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Abstract 

In this paper, we propose variable-component DNN (VCDNN) 

to improve the robustness of context-dependent deep neural 

network hidden Markov model (CD-DNN-HMM). This 

method is inspired by the idea from variable-parameter HMM 

(VPHMM) in which the variation of model parameters are 

modeled as a set of polynomial functions of environmental 

signal-to-noise ratio (SNR), and during the testing, the model 

parameters are recomputed according to the estimated testing 

SNR. In VCDNN, we refine two types of DNN components: 

(1) weighting matrix and bias (2) the output of each layer. 

Experimental results on Aurora4 task show VCDNN achieved 

6.53% and 5.92% relative word error rate reduction (WERR) 

over the standard DNN for the two methods, respectively. 

Under unseen SNR conditions, VCDNN gave even better 

result (8.46% relative WERR for the DNN varying matrix and 

bias, 7.08% relative WERR for the DNN varying layer 

output). Moreover, VCDNN with 1024 units per hidden layer 

beats the standard DNN with 2048 units per hidden layer with 

3.22% WERR and a half computational/memory cost 

reduction, showing superior ability to produce sharper and 

more compact models. 

 

Index Terms: variable component, variable parameter, 

variable output, robust speech recognition 

1. Introduction 

Recently, the context-dependent deep neural network hidden 

Markov model (CD-DNN-HMM) [1][2][3][4][5][6] has shown 

its superiority over the traditional Gaussian mixture model 

(GMM)-HMM model in automatic speech recognition and has 

been widely used in real speech recognition productions. 

Naturally, improving the robustness of CD-DNN-HMM 

further becomes the next goal of the research [7].  Although 

deep neural network (DNN) has been shown to be noise robust 

even without any explicit noise compensation technique 

[8][7], there is still room for improvement as shown in work 

[9][10][11]. Until now, most of these work focus on the robust 

feature for DNN.  

In this paper, we propose a model-based noise-robust 

method called variable-component DNN (VCDNN). This 

method is inspired by the idea from the variable-parameter 

HMM (VPHMM) method [12][13][14][15][16]. For both 

DNN-HMM and GMM-HMM systems, one widely used 

model-based noise-robust method is to include noisy speech 

under various conditions into the training data, which is called 

multi-condition training [17][18]. Although experimental 

results have shown that multi-condition training consistently 

gives high recognition accuracies [19], it has some problems: 

(1) the various training environments are modeled with fixed 

set of parameters, leading to “flat” distributions. So for the 

testing speech produced in a particular environment, such 

“flat” model would not be the optimal matched model. (2) It is 

difficult to collect training data to cover all possible types of 

environments, so the performance on unseen noisy 

environments remains unpredictable. VPHMM was proposed 

to solve these problems.  

In VPHMM, HMM parameters, such as state emission 

parameters (GMM mean and variance) or adaptation matrices, 

are modeled as a polynomial function of a continuous 

environment-dependent variable (e.g. SNR). At the 

recognition time, a set of GMM means and variances specific 

to the given value of the environment variable is instantiated 

and used for recognition. Even if the testing environment is 

not seen in the training, the estimated GMM parameters can 

still work well because the change of means and variances in 

terms of the environment variable can be predicted by 

polynomials.  

In our proposed VCDNN method, we want to have any 

component in the DNN to be modeled as a set of polynomial 

functions of an environment variable. In this study, we 

investigate two types of variation: variable-parameter DNN 

(VPDNN) in which the weight matrix and bias are variable 

dependent, and variable-output DNN (VODNN) in which the 

output of each hidden layer is variable dependent. As in 

VPHMM, the variable-dependent components are computed 

online for the environment condition detected in the testing 

data using their associated polynomial functions during 

recognition. Experimental results on the Aurora4 task show 

VPDNN and VODNN can have 6.52% and 5.92% relative 

WERR over standard DNN trained with multi-conditional 

training method, respectively. VPDNN and VODNN are also 

shown to work even better under the unseen SNR conditions, 

where 8.46% and 7.08% relative WERR over standard DNN 

are obtained respectively. Besides, VPDNN with 1024 units 

per hidden layer could beat the standard DNN with 2048 units 

per hidden layer with 3.22% relative WERR and a half 

computational/memory cost reduction. 

This paper is organized as follows. In Section 2 and 3, we 

briefly introduce CD-DNN-HMM and VPHMM, respectively. 

Then, in Section 4, the proposed VCDNN will be described in 

detail. In Section 5, the experimental results on Aurora4 will 

be presented.  And the conclusion will be given in Section 6. 

2. CD-DNN-HMM 

In the framework of CD-DNN-HMM, the log likelihood of 

tied context dependent HMM states (will be called senone in 

the rest of this paper) is calculated using DNN instead of 

GMM in the conventional GMM-HMM systems. DNN can be 

considered as a multi-layer perceptron (MLP) consisting of 

one input layer, one output layer and many hidden layers. 

Each node in the output layer represents one senone.  

Usually, a sigmoid function is chosen as the activation 

function for hidden layers of DNN and the output of the  -th 

hidden layer    is given by: 
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where      is the input of the  -th layer,    and   are the 

weighting matrix and bias of the  -th layer, respectively. 
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Hence, the senone posterior probability  (    ) is:  
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where   is the input feature vector of DNN,     is the senone 

responding to unit   of top layer, and S is the total number of 

senones. The first layer’s input     . The senone emission 

likelihood of HMM  (   ) is then calculated according to 

 (   )    (   )   ( )  ( )                     (5) 

 ( ) is the prior probability of senone  .  ( )  is independent 

of   and can be ignored during HMM decoding.  

 

In DNN training, the commonly used optimization 

criterion is the cross-entropy between the posterior distribution 

represented by the reference labels  ̂(   ) and the predicted 

distribution  (   ). The objective function is:    

     ∑  ̂(    )   ( (    ))
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The reference label is typically decided based on the forced-

alignment results: 

 ̂(    )  {
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Then equation (6) is simplified as:  

        ( (    ))                              (8) 

where    is the reference senone for the speech input  .  

 

With the above objective function, a DNN can be trained 

with the method introduced in [1], which consists of 

unsupervised pre-training and supervised fine-tuning. The 

algorithm used in the fine-tuning stage is error back 

propagation, where the weighting matrix   and bias   of layer 

  are updated with: 

 ̂          (  )                         (9)    
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  is the learning rate.      and    are the input and error 

vector of layer   respectively.     is calculated by propagating 

the error from its upper layer:  

 

                         
  [∑    

     
       

   ]     
 (  

 )               (11) 

   
    is the element of weighting matrix      in  -th row and 

 -th column for layer    , and   
    is the  -th element of 

error vector      for layer    .      is the units number in 

layer    .      
 (  

 ) is the derivative of sigmoid function. 

The error of the top layer (i.e. output layer) is the derivative of 

the objective function defined in equation (8). 
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     is the Kronecker delta function. 

3. VPHMM 

In traditional GMM-HMM systems, the speech distribution 

under different environment is modeled by the same set of 

parameters (Gaussian mean and variance). The variation of 

these parameters caused by environment (such as SNR) 

changes has been studied in [12], and the result shows the 

distribution of the speech feature value is a continuous 

function of SNR. Hence traditional GMM-HMM is imperfect 

because it doesn’t model the acoustic environment (e.g. SNR) 

changes.  

To solve this problem, it is better to change the model 

parameters according to the environment. This is the 

motivation of VPHMM which models GMM parameters as a 

polynomial function of SNR, i.e., the Gaussian component   

is modeled as  (    (   ) ∑(   )) .  (   ) and ∑(   ) 
are polynomial functions of environment variable  .  For 

example,  (   ) can be denoted by 

 (   )   ∑   ( )   
                         (13) 

where   ( )  is a vector with the same dimension as input 

feature vector and corresponds to the j-th order environment 

variable. The choice of a polynomial function is based on its 

good approximation property to continuous functions, its 

simple derivation operations, and the fact that the change of 

means and variances in terms of the environment is smooth 

and can be modeled by low order polynomials. 

In the training of VPHMM,   ( ) (and other parameters) 

can be estimated based on the maximum likelihood criterion 

with the EM algorithm. In the testing stage, the Gaussian mean 

and variance are calculated with the estimated SNR value of 

the testing speech. Even if the testing SNR is not seen in the 

training, the polynomial function can help to calculate 

appropriate model parameters, so VPHMM can work well in 

unseen environments.  

4. Variable-Component DNN 

The basic idea in variable-component DNN (VCDNN) is 

similar to VPHMM: to refine the DNN components by 

modeling their variation against environment changes, which 

is not explicitly taken into consideration in a standard DNN. In 

this study, we specifically work on two types of components 

of DNN: (a) weighting matrix and bias, (b) the output of each 

layer. To make it clear, we will call VCDNN on weighting 

matrix and bias as VPDNN, and VCDNN on the output of 

each layer as VODNN in the rest of this paper.  

4.1. VPDNN 

In VPDNN, the weighting matrix W and bias b of layer   is 

modeled as a function of environment variable  :  

     
 ( ) ,      

 ( )                      (14) 

Here, we use a polynomial function for both   
  and   

  

based on its advantages and effectiveness shown in VPHMM.  

SNR is selected as the environment variable. So we have:  

   ∑   
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  is the polynomial function order.    
  is a matrix with the 

same dimensions as    and    
  is a vector with the same 
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dimension as   . The flowchart of one layer in VPDNN is 

show in figure 1.  

In the training of VPDNN, we need to learn   
  and   

  

instead of    and    in standard DNN.  From equation (15) 

and (16) we can see that if we set J=0, VPDNN is equivalent 

to standard DNN, so we don’t need to learn   
  and   

  from 

the scratch. We can update them based on a standard DNN in 

the fine-tuning stage, and their initial values are:  
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  and     

  are weighting matrix and bias of the layer   in 

standard DNN.    

Combining equation (15) (16) and the error back 

propagation algorithm introduced in Section 2, we can get the 

updating formulas for   
  and   

 : 

 ̂ 
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 ̂ 
    

                                    (20) 

 

In the recognition stage, the weighting matrix W and bias 

b of each layer are instantiated according to (15) (16) with the 

estimated SNR of the testing data. Then the senone posterior 

can be calculated in the same way as in standard DNN. 
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Figure 1. Flowchart of one layer in VPDNN 
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Figure 2. Flowchart of one layer in VODNN 

 

4.2. VODNN 

In VODNN, we assume the output of each hidden layer could 

be described by a polynomial function of environment variable 

 .  
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where  

  
  (  
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The framework of one layer in VODNN is shown in 

figure 2. As in VPDNN,   
  and   

   are updated based on 

standard DNN with the same initial values given in (17) (18).  

Similarly, the updating formulas could be obtained by 

combining (21) (22) and error back propagation algorithm:  

 ̂ 
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where  
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  ( )
  is the  -th element of error vector   

  for layer  , and    ( )
    

is the element of matrix   
    in  -th row and  -th column for 

layer    . 

In the recognition stage of VODNN, the output of each 

hidden layer is calculated according to (21) with the estimated 

SNR of the testing data. And the output of top layer, i.e. the 

senone posterior, is calculated according to equation (4) and 

(2) with the environment independent parameter    and   . 

 

One thing that needs to be mentioned is that SNR   

should be normalized for both VPDNN and VODNN because 

its numerical value range is too big compared with the DNN 

components. In this paper, we use the sigmoid function for the 

purpose of SNR normalization. It not only narrows the 

numerical value range but also makes the impact of very high 

SNRs similar. This would be reasonable since, for example, 

40dB and 60dB SNR won’t make obvious difference to speech 

recognition. This also applies to the very low SNR cases. 

5. Experimental Results 

The proposed methods are evaluated with Aurora 4 [20], a 

noise-robust medium-vocabulary task based on Wall Street 

Journal corpus (WSJ0). Aurora 4 has two training sets: clean 

and multi-condition. Each of them consists of 7138 utterances 

(about 14 hours of speech data). For the multi-condition 

training set, half of the data was recorded with a Sennheiser 

microphone and the other was with a secondary microphone. 

Besides, 6 types of noises (car, babble, restaurant, street, 

airport, and train) were added with SNRs from 10 to 20dB. 

The subset recorded with the Sennheiser microphone was 

called as channel wv1 data and the other part as channel wv2 

data. 

The test set contains 14 sub sets. 2 of them are clean and 

the other 12 are noisy. The noisy test sets were recorded with 

the same types of microphone as in multi-condition training 

set. Also, the same 6 types of noise as in multi-condition 

training set were added with SNRs between 5 and 15 dB.  

The acoustic feature of baseline CD-DNN-HMM system 

is 24-dimensional log Mel filter-bank features plus their first- 

and second-order derivative features, totally 72 dimensions. 

The dimension of the DNN input layer is 792, formed from a 

context window of 11 frames. Its output layer contains 1209 

units, which means there are 1209 senones in the HMM 

system.  The DNN has 5 hidden layers with 2048 units in each 

layer.  



In the experiments, we first examined the VCDNN’s 

performance in terms of the order of polynomial. Both 

standard DNN and VCDNN are trained with the wv1 data 

from multi-condition training set. The test data are clean and 6 

noisy wv1 sub sets. The results are given in Table 1 which 

shows the first-order VPDNN and VODNN achieved 6.53% 

and 5.92% relative word error rate reduction (WERR) over the 

standard DNN, respectively. However the second-order and 

third-order VCDNN did not show obvious gain compared with 

the first order one. This indicates that the first-order 

polynomial is good enough to model the variation caused by 

SNR changes within the DNN framework. Therefore, the first-

order polynomial will be used in the following experiments. 

Given VPDNN is a little better than VODNN, in the 

following, we will only discuss VPDNN in detail.  

Table 2 shows the breakdown results for different noise 

conditions and SNRs of the first order VPDNN. It can be seen 

that VPDNN works well in most noise environments. Besides, 

it gets even better result (8.47% relative WERR) in unseen 

SNR conditions (from 5dB to 10dB) compared with the seen 

conditions (>10dB). This indicates that DNN has a strong 

power to model the various environments it has seen, but for 

the unseen environments, there is more room for 

improvement. The similar result is also observed for VODNN 

(7.08% relative WERR for 5dB < SNR < 10dB, 4.26% relative 

WERR for SNR > 10dB). 

Table 1. The performance of VCDNN in terms of the 

order of polynomial 

WER(%) VPDNN VODNN 

0 order (standard DNN) 10.26 10.26 

1st order 9.59 9.65 

2nd order 9.58 9.63 

3rd order 9.58 9.62 

 

Table 2. Breakdown results for first-order VPDNN 

 5dB-10dB > 10dB 

WER(%) standard 

DNN 

VPDN

N 

standard 

DNN 

VPDN

N 

Clean - - 6.00 5.30 

Street 16.19 14.67 8.89 9.00 

Babble 13.46 11.72 7.63 7.32 

Airport 12.72 11.44 8.20 8.08 

Train 15.96 14.53 8.60 8.49 

Car 6.13 6.10 5.67 5.67 

restaurant 18.94 17.89 9.12 8.67 

Average  13.85 12.68 7.52 7.23 

Relative 

WERR(%) 

 8.47  3.79 

 

 

Table 3. Comparison of standard DNN and first-order 

VPDNN with different sizes  

WER(%) 2048 units / 

hidden layer 

1024 units / 

hidden layer 

standard DNN 10.26 10.50 

VPDNN 9.59 9.93 

At last, we examined the VCDNN’s performance with 

less number of parameters using VPDNN. We evaluated 

VPDNN with 1024 units for each hidden layer to compare 

with the standard DNN with 2048 units per hidden layer. The 

results are given in Table 3. Evaluated with all the test sets 

with wv1 data, we can see that the first-order VPDNN with 

1024 units per hidden layer achieves 3.22% relative WERR 

compared with the standard DNN with 2048 units per hidden 

layer, while the computational and memory costs are reduced 

by half.  This will benefit the application scenario such as 

device dictation that only limited computational resource is 

available [21]. 

 

6. Conclusions and Future Works 

In this paper, we have proposed a noise-robust method named 

VCDNN for CD-DNN-HMM speech recognition systems. In 

this method, the DNN components are modeled as a 

polynomial function of the speech SNR value, and during 

recognition, DNN components are instantiated according to 

the estimated SNR of the testing speech. We tried two kinds of 

implementation: VPDNN and VODNN. In VPDNN, the 

weighting matrix and bias of each layer are modeled as 

variables of SNR value, while in VODNN the output of each 

hidden layer are modeled as the variables of SNR.  

 

Experimental results on the Aurora4 task show the first-

order VPDNN and VODNN yield 6.52% and 5.92% relative 

WERR from the standard DNN trained with multi-conditional 

training method, respectively. They achieved better WERR 

from the standard DNN under unseen SNR conditions than 

under the seen SNR conditions. This indicates that DNN has a 

strong power to model the various environments it has 

observed, but for the unseen environments, there is more room 

for improvement. With the polynomial function, VCDNN can 

very well predict the DNN components used for unseen 

condition. Therefore, VCDNN can generalize very well for 

unseen environments. Moreover, the first-order VCDNN with 

1024 units per layer could get 3.22% relative WERR and a 

half computational/memory cost reduction over the standard 

DNN with 2048 units per layer, showing superior ability to 

produce sharper and more compact models.    

 

Even with the first-order SNR variable, VPDNN and 

VODNN proposed in this paper doubled the number of 

parameters from the standard DNN. The impact of SNR to 

DNN should be in a low dimension space. Therefore, we 

should be able to use only limited number of parameters to 

handle it. One way is to use the SNR variable as a factor in the 

input or output layer [8][22] so that only very limited number 

of DNN weights are connected with the SNR variable. Also, 

we may combine the SNR variable with other factors to do 

factorized training [22].We are working on these directions 

and will report results later.  
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