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Speech Recognition and Acoustic Modeling

SR = Finding the most probable sequence of words W=w,, w,, ws, ... W
given the speech feature O =0, 0,, O3, ... O

Maxyy P(W|O)
= Maxq, P(O|W)Pr(W)/p(O)
Xy POIW)Pr(W)

n,

-/Pr(W) : probability of W, computed by language model
p(O|W) : likelihood of O, computed by an acoustic model
(O|W) is produced by a model M, p(O|W) = p,,(O|W)



Challenges in Computing P,,(O | W)

Computing
Model area (M):  Feature area (O): P (O | W) (run-

fime)
Computational model: .
GMM/DNN Noise-robustness SVD-DNN
Optimization and parameter r ) r
estimation (training) Feature normalization : :
) : algorithms Confidence/Score evaluation
Model recipe > . >
( ) Discriminative transformation Adaptation/Normalization
Infrastructure and
engineering \ / \
Modeling and adapting to Adapfation ’rgﬁror’r—’rerm Quantization
speakers vanabiliity

L\



Acoustic Modeling of a Word

« Hidden Markov model (HMM)
o State emission distribution is modeled

by DNN or GMM State transition probability

—

|/\m W ‘/’\/\ |A/\ W M: State emission distribution

/ih/ /1/
/L-in+t/ /ih-t+R/

Tri-phone representation of “it”




DNN for Automatic Speech Recognifion

L DNN . output Layer:| O QO ves OOO]
» Feed-forward arfificial neural network R
» More than one layer of hidden unifs . (00 +» 00
between input and output . =]
» Apply a nonlinear/linear function in 00 +.. 00 :
each |Clyer Hidden Layers: ; ; E

DNN for automatic  speech
recognition (ASR)
» Replace the Gaussian mixture model

(GMM) in the fraditional system with a Input Layer:
DNN fo evaluate state likelihood




Phoneme State Likelihood Modeling

sil-b+ah [2] Sil-p+ah [2]  eeee o-ah+t [2] ++--- Qh-t+iy [3] « -« -iy-+sil [3] -+ cl-iy-+sil [4]
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Phoneme State Likelihood Modeling
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Phoneme State Likelihood Modeling

sil-b+ah [2] Sil-p+ah [2]  eeee o-ah+t [2] ++--- Qh-t+iy [3] « -« -iy-+sil [3] -+ cl-iy-+sil [4]
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Fundamental Challenges o Industry

How to reduce the runtime without accuracy loss?

How to do speaker adaptation with low footprintse

How to be robust to noise¢

How to reduce accuracy gap between large and small DNN<e

How to deal with large variety of datae

Ol

to enable languages with limited training data?



Reduce DNN Runtime
without Accuracy Loss




Motivation

» The runtime cost of DNN is much larger than that of GMM, which has been
fully optimized in product deployment. We need to reduce the runtime
cost of DNN in order to ship it.




Solution

®» The runfime cost of DNN is much larger than that of GMM, which has been

fully optimized in product deployment. We need to reduce the runtime
cost of DNN in order to ship it.

» We propose a new DNN structure by taking advantage of the low-rank
property of DNN model to compress it




Singular Value Decomposition (SVD)
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» Number of parameters: mn->mk+nk.
» Runtime cost: O(mn) -> O(mk+nk).

» F.g.. m=2048, n=2048, k=192.

80% runtime cost reduction.



SVD-Based Model Restructuring
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SVD-Based Model Restructuring
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SVD-Based Model Restructuring
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Proposed Method

» Train standard DNN model with regular methods: pre-training + cross
entropy fine-tuning

» Use SVD to decompose each weight matrix in standard DNN into two
smaller matrices

» Apply new matrices back

» Fine-fune the new DNN model if needed




A Product Sefup

|. ‘ ‘ i iii Number of
Original DNN model 25.6% 29M

SVD (512) to hidden layer 25.7% 21M

Around 80% runtime cost reduction!




Adapting DNN to Speakers
with Low Foofprints

[Xue 14]




Motivation

» Speaker personalization with a DNN model creates a storage size issue: It is
not practical to store an entire DNN model for each individual speaker
during deployment.




Solution

» Speaker personalization with a DNN model creates a storage size issue: It is
not practical to store an entire DNN model for each individual speaker
during deployment.

» We propose low-footprint DNN personalization method based on SVD
stfructure.




SVD Personalization

» SVD Restructure: A, xn = Unmxic Wixn

» SVD Personalization: A, xn = UmxkSkxkWixn-. INifiate Syxx QS I, And then
only adapt/store the speaker-dependent Sy k.-




SVD Personalization Structure

Weight matrix L) sy

©O...00




SVD Personalization Structure

T8 . &8
ght matrix Ve QE}{R; O...O]
O [— L
Weight matrix U e / lO”'O]
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Adapt with 100 Utterances

27.00%
25.00%
23.00%
21.00%
19.00%
17.00%
15.00%
Full-rank Sl Standard
SVD model :
model adaptation
= \WER 25.21% 25.12% 20.51%
B-Number of parameters (M) 30 7.4 7.4

\\

adaptation
19.95%

89

30



Noise Robustness

[Li14, Zhao 14, Zhao 14D]




DNN Is More Robust 1o Distortion — Multi-condition-
trained DNN on Training Utterances

bean-Mormalized Log Filter Bank

silence--clean
speech--clean
hoise--restaurant 10dhb

speech--restaurant 10db

(O




DNN Is More Robust 1o Distortion — Multi-condition-
trained DNN on Training Utterances

Layer 1 - MultiStyle DMMN, Mean-Normalized LFB

silence--clean

speech--clean
noise--restaurant 10db
speech--restaurant 10db
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DNN Is More Robust 1o Distortion — Multi-condition-
trained DNN on Training Utterances

Layer 3 - MultiStyle DMN, Mean-Normalized LFB
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DNN Is More Robust 1o Distortion — Multi-condition-
trained DNN on Training Utterances

Layer & -- Multistyle OMM, Mean-Mormalized LFB

silence--clean
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speech--restaurant 10db

O] #




Ise-Robustness Is Still Most Challenging —
n-frained DNN on Test Utterances

Layer 1 -- Clean DMN, Mean-normalized LFB

silence--clean

speech--clean
noise--restaurant 11db
speech--restaurant 11db
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Noise-Robustness Is Still Most Challenging —
Clean-trained DNN on Test Utterances

Layer 3 -- Clean DMN, Mean-normalized LFB

silence--clean

speech--clean
naoise--restaurant 11dhb
speech--restaurant 11dhb
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Noise-Robustness Is Still Most Challenging —
Clean-trained DNN on Test Utterances

Layer 5 -- Clean DMN, Mean-narmalized LFE

silence--clean
speech--clean
hioize--restaurant 11db

speech--restaurant 11db
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Noise-Robustness Is Still Most Challenging — Mulfti-
condition-tfrained DNN on Test Utterances

Layer 1 - MultiStyle DMM, Mean-normalized LFB

silence--clean
speech--clean
noise--restaurant 11db

speech--restaurant 11dhb

SRR




Noise-Robustness Is Still Most Challenging — Mulfti-
condition-tfrained DNN on Test Utterances

Layer 3 - MultiStyle DMM, Mean-normalized LFB

silence--clean
speech--clean
noise--restaurant 11db

speech--restaurant 11dhb
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Noise-Robustness Is Still Most Challenging — Mulfti-
condition-tfrained DNN on Test Utterances

Layer 5 - MultiStyle DMM, Mean-normalized LFB

silence--clean
speech--clean
noise--restaurant 11db
speech--restaurant 11db

Q<] # [




Some Observations

= DNN works very well on utterances and environments observed.

» [For the unseen test case, DNN cannot generalize very well. Therefore,
noise-robustness tfechnologies are still important.

®» For more technologies on noise-robustness, refer to our recent overview
114] for more studies




Variable Component DNN

» DNN components:
» Weight maitrices, outputs of a hidden layer.
= [or any of the DNN components

® Training: Model it as a set of polynomial functions of a context variable, e.g. SNR, duration, speaking
rate.

Ct=%i_oCv) 0<I<L (Jis the order of polynomials)

®» Recggnition: compute the component on-the-fly based on the variable and the associated polynomial
fupictions.

» Deyeloped VP-DNN, VO-DNN.




VPDNN

Weighting
function

Activation

Summing function

function .

f(.) | Output
vector

Input
vector

I
e




VODNN

Weighting  Activation
function function

Summing

> () <o
| | function

> f(+) > x 0!
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NN Improves Robustness on Noisy
ronment Un-seen in the Training

» The training data has SNR > 10db.

- 5dB-10dB > 10dB

WER(%) standard VPDNN standard VPDNN

DNN DNN
13.85  12.68 7.52 7.23
Relative 8.47% 3.79%

WERR(%)




Reduce Accuracy Gap
between
Large and Small DNN

[Li14c]




To Deploy DNN on Server

» | ow rank matrices are used to reduce the number of DNN parameters and
CPU cost.

» Quantization for SSE evaluation is used for single instruction mulfiple data
processing.

» [Frame skipping or prediction is used to remove the evaluation of some
frames.




To Deploy DNN on Device

» The industry has strong interests to have DNN systems on devices due to the
increasingly popular mobile scenarios.

®» Even with the technologies mentioned above, the large computational
cost is still very challenging due to the limited processing power of devices.

» A common way to fit CD-DNN-HMM on devices is to reduce the DNN
model size by

» reducing the number of nodes in hidden layers
» reducing the number of senone targets in the output layer
®» However, these methods significant increase word error rate.

= |n this talk, we explore a better way to reduce the DNN model size with less
accuracy loss than the standard training method.




Standard DNN Training Process

» Generate a set of senones as the DNN fraining
target: splits the decision tree by maximizing the
increase of likelihood evaluated on single Gaussians

» CGet transcribed training data

= Train DNN with cross enfropy or sequence fraining
criterion




Significant Accuracy Loss when DNN
Size Is Significantly Reduced

®» Better accuracy is obtained if we
use the output of large-size DNN for : : ' ~
acoustic likelihood evaluation (000 ... 000

» The output of small-size DNN is away
from that of large-size DNN, resulting
in worse recognition accuracy

O
L
<

®» The problem is solved if the small-size 8
DNN can generate similar output as 0..0)
the large-size DNN %

NS«

0O ..00




Can We Make the Small-size DNN Generate
Similar Output to the Large-size DNN&e

» No -- if we only have transcribed data.

®» Yes -- in industry, we have almost unlimited un-transcribed data and only a
small portion is transcribed




Distribution Learning

= Use the standard DNN
training method to
train a large-size
teacher DNN using
transcribed data

Random initialize the
small-size student DNN

= Minimize the KL
divergence between
the output distribution
of the student DNN
and teacher DNN with
large amount of un-
transcribed data

Teacher DNN

----------------

Calculate error signal

Small-Size DNN Training with Output

Forward propagation to
calculate posterior

Student DNN

-
——

{o

Back propagation to update
network parameters



Minimize the KL Divergence between
the Output Distribution of DNNSs

N P (silx)
Si|X
z zPL(Silxt)log (PL( l t))
= s(Silxe x;. the observation at time t

1 P, (s;|xt), Ps(s;|x:): posterior
output distribution of teacher
N
=D D Pulsilxo)logPs(silio)
i=1

and student DNN, respectively
» A general form of the standard DNN training criterion where the target is a
one-hot vector.

s;. i-th senone

®» Here the target is generated by the output of feacher DNN




Experiment Setup

375 hours of transcribed US-English data
Large-size DNN: 5*2048
Small-size DNN: 5*512

6k senones



EN-US Windows Phone Task

m Training Data Training Criterion m

5 *2048 375 hours tfranscribed data Standard cross entropy 16.32
5*512 375 hours tfranscribed data Standard cross entropy 19.90




EN-US Windows Phone Task

Use it as the teacher for output distribution learning

Training Data Training Criterion m
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5*512 375 hours tfranscribed data Standard cross entropy 19.90
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Training Data Training Criterion m

5 * 2048> 375 hours franscribed data Standard cross entropy 16.32
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EN-US Windows Phone Task

Use it as the teacher for output distribution learning

Training Data Training Criterion m

5 * 2048> 375 hours franscribed data Standard cross entropy 16.32
5*512 375 hours tfranscribed data Standard cross entropy 19.90
5*512 375 hours un-transcribed data  Output distribution learning  19.55
5*512 750 hours un-transcribed data  Output distribution learning  19.28
5*512 1500 hours un-transcribed data Output distribution learning  18.89




EN-US Windows Phone Task

Use it as the teacher for output distribution learning

Training Data Training Criterion m

5 * 2048> 375 hours franscribed data Standard cross entropy 16.32
5*512 375 hours tfranscribed data Standard cross entropy 19.90
5*512 375 hours un-transcribed data  Output distribution learning  19.55
5*512 750 hours un-transcribed data  Output distribution learning  19.28

5*512 Decode 750 hours un- Standard cross entropy
transcribed data to generate 20.48
transcription




Can We Use German Data 1o Learn
EN-US DNNZ¢

Use it as the teacher for output distribution learning

Training Data Training Criterion m

<5 * 2048> 375 hours EN-US transcribed Standard cross entropy 16.30
data '
5*512 750 hours un-franscribed EN-US  Output distribution learning 1998
data '
5*512 600 hours un-transcribed Output distribution learning 5

German data




Can We Use German Data 1o Learn
EN-US DNNZ¢

Use it as the teacher for output distribution learning

Training Data Training Criterion m

<5 * 2048> 375 hours EN-US transcribed Standard cross entropy 16.30
data '
5*512 750 hours un-franscribed EN-US  Output distribution learning 1998
data '
5*512 600 hours un-transcribed Output distribution learning 5

German data

Please guess a WER
90¢
70¢
50¢
30¢
10¢




Can We Use German Data 1o Learn
EN-US DNNZ¢

Use it as the teacher for output distribution learning

Training Data Training Criterion m

<5 * 2048> 375 hours EN-US transcribed Standard cross entropy 16.32
data '

5*512 750 hours un-franscribed EN-US  Output distribution learning 1998
data '

5*512 600 hours un-franscribed Output distribution learning 21.711

German data




Better Teacher

» |f the teacher DNN is improved by some other techniques, could the
improvement be transferred to a better student DNN ¢




Better Teacher

» |f the teacher DNN is improved by some other techniques, could the
improvement be transferred to a better student DNN ¢

Use it as the teacher for output distribution learning

Training Data Training Criterion m

5 * 2048> 375 hours transcribed data Standard sequence training 13.93
5*512 375 hours transcribed data Standard sequence fraining 17.16




Better Teacher

» |f the teacher DNN is improved by some other techniques, could the
Iimprovement be tfransferred to a better student DNN ¢

Use it as the teacher for output distribution learning

Training Data Training Criterion m

5 * 2048> 375 hours franscribed data Standard sequence tfraining 13.93
5*512 375 hours transcribed data Standard sequence fraining 17.16
5*512 750 hours un-transcribed data  Output distribution learning  16.66




Real Application Setup

» ? Million parameter for small-size DNN, compared to 30 Million parameters
for teacher DNN
Accuracy mmmmm Teacher DNN trained with standard sequence training

s Student DNN trained with output distribution learning in this talk

4 Sall-size DNN trained with standard sequence training




Dealing with Large Variety of
Data

[Li 12, 14b]




torization of Speech Signals
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Joint Factor Analysis (JFA)-Style Adaptation

e JFA: M =m+ Aa + Bb + Cc,

. 4
R(x) ~R(y)+Dn+ Eh+Fs




Vector Tayler Series (VTS)-Style Adaptation

x =y +log(1l—exp(n—y))
~ y + log(1 — exp(ng — ¥o)) + A(y — yo) + B(n —ny)
OR
R(x) = R(y) + v (Ay + Bn + const.)

If we make a rather coarse assumption that
OR /0y is constant

R(x) = R(y) + Cy + Dn + const




Fast Adaptation with Factorization

Test set B —same Test set D — microphone mismatch
microphone
~~~~~~~~ FDLR -=-JFA-style VTS-style ~+-FDLR -=-JFA-style VTS-style
25 - 42
K23 e . g ST
e e A e 39 Mg
S 21 =
19 36
0 2 5 10 20 0 2 5 10 20

Number of adaptation utterances Number of adaptation utterances



torization of Speech Signals, Another Solution

o
senones

Qutput Layer [ O OO 4 v OOO]

I
Many | i
Hiddeny |
Layers | |

Input Layer ‘
Factr:xl (f1) Factr::i N (fr)
Factor 1 Factor N
feature feature

extraction extraction

Training or Testing Samples




DNN SR for 8-kHz and 16-kHz Data

16k-Hz sampling data

: m’h% i

8k-Hz sampling data
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Performance on Wideband and Narrowband Test Sets

Training Data WER (16-kHz) WIEEZ(B-

16-kHz VS-1 (B1) 29.96 71.23
8-kHz VS-1 + 8-kHz VS-2 (B2) i 28.98
16-kHz VS-1 + 8-kHz VS-2 (ZP) 28.27 29.33

16-kHz VS-1 + 16-kHz VS-2 (UB) 27 .47 53.51




Distance for the Output Vectors between 8-kHz and 16-
put Features

O 16-kHz DNN (UB) Mean O Data-mix DNN (ZP) Mean

L1 (ED) L4 (ED) L7 (ED) Top (KL)



Enable Languages
with Limited Training Dato




red Hidden Layer Multi-lingual DNN

Language 1 senones Language 2 senones Language 3 senones Language 4 senones

00...00)([00...00) (O0...00) (0O...00)

Shared

Many Hidden Layers+
Feature Transformation

Input Layer

‘ é (Lang & Training or Testing Samples




Source Languages in Multilingual DNN

Benefit Each Other

FRA | DEU | ESP | ITA
Test Set Size (Words) | 40K | 37K | 18K | 31K
Monolingual DNN 28.1124.0(30.6|24.3
SHL-DNN 27.1122.7 |29.4|23.5
Relative WER 3.6 | 54 | 3.9 | 3.3
Reduction

source languages: FRA: 138 hours, DEU: 195 hours,
ESP: 63 hours, and ITA: 93 hours of speech.




Transferring from Western Languages

to Mandarin Chinese Is Effective

CHN CER (%) 3 hrs | 9hrs | 3bhrs | 139hrs
Baseline DNN (no 45.1 | 40.3 | 31.9 | 29.0
transfer)

SHL-MDNN Model 35.6 | 33.9 | 284 | 26.6
Transfer
Relative CER Reduction | 21.1 | 159 | 104 8.3

source languages: FRA: 138 hours, DEU: 195 hours,
ESP: 63 hours, and ITA: 93 hours of speech.
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