our dynamic load balancing scheme, our
approach is experimentally shown to be up to an order of magnitude
more efficient than MAPSS.

Approximate similarity join (e.g., [22]) is the related problem of
discovering similar pairs with a small false negative probability. In
this paper, we focus on the exact similarity join problem, where all
matching pairs are to be found, with no false negatives.

3. PRELIMINARIES

3.1 Metric distance
In this paper, we focus on metric distance functions. Many widely

used distance functions are metric distances, such as Euclidean dis-
tance, Angular distance (Cosine similarity), and distribution based
distances like Jensen Shannon distance, Total Variation distance
and Earth Mover distance, etc. Metric distances have a number
of nice properties that we use to design candidate pruning filters.

DEFINITION 3.1 (METRIC DISTANCE [9]). Let D be the do-
main of all records. A metric distance on D is any function d :
D×D→ R satisfying the following properties ∀x, y, z ∈ D:
• Non-negativity: d(x, y) ≥ 0
• Coincidence Axiom: d(x, y) = 0 iff x = y
• Symmetry: d(x, y) = d(y, x)
• Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z)

The framework we propose in this work is generic and can han-
dle any metric distance function, including those mentioned above.
3.2 MapReduce

MapReduce [12] is a popular framework for parallel computa-
tion. In the MapReduce programming model, data is expressed
through (key, value) pairs, and computation is represented by a Map
function and a Reduce function.

Map: (k1, v1)→ list(k2, v2);
Reduce: (k2, list(v2))→ list(k3, v3);
More details on this computation framework can be found in [12].

4. PROBLEM DEFINITION
The problem of similarity join can be formally stated as follows.

DEFINITION 4.1 (SIMILARITY JOIN). Let D be the domain
of all data records, we are given a set of records R ∈ 2D, a met-
ric distance function d : D × D → R, and a distance threshold
dthresh. Our problem is to find all pairs of records (R1, R2) ∈
R×R that satisfy d(R1, R2) ≤ dthresh. We call this the Similarity-
Join(R, d(·), dthresh) problem.

Note that although we use distance functions and distance thresh-
olds to leverage results established for metric distances, we still
refer to this problem as similarity join to be consistent with exist-
ing literature. Many distance functions actually have direct coun-
terparts in similarity functions (e.g., Angular distance and Cosine
similarity), and in such cases the problem above can be alterna-
tively stated as finding all pairs of records with similarity scores
above a given threshold. We use similarity functions and distance
functions interchangeably in this paper when the meaning is clear
from the context.

Similarity join has been used in a variety of applications with
diverse data sets and different distance functions. We use a simple
running example with Euclidean distance in two dimensional space
to illustrate the similarity join problem and our approach – in prac-
tice, data records are often of much higher dimensionality and are
compared using more complex distance functions.

EXAMPLE 4.1 (SIMILARITY JOIN). Figure 1 shows a 10-record
data set, R = {R1, . . . , R10}withR1 = (0, 0), R2 = (1, 5), R3 =
(1, 6), R4 = (1, 11), R5 = (4.5, 5), R6 = (5, 5.5), R7 = (7, 11),
R8 = (10, 2), R9 = (10, 10), R10 = (12, 0). Suppose Euclidean
distance function (written below as dE(·)) is used, and the distance
threshold is dthresh = 1.

The output of the problem SimilarityJoin(R, dE , 1) is the two
pairs {(R2, R3), (R5, R6)} where the distance between each pair
of records is less than 1.
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Figure 1: Running example using Euclidean

5. DATA PARTITIONING SCHEME
Recall that in order to allow parallel computation, our approach

needs to partition the domain of records into regions, in which sim-
ilar records can be clustered and verified by different machines. In-
tuitively, we want to produce partitions such that our data is evenly
distributed for load balancing purposes.

Given that different data sets have different distributions and are
often very skewed in high dimensional space, uniform space parti-
tioning is unlikely to balance data well. For example, uniform rec-
tilinear partition based on value domains is likely to lead to skewed
sub-partitions and overloaded workers. Instead, we use a non-
uniform space partitioning based approach by sampling the data
and allowing the sampled set to determine our space partitioning.
By doing so, our partitions capture the underlying data distribution,
and lead to a more balanced partitioning scheme.

We randomly sample a set of records A as what we call “anchor
points”. These are essentially used as partition centers. We use
the set of anchors A to induce a space partitioning of the domain
of data records, by assigning all records to the partition with the
closest anchor point.

DEFINITION 5.1 (HOME PARTITION). Let C ∈ A be an an-
chor record, D be the domain of records, and d be the distance
function. The home partition of C, denoted by HA(C), is defined
as {R|R ∈ D, d(R,C) ≤ d(R,A′)∀A′ ∈ A}.

Note that the choice of anchors A determines the home partition
space. For ease of notation, we drop the subscript fromHA(C) and
writeH(C) to denote the home partition of C when the underlying
set of anchor records is clear from the context.

Intuitively, all records are clustered to the closest anchor point
to form partitions. This distance based partitioning scheme can
be thought of as similar to Voronoi diagrams, but generalized to
arbitrary distance metrics. Also note that each record R can be as-
signed to a unique home partition by choosing some hash function
h(·) and picking the anchor A with the smallest h(A + R) hash
value in the case of ties in distance.

EXAMPLE 5.1 (HOME PARTITION). In our example in Fig-
ure 1, suppose A = {R1, R9, R10}, it is easy to verify that {R1, R2,
R3, R5}⊆ H(R1), {R4, R6, R7, R9} ⊆ H(R9) and {R8, R10 ⊆
H(R10)}.

Note that although home partitions group similar records to-
gether, it is not sufficient to just join records within the same parti-
tion. Records that are outside the partition, but close to the bound-
ary can still join with a record within the partition. We use the
notion of outer partitions to capture this idea.

DEFINITION 5.2 (OUTER PARTITION). Let C ∈ A be an
anchor record, d some distance function, and dthresh the given
threshold. The outer partition of C, denoted by OA(C), is defined
as {R|R ∈ D,∃R′ ∈ HA(C), d(R,R′) ≤ dthresh}.
Note that we drop the subscript from OA(C) and just write O(C)
to denote the home partition ofC when the underlying set of anchor
records is clear from the context.

Intuitively, an outer partition represents the corresponding home
partition plus the set of points close to the home partition boundary
that can potentially be similar to the points within the home parti-
tion. That is, given a threshold dthresh, the outer partition of an
anchor point is the set of all points within distance dthresh of any
point in the corresponding home partition.

Note that while home partitions are disjoint, outer partitions are
overlapping, such that each record can belong to several outer par-
titions. Furthermore, for metric distances, an outer partition is a
superset of the corresponding home partition, because d(R,R) =
0 < dthreshold by the coincidence axiom.

EXAMPLE 5.2 (OUTER PARTITION). In our example, we have
R5 ∈ H(R1), O(R1) R6 ∈ H(R9), O(R9). Furthermore R5 ∈
O(R9). By considering the outer partition for R9, the pair (R5,
R6) that has a distance dE(R5, R6) ≤ dthresh will be compared
and produced as output. However, if we only consider home par-
titions separately, because R5 6∈ H(R9), R6 6∈ H(R1), the pair
(R5, R6) will be missed.

In general, it is sufficient to consider each outer partition sepa-
rately from other outer partitions when comparing pairs of records.
This guarantees that no pairs of records satisfying the distance thresh-
old will be missed.

LEMMA 5.1. Let A be the set of anchors and R the set of
records. Comparing all pairs of records in the set R∩O(A) sepa-
rately for each A ∈ A guarantees that no similar record pairs will
be missed.

PROOF. Consider any pair of recordsR1, R2 with d(R1, R2) ≤
dthresh. Let A be the home anchor for R2, that is, R2 ∈ H(A).
Then by definitionR2 ∈ O(A). Also, ∃R2 ∈ H(A)s.t. d(R1, R2) ≤
dthresh ⇒ R1 ∈ O(A). Since R1, R2 ∈ O(A), they will be com-
pared and produced in our output. This eliminates the possiblity of
false negatives.

6. CANDIDATE FILTERS
While the idea of using home partition and outer partition mem-

bership to partition a large data set for similarity join is conceptu-
ally clear, deciding the exact outer partition membership remains
to be a key technical challenge. Specifically, given a set of anchor
points A, and a query point Q, our problem is to find the subset of
anchors for which Q is an outer partition member. We write this as
M(Q,A) = {A|A ∈ A, Q ∈ O(A)}.

This is generally very difficult. For example, for Euclidean dis-
tance, this is related to computing a generalized Voronoi diagram
for A in high dimensions. Yet even for the well-behaved Euclidean
distance function, computing Voronoi diagram is nontrivial and a
discipline by itself [20]. Generalizing this to other distance func-
tions that are considerably more complex, such as distributional
distances like Jensen Shannon [15] is a daunting task.

Instead of solving the hard problem of finding the exact outer
partition membership M(Q,A) above, we choose to solve it ap-
proximately. Specifically, we find a superset S(Q,A) ⊇M(Q,A)
that is as close to M(Q,A) as possible. By mapping Q to every
anchor in S(Q,A), we will still map Q to all the outer partition it
needs to be mapped to in the exact solution M(Q,A). Thus we
guarantee correctness by not missing any joining pair.



Using this approximate solution results in higher computational
and communication costs. The more outer partitions we send our
query record to, the higher our cost. For instance, one extreme and
trivial approximate solution is to send Q to all anchors such that
S(Q,A) = A. This still guarantees correctness but is apparently
inefficient. Our goal is to design filters that can eliminate a large
fraction of anchors A /∈ M(Q,A) so that the set of remaining
anchors S(Q,A) is not much larger than M(Q,A).

6.1 Intuition: two anchors at a time
All of our filters discussed in this section are derived using the

following intuitive idea. We simplify the problem by only looking
at two anchor records at a time. Given the query record Q, we
first find the anchor record closest to it, denoted by X . Given any
test anchor record C, we want to decide whether Q may be in C’s
outer partition. Note that to make the problem tractable, we ignore
all other anchor records as ifX andC are the only anchors present.
This greatly simplifies the problem, because the partition boundary
when there are only two anchors is simply the bisector plane of the
two anchors.

Further, we guarantee correctness by observing that if Q does
not need to be mapped to C if there are only two anchors C andX ,
then Q does not need to be mapped to C if there are more anchors.
The intuition for this is that every additional anchor added to the
system can only remove records from the set forming C’s outer
partition. Therefore, if Q did not lie in C’s outer partition when X
was the only other anchor record, then Q will not lie in C’s true
(smaller) outer partition under the actual set of anchor records.

We formalize the intuition in the lemma below.

LEMMA 6.1 (TWO ANCHOR MEMBERSHIP). Let A be a set
of anchor records, and Q be any query record. Let X,C ∈ A be
two anchor records. Let A′ = {X,C}. Then, Q 6∈ OA′(C) ⇒
Q 6∈ OA(C).

PROOF. Recall that Q ∈ OA(C) denotes that record Q lies in
the outer partition of anchor C under the set of anchors A. From
the definition of home partitions and outer partitions, we have Q 6∈
OA′(C) ⇒ d(Q, J) > dthresh∀J ∈ HA′(C). Now, consider
any record, J 6∈ HA′(C). Then, J ∈ HA′(X) (because J has to
lie in the home partition of either C or X when they are the only
two anchor records). By definition of home partition, d(X, J) <
d(C, J).

Since our distance function is invariant of the choice of anchor
records, for any J , J 6∈ HA′(C) ⇒ d(X, J) < d(C, J) ⇒ J 6∈
HA(C). That is, J 6∈ HA(C)∀J 6∈ HA′(C). Taking the con-
trapositive of the previous statement, we have, J ∈ HA′(C)∀J ∈
HA(C). Therefore, d(Q, J) > dthresh∀J ∈ HA′(C)⇒ d(Q, J) >
dthresh∀J ∈ HA(C)⇒ Q 6∈ OA(C) (again by invariance of dis-
tance with respect to anchor set). Hence, Q 6∈ OA′(C) ⇒ Q 6∈
OA(C). This completes our proof.

Using this idea, we derive filter rules which, given the input
query record Q and its nearest anchor record X , test each anchor
point C in the absence of all other anchor points for Q’s member-
ship. We eliminate all anchor records satisfying our filter rules and
map Q to the remaining anchor points, which is guaranteed to be a
superset of M(Q,A).

6.2 General filter for any metric distance
We now give a generic filter rule that holds true for all metric dis-

tance functions. As discussed previously, we simplify the problem
without losing correctness by considering two anchors at a time.

THEOREM 6.1 (GENERIC FILTER RULE). Let Q be an input
query record, X be its nearest anchor, and C be any test anchor as

Anchor C 

(Home Partition of C) 

Anchor X 

(Home Partition of X) 

Bisector(X,C) 

Query Q 

δ δ 

𝑥 
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𝑑𝑚𝑖𝑛 
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𝑦 
𝑦 

Figure 2: Generic Filter

in Figure 2. Let x = d(X,Q), c = d(C,Q). If c > x+ 2dthresh,
then Q 6∈ O(C).

PROOF. LetN be the nearest point toQ that is equidistant from
points X and C, that is, d(X,N) = d(C,N) and d(Q,N) ≥
d(Q,N ′)∀N ′s.t. d(X,N ′) = d(C,N ′). Let d(Q,N) = dmin.
Since N is the closest point to Q on the bisector plane of X,C,
we have dmin ≤ d(Q, I)∀I ∈ H(C) (because if QI intersects the
bisector plane at J , we have dmin ≤ d(Q, J) ≤ d(Q, I)).
Let d(X,N) = d(C,N) = y (N lies on bisector plane of X,C).
By triangle inequality on triangles XQN and CQN respectively,
y ≤ x + dmin and y ≥ c − dmin. Combining these, we have
c ≤ x+2dmin. So, if c > x+2dthresh, we have x+2dmin > x+
2dthresh ⇒ dmin > dthresh. Therefore, if c > x+2dthresh, then
d(Q, I) ≥ dmin > dthresh∀I ∈ H(C). Thus Q 6∈ O{X,C}(C).
Using Lemma 6.1, c > x+ 2dthresh ⇒ Q 6∈ O(C).

We note that although we describe X as the nearest anchor to
Q, our filter rule holds true even if X is an approximate nearest
neighbor. We omit the full argument but note that this property
can be used to improve efficiency when used in conjunction with
Min-Hash like schemes.

6.3 Distance function specific filters
In this section, we look at individual distance functions and con-

struct distance-specific filters. In particular, we have designed fil-
ters for Euclidean distance, Total Variation distance, 1-norm dis-
tance, Hamming distance, which we will describe in this section.
We have also designed filters for Earth Mover distance, and Lp dis-
tance in certain scenarios, which we will present in the full version
of this paper in the interest of space. All these specific filters have
strictly stronger pruning powers than the generic filter. Note that
all the distance functions we will discuss are metric distances [9].

Like the general filter, our special filters also rely on Lemma 6.1
to consider only two anchors X,C at a time to make the problem
tractable. Let B(X,C) = {P |P ∈ D, d(P,X) = d(P,C)} be
the bisector of X,C. The key insight for stronger filters is that
when given a specific distance function, we can compute tighter
lower bounds for the minimum distance from Q to B(X,C), de-
noted as dmin(Q) = min{d(P,Q)|P ∈ B(X,C)}. We also write
this as just dmin when the context is clear.

6.3.1 Euclidean Distance

DEFINITION 6.1 (EUCLIDEAN DISTANCE). The Euclidean dis-
tance between two points A = (a1, a2, . . . , an) and B = (b1, b2,
. . . , bn) is dE(A,B) =

√∑
i(ai − bi)2.
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Figure 3: Filter for Euclidean Distance

Euclidean distance is a metric distance and therefore the generic
filter rule applies. Here, we rely on characteristics of Euclidean
distance to compute the exact minimum distance to bisector, which
gives us a stronger filter rule.

THEOREM 6.2 (EUCLIDEAN FILTER). LetQ be an input query
record, X be its nearest anchor, and C be any test anchor as in
Figure 3. Let δ = dE(X,C)

2
, x = dE(X,Q), c = dE(C,Q). If

c2 > x2 + 4δdthresh, then Q 6∈ O(C).
PROOF. As before, letN be the nearest point toQ that is equidis-

tant from points X and C, that is, dE(X,N) = dE(C,N) and
dE(Q,N) ≥ dE(Q,N

′)∀N ′s.t. dE(X,N ′) = dE(C,N
′). Let

dE(Q,N) = dmin. By triangle inequality, dmin ≤ dE(Q, I)∀I ∈
H(C). Observe that dmin = δ − xcosθ. Note that dmin is the
shortest distance from Q to the bisector plane of X and C, which
is equivalent to their partition boundary in the absence of other an-
chor records. From triangle XQC, we have c2 = x2 + (2δ)2 −
2x(2δ)cosθ. Simplifying, we obtain cosθ = x2+(2δ)2−c2

2(2δ)x
. Now,

dmin = δ − xcosθ = c2−x2
4δ

⇒ c2 − x2 = 4δ(δ − xcosθ).
Therefore, if c2 > x2 + 4δdthresh ⇒ δ − xcosθ > dthresh ⇒
dmin > dthresh. Using dmin ≤ dE(Q, I)∀I ∈ H(C), we have
dE(Q, I) > dthresh∀I ∈ H(C) ⇒ Q 6∈ O{X,C}(C). Us-
ing Lemma 6.1, Q 6∈ O{X,C}(C) ⇒ Q 6∈ O(C). Therefore,
c2 > x2 + 4δdthresh ⇒ Q 6∈ O(C).

6.3.2 Total Variation Distance (TVD)
DEFINITION 6.2 (TOTAL VARIATION DISTANCE). Let A =

(a1, a2, . . . , an) and B = (b1, b2, . . . , bn) be two discrete proba-
bility distributions (

∑n
i=1 ai = 1,

∑n
i=1 bi = 1). The Total Varia-

tion Distance between A,B is dTVD(A,B) = 1
2

∑n
i=1 |ai − bi|.

The Total Variation Distance (TVD) between two probability
distributions can be thought of as the largest possible difference
between probabilities that the distributions can assign to any given
event. Total Variation Distance is a metric distance function.

For the TVD function, we describe how to efficiently compute a
lower bound for the distance of any recordQ = (q1, q2, . . . , qn) to
the bisector plane of any two other records A = (a1, a2, . . . , an),
B = (b1, b2, . . . , bn). The intuition behind our approach is as fol-
lows. Given the three distributions (points) Q,A,B, where Q is
closer to A than B, we wish to compute the distance from Q to the
bisector of A,B. That is, we wish to find the shortest path from Q
to any point N such that dTVD(A,N) = dTVD(B,N). Initially
we have dA = dTVD(A,Q) < dTVD(B,Q) = dB . We change
the probability values in Q to take Q closer to B and farther away

from A, thereby reducing dB and increasing dA. Note that dur-
ing this process, we have to be careful to maintain the constraints∑n
i=1 qi = 1 and 0 ≤ qi ≤ 1, therefore every increase in one

qi requires a corresponding decrease in another qj . Repeating this
process, we eventually reach a point when dA = dB . This means
that we have reached a point on the bisector of A,B. The total dis-
tance moved in the transformation from Qold to Qnew, which can
be measured by the sum of the changes made to different qi, is the
length of this particular path from Q to the bisector.

Our approach involves varying qi to take Q closer to B and fur-
ther away fromAwith minimum total changes to different qis. This
gives us the shortest path to the bisector. We make use of a few key
observations to lower bound the length of the shortest such path.

OBSERVATION 6.1 (INDEPENDENCE OF DIMENSIONS). Let
Q = (q1, q2, . . . , qn), A = (a1, a2, . . . , an) andB = (b1, b2, . . . , bn).
Changing qi only affects the contribution of the ith coordinate to
the distances dA and dB , and is independent of other coordinates.

This follows trivially from the definition of TVD that dTVD(A,B) =
1
2

∑n
i=1 |ai − bi|.

OBSERVATION 6.2 (VARYING IN A SINGLE DIRECTION). The
shortest path to the bisector ofA,B fromQwill only include changes
of qi in a singe direction for any i.

This can be easily proven by contradiction. Suppose the shortest
path to the bisector from Q involved both an increase and a de-
crease of qi for some i. Then, consider two steps where qi was
respectively increased and decreased by δ. By not changing qi in
either of these steps, we reduce the distance of our path by 2δ, while
still reaching the same point, thereby giving a shorter path.

OBSERVATION 6.3 (PARTITIONING DIMENSIONS).
Let Q = (q1, q2, . . . , qn), A = (a1, a2, . . . , an) and B = (b1,
b2, . . . , bn). Consider the following partitioning or classification
on the dimensions i ∈ [1, n]:

1(a): qi > ai > bi, 1(b): qi < ai < bi
2(a): ai ≥ qi ≥ bi, 2(b): ai ≤ qi ≤ bi
3(a): qi > bi ≥ ai, 3(b): qi < bi ≤ ai

As before, let dA = dTVD(A,Q) and dB = dTVD(B,Q).
Observe that the change in dB − dA when varying qi only depends
on which of the above classes i belongs to. This follows from our
previous observation about the independence of dimensions, and
the fact that dB − dA = 1

2

∑
i(|bi − qi| − |ai − qi|).

First observe that increasing qi in class 3(a) has no effect on
dB − dA, while decreasing qi for this class initially has no effect,
and then only increases dB − dA. Similarly, decreasing qi in class
3(b) has no effect on dB − dA, while increasing qi will potentially
increase dB − dA. Therefore, the shortest path to the bisector will
not include any changes to qi where i belongs to class 3.

Now, consider varying qi for i in class 2. If i is of type 2(a), then
every δ decrease in qi until it reaches bi results in a corresponding
decrease in dB−dA by δ (because

∑
i |bi− qi| decreases by δ and∑

i |ai−qi| increases by δ). Decreasing qi any further will result in
no change in dB−dA. Letmi = qi− bi be the maximum possible
change of this nature. Increasing qi for this case is unfavourable
and will not be a part of the shortest path as it increases dB − dA,
thereby moving away from the bisector.

Similarly, if i is of type 2(b), then every δ increase in qi until it
reaches bi results in a corresponding δ decrease in dB − dA, and
mi = bi − qi is the maximum possible change of this type.

Finally, consider varying qi where i is in class 1. In class 1(a),
increasing qi has no effect on dB − dA. Decreasing qi until it
reaches ai does not change dB − dA either, but it is still a potential



move to consider, because any further δ decrease qi now results
in a corresponding δ decrease in dB − dA similar to case 2(a).
Let ci = qi − ai be the amount of distance required to reach the
favorable moves, and mi = ai − bi be the maximum subsequent
favorable change possible.

Similarly, in class 1(b), increasing qi by ci = ai − qi has no
immediate effect on dB − dA, but every subsequent change in qi
up to a maximum of mi = bi − ai results in a corresponding and
equal change in dB − dA.

Using our above observations, we now construct an optimization
problem whose solution is the length of the shortest path fromQ to
the bisector of A,B. We refer to a change that decreases dB − dA
as a favorable change. Let P+ = {i|i ∈ Class 1(a)∪Class 2(b)} be
the set of coordinates i where it is favourable to increase qi. Simi-
larly, P− = {i|i ∈ Class 1(b)∪Class 2(a)} is the set of coordinates
i where it is favourable to decrease qi. The idea here (following
from Observation 6.3) is that the shortest path will only consist of
simultaneous increases of magnitude δ in qi for some i ∈ P+ and
decreases of magnitude δ for some j ∈ P− respectively.

Let ci be the cost to reach a favorable position, and mi be the
maximum possible favorable change for classes 1 and 2. For i ∈
Class 1, we have ci = |qi−ai| andmi = |ai−bi|. For i ∈ Class 2,
mi = |bi − qi|. Note that Class 2 positions only have favorable
moves right from the start, and so ci = 0. Class 3 positions are
not considered since they do not bring any favorable changes. Let
t = 1

2

∑n
i=1 (|bi − qi| − |ai − qi|) be the total change required in

dB−dA as we moveQ to reach the bisector. Using these, we define
the following optimization problem that minimizes the distance to
the bisector.

(TVD) min
∑
i∈P+

uici +
∑
j∈P−

vjcj +
∑
i∈P+

xi +
∑
j∈P−

yj

(1)

s.t.
∑
i∈P+

xi +
∑
j∈P−

yj ≥ t (2)

∑
i∈P+

xi =
∑
j∈P−

yj (3)

0 ≤ xi ≤ mi, ∀i ∈ P+ (4)

0 ≤ yj ≤ mj , ∀j ∈ P− (5)

ui ≥ xi,∀i ∈ P+ (6)

vj ≥ yj , ∀j ∈ P− (7)
ui, vj ∈ {0, 1},∀i, j (8)

In the above optimization problem, xi denotes the number of
favorable moves for each position i ∈ P+ (possibly after moves
with no effect), similarly yj denotes the number of favorable moves
for each position j ∈ P−. Let ui, vj be integral variables, denoting
whether the cost of moves with no effect has occurred at position
i ∈ P+ or j ∈ P−, respectively, just so that the corresponding
favorable moves can happen. The objective function is the sum
of the total costs of favorable moves xi, yj , and no-effect moves
where ui, vj are weighted by ci and cj which are the costs of no-
effect moves at position i and j respectively.

The constraint in Equation (2) makes sure that the total favorable
moves is sufficient for the reduction of difference of distance to A
and B is at least t (reaching the bisector). Equation (3) ensures
that the total move in P+ and P− is balanced such that Q is still
a valid probability distribution. Equation (4) (5) indicates that fa-
vorable moves cannot exceed the maximally allowed mi and mj .
Equation (6) (7) (8) ensures that if either xi or yj is greater than 0,

then the initial cost of no-effect moves is added, by forcing ui, vj
respectively to 1.

This LP gives the exact minimum distance to the bisector. How-
ever, it is a mixed integer program that is in general intractable. So,
we present an alternative linear program TVD-F, whose solution
gives us a lower bound to the solution of the original optimization
problem, and therefore, a lower bound to the distance to the bisec-
tor. Using the same variables as before, we define the following
fractional LP TVD-F, which is easy to solve.

(TVD-F) min
∑
i∈P+

xi(
ci +mi

mi
) +

∑
j∈P−

yj(
cj +mj

mj
) (9)

s.t.
∑
i∈P+

xi +
∑
j∈P−

yj ≥ t (10)

∑
i∈P+

xi =
∑
j∈P−

yj (11)

0 ≤ xi ≤ mi, ∀i ∈ P+ (12)

0 ≤ yj ≤ mj , ∀j ∈ P− (13)

Intuitively, this linear program assumes that the initial set-up cost
of the no-effect moves, ci is distributed evenly across the favorable
moves. So now each favorable move of magnitude δ at position
i incurs a cost of ci+mi

mi
δ, and similarly for position j. It can be

shown that the optimal value of TVD-F is at least as good as (no
greater than) that of TVD.

LEMMA 6.2 (LP LOWER BOUND). LetOPT be the optimal
value of LP TVD, and OPT f be the optimal value of TVD-F. We
have OPT f ≤ OPT .

PROOF. Let u∗i , v
∗
j , x
∗
i , y
∗
j be the values of variables when the

optimal value OPT is achieved for TVD.
First, it can be verified that the same x∗i , y

∗
j is also a feasible

solution to TVD-F because the constraints in TVD-F is a subset of
those in TVD. So we only need to show u∗i ci + x∗i ≥ ci+mi

mi
x∗i

and similarly v∗j cj + y∗i ≥
cj+mj

mj
y∗j , since the summation of the

left side and the right side are the optimal value of TVD and one
objective value of TVD-F, respectively. Note that these equations
can be rewritten as u∗i ci ≥ ci xi∗mi

and v∗j cj ≥ cj
xj∗
mj

, both of which
are true given our constraints. Thus OPT = u∗i ci + x∗i + v∗j cj +

y∗i ≥ ci+mi
mi

x∗i +
cj+mj

mj
y∗j ≥ OPT f .

Note that not only is the TVD-F easy to solve, but it can also be
greedily solved without using an LP-solver, by sorting ci+mi

mi
for

i ∈ P+ and cj+mj

mj
for j ∈ P− ascendingly, then picking position

i and j simultaneously to maintain balance (Equation (11)), while
gaining in Equation (10), until Equation (10) is satisfied.

Using this we derive a filter for TVD.

THEOREM 6.3 (TVD FILTER). LetQ be an input query record,
X be its nearest anchor, and C be any test anchor. Use X as A or
the point closer to Q, and C as B or the point further away from
Q to formulate TVD-F. Let OPT f be the solution to our fractional
linear program TVD-F. Then, OPT f > dthresh ⇒ Q 6∈ O(C).

PROOF. First we knowOPT f ≤ OPT = dbisector by Lemma 6.2.
Using Lemma 6.1, similar to our previous specific filters, we know
that if dbisector > dthresh ⇒ Q 6∈ O(C). Combining, we get
OPT f > dthresh ⇒ dbisector > dthresh ⇒ Q 6∈ O(C).

6.3.3 1-Norm Distance
DEFINITION 6.3 (1-NORM DISTANCE). The 1-norm distance

between two pointsA = (a1, a2, . . . , an) andB = (b1, b2, . . . , bn)
is given by d1(A,B) = ||A−B||1 =

∑n
i=1 |ai − bi|.



Observe that 1-norm distance appears to be very similar in struc-
ture to Total Variation Distance. In particular, the Observation 6.1
and 6.2 for TVD still hold. However the lower bound of distance
to bisector for 1-norm distance is different. The difference arises
from the fact that for TVD, data points A = (a1, a2, . . . , an) and
B = (b1, b2, . . . , bn) are probability distributions that constrained
by
∑
i ai =

∑
i bi = 1, whereas for 1-norm distance the points

are unconstrained.
To solve the problem of finding the distance to the bisector of

two points A = (a1, a2, . . . , an), B = (b1, b2, . . . , bn) from a
third given point, Q = (q1, q2, . . . , qn), we again partition the co-
ordinates [n] in three classes as we did in Observation 6.3 for TVD.

Overall, we define for i ∈ Class (1) ci = |qi − ai| and mi =
|bi − ai|. For i ∈ Class (2), ci = 0 and mi = |bi − qi|. Let
t =

∑n
i=1 (|bi − qi| − |ai − qi|) be the total change of distance

required in dB − dA as we move Q to reach the bisector. Using
these, we define the following optimization problem that minimizes
the distance to the bisector.

(1Norm-F) min
∑
i∈P

xi(
ci +mi

mi
) (14)

s.t.
∑
i∈P

xi ≥
t

2
(15)

0 ≤ xi ≤ mi,∀i ∈ P (16)

THEOREM 6.4 (1-NORM FILTER). Let Q be an input
query record, X be its nearest anchor, and C be any test anchor.
Use X as A or the point closer to Q, and C as B or the point fur-
ther away from Q to formulate 1Norm-F. Let dmin be the solution
to 1Norm-F. Then, dmin > dthresh ⇒ Q 6∈ O(C).

A proof of this theorem can be derived similar to TVD.

6.3.4 Hamming Distance
DEFINITION 6.4 (HAMMING DISTANCE). The Hamming dis-

tance between two points A = (a1, a2, . . . , an) and B = (b1, b2,
. . . , bn) is the number of positions that A and B differ on. It is
given by dH(A,B) = |{i|i ∈ [n], ai 6= bi}|.

We note that the Independence of Dimensions in Observation 6.1,
and Varying in a Single Direction in Observation 6.2 still hold for
Hamming distance. However, dimensions need to be partitioned
differently.

OBSERVATION 6.4 (PARTITIONING DIMENSIONS). LetQ =
(q1, q2, . . . , qn), A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn).
Consider the following partitioning or classification on the dimen-
sions i ∈ [1, n] such that:

1: ai = bi
2: qi = ai 6= bi
3: qi = bi 6= ai
4: qi, ai, bi are pairwise distinct
Very briefly, the idea here is that changing qi in Class 2 will bring

Q fastest toward B(X,C), while changing qi in Class 4 also helps
but at a slower rate. Using ideas similar to the TVD filter, we get
the following filter.

THEOREM 6.5 (HAMMING FILTER). LetQ be an input query
record, X be its nearest anchor, and C be any test anchor. Let
t = dH(C,Q) − dH(X,Q), and let P2 = {i|qi = xi 6= ci}.
Then, max{d t

2
e, t− |P2|} > dthresh ⇒ Q 6∈ O(C).

Using similar ideas, we have also designed filters for other dis-
tance functions such as Earth Mover Distance, Lp distance in cer-
tain scenarios, and Euclidean distance in generalized high dimen-
sional space. Details of these additional filters can be found in the
full version of this paper.

6.4 Filter Strength
Before we conclude this filter section, we note that the strength

of specific filters for Euclidean, TVD, 1-norm and Hamming dis-
cussed earlier is strictly stronger than the generic filter. We omit
details of the proof in the interest of space.

THEOREM 6.6 (FILTER STRENGTH). Given query point Q,
its closest anchor X , and the test anchor C. Let GEN (X,Q,C)
denote whether we can use the generic filter to prune away C as in
Theorem 6.1. Let BISECTOR FILTERd(X,Q,C) denote whether
we can use specific filters for distance d to prune away C, where
d ∈ {Euclidean, TVD, 1-norm, EMD, Hamming}. Then, we have
GEN(X,Q,C)⇒ BISECTOR FILTERd(X,Q,C).

7. OUR APPROACH: CLUSTERJOIN
After describing the partitioning scheme in Section 5 and candi-

date filters in Section 6, we are now in a position to introduce the
ClusterJoin algorithm.

Our algorithm consists of three main phases: (1) Sampling phase.
In this step, we randomly sample records as anchor points. We fur-
ther sample query points to estimate the expected size of anchor
partitions to decide if an overloaded partition needs to be split. (2)
Mapping phase. We apply the appropriate filter rule to map each
data point to an appropriate subset of anchor partitions. (3) Verifi-
cation. Here, we verify records in each outer partition by perform-
ing pairwise comparisons, to compute the final output.

We describe each phase of our algorithm in turn.

7.1 The sampling phase
In this step, we randomly sample anchor points, A, from the

data set R with probability pA. Note that using data samples to
partition the data space tends to distribute data evenly across home
partitions, because the sampled anchors represent the underlying
data distribution with more anchors in dense regions and fewer in
sparse regions. We also simultaneously sample a separate set of
query points, Q, from R with probability pQ, which is used to
estimate the expected size of each anchor partition when using the
full data set.

The samples A and Q are sent to a common reducer, where we
use candidate filters to decide which anchor partitions each query
point needs to be sent to. Let query points distributed to anchor
A be S(A,Q) = {Q|Q ∈ Q, F ilter(Q, A) = false}. Then
eA = |S(A,Q)|

pQ
gives us an estimate of the size of each anchor

partition when the full data set is mapped.
Note that for large A and Q, this estimation can be easily paral-

lelized, by broadcasting A to all reducers, and hash partitioning Q
to all reducers, so that each reducer only produces estimates for a
chunk of Q. The estimates for each anchor can then be aggregated
using another MapReduce round.

Based on the available computation resource of each machine
and the cost of computing similarity between records, we can pre-
determine a threshold T , say 1000 records, that the estimated size
of each anchor partition eA should not exceed. We split partitions
that are estimated to be larger than T , to ensure load balancing,
using the 2-dimensional hash partitioning idea in [21] that is remi-
niscent of Blocked Nested Loop Join.

2D hashing. The idea of 2D hashing can be illustrated pictori-
ally. Figure 4a demonstrates the case of an R-S join. In this case
we can created k2 cells in a 2D matrix. For each r ∈ R we produce
an integral hash value h(r) ∈ [k], and map r into all cells in row
number h(r). We produce hash values similarly for each s ∈ S
and map s into all cells in column number h(s). Each pair of (r, s)
will be hashed to the same cell exactly once regardless of their hash
values.



h(r)

h(s)

(a) R-S Join

h(r2)

h(r1) h(r2)

h(r1)

(b) Self Join
Figure 4: 2D hashing illustration

Figure 4b shows a similar hashing scheme adapted for self-join,
where we essentially only consider the upper right half of the ma-
trix by reflecting it along its diagonal. Let C(r) be the set of cells
that r needs to be mapped to as indexed by (row, col) in this hash-
ing scheme. Then, we have C(r) = {(i, h(r))| 0 < i ≤ h(r)}

⋃
{(h(r), j)| h(r) < j ≤ k}. Note that in the self-join case, pairs
with the same hash value will only be compared in diagonal cells.

It can be seen that when using 2D hashing for a data set of size
|R|, each sub-partition (cell) has an expected size of 2|R|

k
.

Partition splitting. Given that the estimated size of each parti-
tion is eA = |S(A,Q)|

pQ
, if eA > T , we can use 2D hash partition

to further sub-partition each over-sized anchor partition. The 2D
hashing factor k required to meet the threshold is k = d 2eA

T
e.

EXAMPLE 7.1 (SAMPLING). Recall our example in Figure 1
with 10 records and Euclidean distance. Suppose the anchor sam-
pling rate pA = 0.3 and are R1, R9 and R10 are selected as an-
chors, or A = {R1, R9, R10}. Suppose the query sampling rate
pQ is also 0.3, such that the query set is Q = {R2, R6, R8}.

By applying the Euclidean filter rule on Q, we know that O(R1)
receive two records {R2, R6}, whereas the other two partitions
O(R9) and O(R10) receive one record each (R6 and R8 respec-
tively).

Suppose the size threshold of each partition is T = 5. The es-
timated size of O(R1) is 2

0.3
> 5, whereas the estimated size of

O(R9) and O(R10) is 1
0.3

< 5. Thus, O(R1) will be the only
partition that needs a 2D hashing split.

Using the partition size estimate eA and 2D hashing on parti-
tions whose estimate exceeds the set threshold, we can guarantee
that each real partition will not exceed the threshold with high prob-
ability.

THEOREM 7.1. Let the sampling rate of query points be p =
c
T

, and n be the partition size of any anchor partition after the
complete data set is mapped. By using the partition splitting proce-
dure described above, we can guarantee P (n ≥ 4T ) ≤ e−c. That
is, the probability that the real partition size is 4 times larger than
threshold T is exponentially small as c increases.

PROOF. Given any (outer) anchor partition A, n is the true size
ofAwhen the full data set is mapped. p is the query point sampling
rate. Let Xi be the binary random variable used to denote whether
data record Ri ∈ A is sampled in the query point set Q or not.
That is, Xi = 1 if Ri ∈ Q and Xi = 0 if Ri 6∈ Q

First consider the case where A does not need to be split using
2D hashing, that is, the estimated partition size eA ≤ T . Let S =∑n
i=1Xi and µ = np be the expected value of S. Using Chernoff

bound we have the following

P (S ≤ (1− δ)µ) ≤ exp(
−µδ2

2
),∀1 > δ > 0

Putting δ = 3/4 and µ = np, we get

P (S ≤ 1

4
np) ≤ exp(

−9np
32

)

P (n ≥ 4S

p
) ≤ exp(

−9np
32

)

Since no 2D hashing split is necessary, we know T ≥ eA = S
p

.
Thus P (n ≥ 4T ) ≤ exp(−9np

32
) ≤exp(−9Tp

8
). Let p = c

T
, we

then have P (n ≥ 4T ) ≤exp(−9c
8

) ≤ exp(−c)).
The same inequality can be produced for the case where the esti-

mated partition size eA > T such that 2D hashing is employed. We
derive this result by repeating the previous argument using binary
random variables Xij to denote that Ri is both, sampled in Q, and
hashed to a sub-partition in the 2D matrix cell j.

Overall, the probability that the real partition size is a constant
factor larger than threshold T is exponentially small as the sam-
pling rate grows.

To make this guarantee more concrete, consider the following
example. Let our partition size T be fixed at 1000. Suppose we set
c = 10, which makes the sampling probability p = 10

1000
= 1%.

At this modest sampling rate, we can guarantee that the real size
of any anchor partition using the full data set is no greater than
4T = 4000 with probability 1− e−10 > 0.99%.

One might wonder why 2D hashing is not applied on the en-
tire data set for partitioning and load balancing. We note that this
strategy would be very similar to the Theta-Join [21], which uses
2D hashing to handle general joins on MapReduce. There are two
main reasons why using 2D hashing on the entire data set for sim-
ilarity join is not efficient. First, it does not prune out any record
pairs and performs a lot of unnecessary computation in the form of
pairwise comparisons. We on the other hand take advantage of the
characteristics of similarity join to perform both partitioning and
candidate pruning simultaneously. Second, 2D hashing is known to
be inefficient in handling large data sets due to the communication
cost of broadcasting to

√
m nodes, where m is the total number

of machines. In comparison, we only use 2D hashing on a small
set of records that have already been mapped to a common anchor
partition. Here, the cost of broadcasting is insignificant, while the
benefit of balancing load is quite significant.

We also note that although splitting skewed partitions has been
used for similarity join [23, 25], previous approaches split parti-
tions in ad-hoc manners that cannot provide an upper bound for
the size of each partition. In fact, when more than T records are
mapped to the same partition, they sometimes represent a dense
cluster of records in a small region. Previous approaches may not
be able to reduce the size of such partitions, because all records are
so close, that they have to be hashed to all sub-partitions in order to
ensure correctness.

Partition merging. We also observe that for high dimensional
data where records are sparsely distributed across the data space, it
is possible that there exist many small partitions that have only a
handful of records mapped to them. As a result we also considered
the possibility of merging anchor partitions at the sampling stage
using the partition size estimates. The benefit here is that outer
partition records now only need to be mapped to one merged parti-
tion, instead of many smaller ones, which saves on communication
and job startup costs. However, the problem of partition merging
is related to Set Union Bin Packing, which is NP hard [19]. We
implement a greedy approach of merging partitions with significant
overlap as we scan anchor partitions. We observe that the empirical
performance gain from merging is not significant, and the overhead
of merging sometimes outweighs the cost savings. Accordingly, we
will not discuss partition merging in the rest of this paper.



7.2 The mapping phase
In this step, the set of anchors and their respective 2D hashing

factors from the previous step are available at all machines. Map-
pers read data records in parallel and decide for each record its
home anchor partition (by comparing the distance to all anchors),
as well as the outer partitions to which it belongs (using the filer
rules discussed in Section 6). If a record is mapped to an anchor
partition that requires 2D hashing (because the estimated size of
the partition is larger than T ), sub-partitions-ids will be produced
in place of the anchor partition id using the 2D hashing scheme
discussed in Section 7.1.

Note that a pair of records belonging to different home partitions
may be members of both corresponding outer partitions. That is,
consider a pair of records R1, R2 such that R1 ∈ H(A1), R2 ∈
H(A2), and R1 ∈ O(A1), O(A2), R2 ∈ O(A1), O(A2). Pairs
like this, whereR1 ∈ H(A1)∩O(A2) andR2 ∈ H(A2)∩O(A1)
introduce unnecessary communication and computation costs since
both R1 and R2 will be sent to partitions A1 and A2 respectively.
To remove this redundancy, we map either all records in H(A1) ∩
O(A2) to partitionA2, or all records inH(A2)∩O(A1) to partition
A1, but not both. We use an approach similar to that in [25] to
decide the direction of this mapping, and send H(A1) ∩O(A2) to
partition A2 if A1.id < A2.id and h(A1.id + A2.id)%2 = 0 for
some chosen hash function h(·).

A home partition flag that indicates whether the record is in the
target anchor’s home partition is also sent along with the record to
the verification phase. This is used so that we can avoid comparing
two records both of which belong to an anchor’s outer partition but
neither of which belongs to the home partition of the same anchor.

7.3 The verification phase
Each machine will work on a separate, possibly hash-split anchor

partition, to perform the verification record pairs. All records will
be pre-sorted using the home partition / outer partition flags in a
shuffle stage, to make sure that home partition records will be read
first into the reducers. Each home partition record will be compared
with existing home partition records already read, and added to the
list of home partition records in memory. Outer partition records
will be read after all home partition records are read. They will be
compared with all home partition records and discarded. The union
of the output of all reducers is the result of the similarity join.

In parallel to our work, authors in [25] also developed an al-
gorithm with similar mapping/verification phases. However, our
sampling and candidate filtering techniques are significantly differ-
ent, and are experimentally shown in the next section to be more
efficient, especially for high dimensional data with low distance
thresholds.

8. EXPERIMENTAL RESULTS
We present an experimental evaluation of the proposed algo-

rithm. The goals of our experimental study are:
• To evaluate the effectiveness of the filters designed in this paper
and compare against previous work for metric space.
• To compare the scalability of different algorithms discussed in
this paper using end-to-end execution time.
• To evaluate the sensitivity of the proposed ClusterJoin algorithm
to different parameter settings.

8.1 Experimental Setup
8.1.1 Data set

The first data set used in our experiments is from LinkedGeo-
Data [1], which curates geo-spatial data used in OpenStreetMap [2].
We use the “Place” data set, which contains location information

of 2.5 million of Points-Of-Interest and is processed into two di-
mensional coordinates. Since this is already one of the largest real
world spatial data sets that we can find, in order to test algorithms
using even larger data sets, we synthetically generate a larger data
set based on this. Specifically, for each data record we add 9 syn-
thetic records by perturbing both coordinates of the original record
using Gaussian distributions (µ = 0, σ = 10 miles), which pro-
duces a total of 25 million records. We perform similarity join
using Euclidean distance on this data set, which can be useful for
finding, for instance, all pairs of POIs that are within 1 miles of
each other.

Our second data set consists of 430K news articles extracted
from a recent index snapshot of Microsoft Bing search engine in
the English domain. The average document size is 7KB. We model
each news document using the Vector Space Model, and compute
similarity joins for different distance functions. This can be used
in a variety of applications such as identifying near duplicate news
articles, or clustering related stories. Note that the News data set
has a much higher dimensionality (each distinct word is seen as a
dimension) than the 2 dimensional spatial data set.

We experiment with four metric distance functions: we use Eu-
clidean distance on the first spatial data set, and Total Variation
distance (TVD), Angular distance (Cosine similarity), and Jensen
Shannon distance (JSD) [15] on the second document data set.

We have defined and developed specific filters for the first two
distance functions in Section 6. We use our generic filter for An-
gular distance, and also Jensen Shannon distance (JSD), which is a
statistical metric distance defined as follows [15].

DEFINITION 8.1. Let P , Q be two probability distributions,

JSD(P |Q) =
1

2
KLD(P |M) +

1

2
KLD(Q|M)

where KLD(X|Y ) =
∑
iX(i) ln

(
X(i)
Y (i)

)
is the KL divergence,

and M = 1
2
(P +Q).

8.1.2 Compared Methods
In order to evaluate the performance of different algorithms, we

compare the end-to-end runtime of the following methods.
• MAPSS [25]. This recently published approach handles joins
with arbitrary metric distances, and is most similar to our method.
We compare both filter pruning effectiveness across different dis-
tance functions, and end-to-end runtime with this approach.
•V-Smart-Join [18]. V-Smart-Join first maps the record-id of each
record to all tokens in the record. Each token will then be handled
by a separate reducer that emits all pairs of records that share the
same token. The score contribution for the same pair of records are
then aggregated across tokens to obtain the similarity value. This
approach can also handle a large class of similarity functions, and
is shown to work well for data sets with a large alphabet and sparse
records.
• Theta-Join [21]. The Theta-Join approach splits work across
reducers using two-dimensional hash partitioning (outlined in Fig-
ure 4 and Section 7.1). The two-dimensional hashing ensures that
each pair of records meets at least once, and at the same time avoids
broadcasting the full data set to all machines. This approach can
handle arbitrary complex join conditions, including similarity join
for metric distances, and can balance load well.
• Prefix-Join [24]. We also implement the Prefix-Join in [24],
which uses prefix-filter and PP-Join. Note that this approach is
designed for set similarity joins, including Jaccard similarity and
the set-based Cosine similarity. Since their set-based Cosine sim-
ilarity and the unmodified vector-based Cosine similarity used in
our experiments have different semantics (the scores they compute
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Figure 5: Filter effectiveness comparison, using LinkedGeoData in (a) and News Data in (b), (c), (d)
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Figure 6: Time comparison: vary data size, using LinkedGeoData in (a) and News Data in (b), (c), (d)

are also different), we do not compare with Prefix-Join in our main
results. We did try set-based Jaccard similarity and discuss our
findings in Section 8.2.4.
• ClusterJoin. This is our method discussed in Section 7.

There is also a very recent work MASS-Join [13] that handles
set-based and string-based similarities, which are not the focus of
this work.

We implement all algorithms described above and conduct ex-
periments in a production MapReduce system [10]. All algorithms
were executed concurrently with other production jobs, at the nor-
mal cluster workload, using a fixed amount of virtual resources.

8.2 Experimental evaluation

8.2.1 Filter effectiveness
Since like our ClusterJoin method, the MAPSS [25] approach

also uses the idea of filtering candidate pairs that are impossible to
meet the distance threshold, before we evaluate end-to-end runtime
it is interesting to directly compare the effectiveness of the filters
proposed in our work and the one generic filter studied in [25].
Filter effectiveness apparently has a direct impact on the runtime,
because the more effective filters are, the less time is needed for
verification, which typically is the most expensive part of the job.

Figure 5 compares the MAPSS filter and the set of filters pro-
posed in this work across four distance functions. Here the x-axis
is the distance threshold, and y-axis is the average percentage of
partitions that a record needs to be sent to after applying filters,
where lower numbers are better (recall that without filters, each
record needs to be sent to all partitions to guarantee correctness).

Figure 5a shows the effect of filtering for Euclidean distance on
the 2-dimensional spatial data. Notice that since this is a low di-
mensional data set, filtering candidate pairs that cannot join is rel-
atively easy. In fact both MAPSS filter and ClusterJoin filter can

prune away a vast majority of candidate pairs for this low dimen-
sional data. Still, we observe that with reasonably small distance
thresholds, the ClusterJoin filter produces up to an order of magni-
tude fewer number of pairs for verification than the MAPSS filter.

Figures 5b, 5c and 5d respectively plot the filtering effectiveness
for Angular distance (Cosine), Total Variation distance (TVD) and
Jensen Shannon distance (JSD), using the high dimensional doc-
ument data set. Recall that we have developed and use distance-
specific filters for TVD, while for Cosine and JSD we use our gen-
eral filter. Notice that for all three cases our filter outperforms the
MAPSS filter. However the relative difference between these two
methods decreases as the distance threshold increases.

We observe that in all these three cases the filters are generally
less effective when compared to the 2-dimensional Euclidean fil-
ter in Figure 5a, and produce good pruning only with low distance
(high similarity) thresholds. This is partly attributable to the curse
of dimensionality [7] – high dimensional data may just be inher-
ently hard to prune away. However, we argue that this is still very
useful, because in many real applications people are more inter-
ested in finding pairs of records with high similarity (low distance
threshold), or alternatively those pairs that are most similar to each
other. Applications using a low similarity (high distance) threshold,
such as finding all POI pairs within 100 miles, or document pairs
with only insignificant tokens overlapping, are possibly less natu-
ral, because the large number of matching pairs makes subsequent
human consumption difficult.

8.2.2 Scalability test
In this section, we vary the size of the data set and evaluate the

end-to-end execution time to understand the scalability of each al-
gorithm, which is one of the most important aspects of similarity
join algorithms.

In Figure 6 we vary the size of the data set by sampling 1%, 5%,
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Figure 7: Sensitivity Analysis

10%, and 50% of the original data set, for Euclidean distance, An-
gular (Cosine) distance, TVD and JSD, respectively. We report run-
time in seconds on a log-scale. Furthermore we limit the runtime
of each job at 10 hours, after which we simply abort the job. We
conservatively report the corresponding job time as 36000 seconds
and place a timeout label next to the data point.

Figure 6a shows that for Euclidean distance, although both Clus-
terJoin and MAPSS are efficient and scalable as data size grows,
ClusterJoin is 30% to 50% more efficient than MAPSS. The run-
time gap is not as significant as the pruning effectiveness suggested
in Figure 5a. This is because the 2-dimensional spatial data is rel-
atively easy, and both approaches are already effective in pruning
candidates such that verification does not dominate the job runtime.
Also, the verification for pairs not pruned away is relatively cheap,
since each record only has two coordinates, making distance com-
putations inexpensive.

Also in Figure 6a, we note that V-SMART-Join is the least scal-
able approach for Euclidean distance, as it times-out for even the
smallest data set. This is not surprising, as V-SMART-Join maps
each record to constituent tokens in order to aggregate score con-
tribution by tokens, and relies on sparse token occurrence in a large
alphabet to be efficient. While this approach works well for the
IP/cookie data set experimented in [18] which has a sparse alpha-
bet (cookies), in our particular data set with only two tokens (x and
y coordinates), this approach is expected to be the least efficient.
Theta-Join also times-out with all but the smallest data set.

Figures 6b, 6c, 6d show scalability for Angular, TVD, and JSD,
respectively. With the exception of the smallest, 1% data, Cluster-
Join is consistently the most efficient approach. And as the data
grows to 50% all algorithms except ClusterJoin time out at the 10-
hour mark. This underscores the efficiency of our proposed ap-
proach that combines powerful filters and dynamic load balancing.

8.2.3 Sensitivity analysis
Our ClusterJoin algorithm has two parameters: the number of

anchors, and the expected number of tuples beyond which a parti-
tion needs to be split. In this section we analyze the impact of these
two parameters on performance and show our results in Figure 7.
We pick two distance functions on the two different data sets: Eu-
clidean on the spatial data and Cosine on the document data. In
both cases we use 10% of the original data sets for efficiency con-
siderations. Results for TVD/JSD are similar to Cosine and are
omitted.

Figure 7a shows the performance of ClusterJoin for Euclidean
and Cosine distance functions using different numbers of anchors.
Execution time for Euclidean distance is relatively insensitive, and
goes down slightly as we increase the number of anchors. This is
because for low dimension spatial data, having a larger number of
anchors will likely make the “closest” anchor even closer, thus im-
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proving the effectiveness of our filtering procedure. We observe the
same trend for Cosine distance up to 1000 anchors, beyond which
the total runtime increases as more anchors are added. There may
be two reasons for this increase. First, in high dimensional space,
adding more anchors does not significantly reduce the average dis-
tance to the “closest” anchor. As a result the benefit in pruning is
not as pronounced. Second, as more anchors are introduced, the
amount of time spent on partition size estimation also increases.
The effect is more apparent for Cosine perhaps because for the doc-
ument data set pairwise distance computation is expensive. Over-
all, picking 0.1%− 1% of the original data set seems to be a good
empirical setting for anchors.

Figure 7b illustrates the runtime with different split conditions
that impact partition size. For Euclidean distance the runtime is
again insensitive to partition size, because pairwise distance com-
putation is inexpensive. For Cosine distance the runtime grows
with more than 1000 anchors. This is as expected because of the ex-
pensive computation for documents similarity, which perhaps mag-
nifies the straggler effect. While this parameter depends on factors
such as the available computation resource on worker machines, a
partition size of 1000 seems to be a good empirical number to use.

8.2.4 Discussions: other distances and data sets
Although the focus of this work is to support general metric dis-

tance including distribution- and vector-based distances, we notice
that some set-based similarity functions have direct metric distance
counterparts. For instance Jaccard similarity has a metric distance
equivalent. Given that Jaccard similarity is heavily studied in the
literature [5, 6, 24, 27], and we don’t have a special filter for Jac-
card yet, it would be interesting to see how our approach performs
using the general filter. Our results using the news data set and
Jaccard similarity of 0.9 are reported in Figure 8.

In addition to the techniques compared previously, we also com-
pare with PrefixJoin [24] which is one of the pioneering works
on similarity joins in MapReduce and is shown to be scalable for
set-similarity metrics like Jaccard similarity. To our surprise, Pre-
fixJoin turns out to be less scalable than expected. We believe
this is because of the characteristics of the data used in our ex-
periments. Each record in our news document data is considerably
longer (7KB in size) than the data previously used in [24], includ-
ing DBLP records and paper titles/abstracts. This news data set
is unfavorable to a prefix-based approach for two reasons. First,
since each record is much longer, the size of prefixes grows con-
siderably, requiring the same record to be mapped to many more
reducers. Second, unlike DBLP records, which have very distinct,
unique tokens (like authors’ last name) and when used as a prefix
can be very selective, the news documents does not have as many
unique tokens proportionate to the size of the record, thus reducing



the effectiveness of PrefixJoin and overwhelming reducers respon-
sible for common tokens.

We notice that compared to the previously used data sets, the
news data set is more heterogeneous with great variability in doc-
ument sizes. This inspires us to develop a length-based filter used
during the Mapper phase. In particular, we observe that documents
of size l cannot possible join with documents of size less than sl, or
documents of size greater than l

s
, where s is the similarity thresh-

old (or 1−distance threshold) for Jaccard. Given this, we bucke-
tize documents by length into consecutive ranges {b1 : [0, k), b2 :
[k, k

s
), b3 : [ k

s
, k
s2
), . . .}, where the observation is that documents

in bucket bi can only join with documents in buckets bi+1 and bi−1,
and nothing else. Based on this, we put consecutive buckets into
groups, that is gi = {bi ∩ bi+1}. We use the group id, gi, in con-
junction with the anchor partition id in our Mapping Phase 7.2 as
the reducer key, thereby further reducing the size of each partition.
This approach still guarantees correctness, because in each anchor
partition, a pair of documents in adjacent buckets bi, bi+1 will be
mapped to exactly one sub-partition in group gi. This new par-
titioning scheme greatly improves scalability for both ClusterJoin
and PrefixJoin, as shown by ClusterJoin-len and prefix-len curves
in Figure 8.

While the idea of a length-based filter is not new and has been
used, for instance in PP-Join [27], to the best of our knowledge the
length bucketization scheme has not been used in mapping parti-
tions for similarity join in Map Reduce.

Discussion. The point of this exercise is not to show that our ap-
proach is the best for Jaccard similarity. In fact, we believe that for
short homogeneous data sets with distinct tokens, PrefixJoin [27]
and a very recent work MassJoin [13] (shown to be more scalable
than PrefixJoin) may be more suitable.

The upshot of this is that while ClusterJoin is effective for a large
number of scenarios, it is not always the best approach. In fact,
we believe that it is unlikely that one technique can dominate ev-
ery other algorithm across all possible settings, especially given the
complexity of the problem under study. As a result, different tech-
niques like ClusterJoin need to be developed that are optimized for
different distance functions and data sets with different characteris-
tics. Our ClusterJoin approach, for example, is perhaps more suit-
able for vector- or distribution-based distance functions with low
distance thresholds and high dimensional data. As another exam-
ple, even though the V-SMART-Join approach is not very efficient
in our experiments using high dimensional document data sets, is
likely to be the most scalable for sparse data sets with a large token
alphabet, as the authors rightfully argue and show in [18] using the
IP/Cookie data set.

Perhaps just as Hash Join, Index Join and Nested Loop Join work
well under different circumstances for relational join, understand-
ing the relative performance of different similarity-join algorithms
in different scenarios will allow us to develop a cost model that ul-
timately can be used to select the right algorithm based on the data
and distance function in question. We believe this is an interesting
area for future research.

9. CONCLUSIONS
In this paper, we propose a ClusterJoin framework for similar-

ity joins using MapReduce. We design a set of strong filters us-
ing a novel bisector-based reasoning, and a dynamic partitioning
scheme that guarantees load balancing with high probability. Our
approach is scalable and our experiments show that it outperforms
the current state-of-the-art techniques significantly for a variety of
distance functions with low distance thresholds.
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