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Abstract
We propose a feature space maximum a posteriori (MAP) linear
regression framework to adapt parameters for context depen-
dent deep neural network hidden Markov models (CD-DNN-
HMMs). Due to the huge amount of parameters used in DNN
acoustic models in large vocabulary continuous speech recog-
nition, the problem of over-fitting can be severe in DNN adap-
tation, thus often impair the robustness of the adapted DNN
model. Linear input network (LIN) as a straight-forward feature
space adaptation method for DNN, similar to feature space max-
imum likelihood linear regression (fMLLR), can potentially
suffer from the same robustness situation. The proposed adapta-
tion framework is built based on MAP estimation of the LIN pa-
rameters by incorporating prior knowledge into the adaptation
process. Experimental results on the Switchboard task show
that against the speaker independent CD-DNN-HMM systems,
LIN provides 4.28% relative word error rate reduction (WERR)
and the proposed fMAPLIN method is able to provide further
1.15% (totally 5.43%) WERR on top of LIN.
Index Terms: deep neural network, speaker adaptation, maxi-
mum a posteriori estimation

1. Introduction
Recent successes in adopting context dependent deep neural
network hidden Markov models (CD-DNN-HMMs) in auto-
matic speech recognition (ASR) have demonstrated promis-
ing performance improvements over the conventional Gaussian
mixture model (GMM) HMMs [1] in various tasks and datasets
[2, 3, 4, 5, 6, 7]. Despite the advances by DNN, CD-DNN-
HMMs still suffer from the same performance degradations as
in CD-GMM-HMMs due to potential acoustic mismatches be-
tween the training and testing conditions.

Over the past, a large number of adaptation methods for
CD-GMM-HMMs have been extensively investigated to ad-
dress the aforementioned robustness problem [8], and many
of these methods have had significant impacts on either re-
search or commercial use. A recent survey on these adapta-
tion methods can be found in [9]. For the conventional CD-
GMM-HMMs systems, two families of adaptation parameters,
direct model parameters and indirect transformation matrix pa-
rameters, have been developed. Techniques, such as maximum
likelihood linear regression (MLLR) [10] and the maximum a
posteriori (MAP) [11], and their corresponding feature space
variations (feature space MLLR (fMLLR) [12, 13], and feature
space MAPLR (fMAPLR) [14, 15]) have also been widely used.
For general artificial neural network (ANN) [16] HMM hybrid,
known as connectionist systems [17] in which the CD-DNN-
HMM is a special case, there are also many adaptation attempts,

such as transformation-based [18, 19, 20, 21], conservative-
based [22, 23, 24], subspace-based [25] and activation function
based [26] approaches. Contrary to CD-GMM-HMM adap-
tation, the parameters to be adapted in CD-DNN-HMMs for
large vocabulary continuous speech recognition (LVCSR) are
often structurally embedded in a deep (multiple hidden layers)
and wide (large number of neurons per layer) network and use
a large output layer designed to model senones (tied-triphone
states) [27, 4] directly. When the amount of adaptation data
is limited, which is quite common in rapid speaker adapta-
tion tasks, over-fitting is a severe issue. To address this prob-
lem, [28] adds KullbackLeibler divergence (KLD) regulariza-
tion to the objective criterion to obtain a conservative adapta-
tion scheme. Transformation based methods have also been em-
ployed in [29], and adaptation is only performed on the trans-
form network in order to reduce the number of parameters to be
optimized.

In this paper, a feature space maximum a posteriori (MAP)
linear regression (LR) framework is proposed to adapt the pa-
rameters of CD-DNN-HMMs based on a linear transformation
network (LIN) [18, 19]. We refer to the proposed technique
as fMAPLIN. The LIN adaptation method, also called feature
space LIN (fLIN), can be seen as a DNN version of conven-
tional fMLLR in CD-GMM-HMM. Similar to fMLLR, it learns
a feature transformation during adaptation. Such adaptation
schemes in the feature space have the advantage of involv-
ing less parameters than those techniques that adapt either all
DNN parameters or only the hidden/output layers which often
have much more parameters than the input layer. Even when
adaptation is only applied to the feature transform network, the
over-fitting problem could still arise. The proposed adaptation
framework is built based on MAPLR estimation of the LIN
parameters by incorporating prior knowledge into the adapta-
tion process which is similar to fMAPLR [15] in CD-GMM-
HMM. It will be shown in this paper that applying the proposed
fMAPLIN adaptation is equivalent to adding a regularization
term to the loss function in DNN training. With the simple as-
sumption of a standard joint normal prior density, the proposed
method can be reduced to L2-regularized adaptation [30].

LIN and LIN-like adaptation methods, such as feature space
discriminative linear regression (fDLR) [29, 31], and regular-
ized conservative adaptation methods [28] have been proven to
be effective for CD-DNN-HMM systems. We would like to in-
vestigate the way to do feature space MAP adaptation for CD-
DNN-HMM systems. Experiments on the Switchboard task
show that against the speaker independent CD-DNN-HMM sys-
tems, LIN provides 4.28% relative word error reduction and the
proposed fMAPLIN method is able to provide further 1.15%
(totally 5.43%) relative word error reduction on top of LIN. The
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experiment results exhibit the advantage of MAP adaptation
which incorporates essential prior information. In our formu-
lation the prior also serves as a regularization and thus achieves
conservative adaptation training.

2. Training of CD-DNN-HMMs
In this work, the input to DNN is a splice of a central frame
(whose label is that for the splice) and its n context frames on
both left and right sides, e.g., n = 10. The hidden layers were
constructed by sigmoid units, and the output layer is a softmax
layer. The basic structure of a deep model is shown in Fig. 1.
Specifically, the values of the nodes can be expressed as:

xi =

{
W1o

t + b1, i = 1

Wiy
i + bi, i > 1

, (1)

yi =

{
sigmoid(xi), i < n

softmax(xi), i = n
, (2)

where W1, and Wi are the weight matrices, b1, and bi are the
bias vectors, n is the total number of the hidden layers, and both
sigmoid and softmax functions are element-wise operations.
The vector xi corresponds to pre-nonlinearity activations, and
yi and yn are the vectors of neuron outputs at the ith hidden
layer and the output layer, respectively. The softmax outputs
were considered as an estimate of the senone posterior proba-
bility:

P (Cj |ot) = yn
t (j) =

exp(xn
t (j))∑

i

exp(xn
t (i))

, (3)

where Cj represents the jth senone and yn(j) is the jth ele-
ment of yn in Fig. 1.
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Figure 1: Structure of a deep neural network: Wi is weight
matrix at the ith layer, note that the bias terms are omitted for
simplicity.

DNN is trained by maximizing the log posterior probability
over the training frames. This is equivalent to minimizing the
cross-entropy objective function. Let X be the whole training
set, which contains N frames, i.e. o1:N ∈ X , then the loss with
respect to X is given by

L1:N = −
N∑
t=1

J∑
j=1

dt(j) logP (Cj |ot), (4)

where P (Cj |ot) is defined in Eq. (3); dt is the label vector of
frame t. In real practices of DNN systems, the label vector dt

is often obtained by a forced alignment with an existing system
resulting in only the target entry that is equal to 1.

The objective function is minimized by using error back-
propagation [32] which is a gradient-descent based optimiza-
tion method developed for neural networks. Specifically, taking
partial derivatives of the objective function with respect to the
pre-nonlinearity activations of output layer xn , the error vector
to be backpropagated to the previous hidden layers is generated:

εnt =
∂L1:N

∂xn
= yn

t − dt, (5)

the backpropagated error vector at the previous hidden layer is:

εit = WT
i+1ε

i+1
t ∗ yi ∗

(
1− yi

)
, i < n (6)

where ∗ denotes element-wise multiplication. With the error
vectors at certain hidden layers, the gradient over the whole
training set with respect to the weight matrix Wi is given by

∂L1:N

∂Wi
= yi−1

1:N (εi1:N )T . (7)

Note that in the above equation, both yi−1
1:N and εi1:N are ma-

trices, which are formed by concatenating vectors correspond-
ing to all the training frames from frame 1 to N , i.e. εi1:N =
[εi1, . . . , ε

i
t, . . . , ε

i
N ] . The batch gradient descent updates the

parameters with the gradient in (7) only once after each sweep
through the whole training set and in this way parallelization
can be easily conducted. However, stochastic gradient descent
(SGD) [33] usually works better in practice where the true gra-
dient is approximated by the gradient at a single frame t, i.e.,
yi−1
t (εit)

T , and the parameters are updated right after seeing
each frame. The compromise between the two, the mini-batch
SGD [34], is more widely used, as the reasonable size of mini-
batches makes all the matrices fit into the GPU memory, lead-
ing to a computationally efficient learning process. Here we use
mini-batch SGD to update the parameters.

Training a neural network directly from a set of randomly
initialized parameters usually results in a poor local optimum
when performing error backpropagation, especially when the
neural network is deep [35]. To cope with this, pre-training
methods have been proposed for a better initialization of the
parameters [36] by growing the neural network layer by layer
without using the label information. Treating each pair of lay-
ers in the network as a restricted Boltzmann machine (RBM),
each layer of the neural network can then be trained using an
objective criterion called contrastive divergence [36].

3. fMAPLIN adaptation of
CD-DNN-HMMs

In this following, we incorporate prior information into plain
LIN adaptation in a Bayesian MAPLR framework. This exten-
sion from LIN to fMAPLIN in CD-DNN-HMMs is similar to
the extension from fMLLR to fMAPLR in CD-GMM-HMMs.

3.1. LIN adaptation

The original LIN adaptation as described in [18] for a ANN-
HMM system plays the same role as fMLLR in a GMM-HMM
system. It learns a linear transformation between the input fea-
ture vectors to the speaker independent (SI) ANNs. During
recognition, the transformed vector is used as the input to the
SI-ANN. When performing adaptation for a new speaker, the
weights in the transformation network are initialized to an iden-
tity matrix. The SI-ANN network is kept ”frozen” while only

2993



Figure 2: An architecture for adapting ANN-HMM models
based on LIN. During adaptation, the parameters (weights) as-
sociated to the red links are estimated using the adaptation ut-
terances while all other weights are kept fixed. The activation
function for each LIN neuron (red node) is linear.

the transformation matrix is updated during adaptation by the
conventional error back-propagation (BP). The basic concept of
the LIN adaptation is illustrated in Fig. 2, in which the parame-
ters of the red part of the DNN model are modified.

3.2. fMAPLIN adaptation

As described in Section 3.1, plain LIN adaptation is the same as
general DNN training with the difference that only the transfor-
mation network’s weights are updated. During adaption train-
ing, the LIN transformation network is trained to maximize the
log posterior probability, or minimize the cross-entropy, over
training samples with the loss function in Eq. (4). The label
vector dt is often obtained by a forced alignment from an exist-
ing transcription. Thus, a simplified loss function is obtained:

Lxent
1:N = −

N∑
t=1

log p(Ctg|ot), (8)

where Ctg is the target senone at time t. Taking into account
the weight matrix Wupd representing the transformation net-
work’s weights in the context of LIN adaptation and the entire
network’s weights in the general case of DNN training, Eq. (8)
becomes:

Lxent
1:N = −

N∑
t=1

log p(Ctg|ot,Wupd), (9)

and a complete posterior formulation should be:

LMAP
1:N = −

N∑
t=1

log p(Ctg,Wupd|ot)

= − log p(Wupd)−
N∑
t=1

log p(Ctg|ot,Wupd)

= − log p(Wupd) + Lxent
1:N

(10)

where p(Wupd) is a joint prior probability density of the
weights in Wupd. Similar to conventional MAP learning, the
prior density can be scaled by a factor λ to control the influence
degree of the prior [30]. Now Eq. (10) becomes,
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Figure 3: histograms of 4 sample weights

LMAP
1:N = −λ log p(Wupd) + Lxent

1:N . (11)

Eq. (11) formulates the proposed MAP learning idea by
adding a term of prior density p(Wupd) in the objective func-
tion to be optimized. Here we assume that the joint probability
density of the weights to be Gaussian and all the weights are in-
dependent with each other (the reason for the assumptions will
be explained later in Section 4).

By expressing the matrix Wupd as a vector w with each
entry representing a particular weight, we have p(Wupd) as:

p(Wupd) =
1

(2π)M/2|Σ|1/2 exp(−1

2
(w − μ)TΣ−1(w − μ))

(12)
where only the diagonal entries of the covariance matrix Σ are
non-zero (from the independence assumption of the weights).
Now the loss function can be written as,

LMAP
1:N =

λ

2
(w − μ)TΣ−1(w − μ) + Lxent

1:N . (13)

A close look at Eq. (13), when the prior distribution is stan-
dard Gaussian N(0|I), MAP learning will degenerate to con-
ventional L2-regularized training.

The gradient of LMAP
1:N with respect to w can now be ex-

pressed as:

∂LMAP
1:N

∂w
= λ(w − μ)T diag(Σ−1) +

∂Lxent
1:N

∂w
, (14)

where diag(Σ−1) is a vector composed by the diagonal entries

of Σ−1) and
∂Lxent

1:N
∂w

can be computed using the conventional
BP algorithm following Eq. (7).

4. Prior density estimation
The joint prior probability distribution p(Wupd) of the weights
in Wupd is an essential part of the proposal fMAPLIN adapta-
tion framework. To analyze and estimate the prior density, we
utilized the training data of the baseline DNN. We treated each
speaker in the training set as a sample speaker and a single iter-
ation of supervised plain LIN adaptation was performed using
20 utterances of that speaker with a learning rate of 1e-04. After
that, we can get a transformation matrix for each speaker. Using
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Figure 4: WER results for of LIN-adapted DNN and the proposed fMAPLIN adapted DNN.

the transformation matrices obtained for each speaker, we first
examine the prior distribution of some weight parameters.

Fig. 3 shows the histograms of 4 sample weights over the
speakers (nearly 2000 speakers). It can be seen that the distri-
bution is quite like Gaussian, and the same result applies to all
the sample weights that we do not report for the sake of saving
space. This observation motivated us to assume the prior den-
sity of the weights to be joint Gaussian as discussed earlier. The
other assumption that all the weights are independent of each
other may not holds well in practice, but it leads to a diagonal
precision matrix Σ−1 that reduces the computational burden.

5. Experiments and Results
We conducted a series of experiments on the Switchboard task
using the Kaldi toolkit [37]. The baseline DNN model was
trained using a 109-hour subset of the SWB-I training data [38]
with an initial learning rate of 0.008 using cross-entropy ob-
jective function. It is initialized with stacked restricted Boltz-
mann machines (RBMs) by using layer by layer generative pre-
training. An initial learning rate of 0.01 is used to train the
Gaussian-Bernoulli RBM and a learning rate of 0.4 is applied
to the Bernoulli-Bernoulli RBMs. The DNN has seven 2048-
neuron hidden layers, and a 2979-neuron output softmax layer.
The features used to train the DNN MFCC [39] with 39 dimen-
sions, so the final input feature of 11 frames has 429 dimensions
resulting in the size of LIN transformation matrix to be 429 x
429.

The adaptation and testing data were from the NIST 2000
Hub5 evaluation set [40]. There are 80 speakers in the Hub5
2000 testing dataset [40]. We selected the 40 CallHome [40]
speakers for the experiments. The first 20 utterances of each se-
lected speaker formed the adaptation set and the remaining ut-
terances were used for testing. All adaptation experiments were
performed in a supervised manner. The following adaptation
scheme was established: 4 iterations of plain LIN adaptation to
get a fairly good estimation of the feature transformation ma-
trix for each speaker. Next, these transformation matrices were
used to estimate a joint Gaussian prior distribution for the LIN
weights. After getting the prior density, the proposed fMAPLIN
adaptation is performed. The learning rate was set to 6.25e-05
for the adaptation iterations.

Fig. 4 shows that when no prior information is used (i.e.,
no regularization), LIN-based adaptation gets the best WER of
35.06% (4.28% relative WERR against the baseline DNN sys-

tem) at the 4th iteration. In fMAPLIN adaptation, it reaches the
best WER of 34.63% (5.43% WERR) at the 3th iteration. On
top of LIN adaptation, the proposed fMAPLIN approach is able
to provide a further 1.15% WERR.

6. Summary and Discussion
In this paper, a feature space maximum a posteriori linear re-
gression framework is proposed for DNN adaptation. Exper-
iments on the Switchboard task show that against the speaker
independent CD-DNN-HMM systems, LIN provides 4.28% rel-
ative word error reduction and the proposed fMAPLIN method
is able to provide further1.15% (totally 5.43%) relative WERR
on top of LIN. The experiment results exhibit the advantage of
MAP adaptation which incorporates essential prior information.
In our formulation the prior also serves as a regularization and
thus achieves conservative adaptation training.

Using the prior density form of the joint Gaussian distribu-
tion, we have a special case of the proposed framework with
the commonly used L2-regularized training scheme, when the
the joint Gaussian distribution is assumed to be standard (zero
mean and identity covariance matrix). Other forms of prior den-
sities, such as matrix variate normal density in [14], can also
be adopted. In [41, 42], we formulated the L2 and L1 reg-
ularization on transformation matrix as the ridge and LASSO
adaptation with enforced sparsity to handle limited adaptation
data. We will connect the proposed method with those spar-
sity enforcement methods. In this paper, we estimate the prior
density using the LIN transformation matrices obtained after
several steps of plain LIN adaptation. Other schemes for esti-
mating the prior density can also be employed, such as using
a reliable hold-out development set. The strategy of perform-
ing fMAPLIN adaptation can also be flexible, for example, in
a greedier way, the prior density can be re-estimated after each
iteration of fMAPLIN.
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