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Abstract

We consider the problem of learning sparsely used overaagictionaries, where each observa-
tion is a sparse combination of elements from an unknowncoveplete dictionary. We establish
exact recovery when the dictionary elements are mutuatighierent. Our method consists of a
clustering-based initialization step, which provides ppraximate estimate of the true dictionary
with guaranteed accuracy. This estimate is then refinedrvitegative algorithm with the follow-
ing alternating steps: 1) estimation of the dictionary €ioets for each observation through
minimization, given the dictionary estimate, and 2) estioraof the dictionary elements through
least squares, given the coefficient estimates. We ediahhs, under a set of sufficient conditions,
our method converges at a linear rate to the true dictionayeal as the true coefficients for each
observation.

Keywords: Dictionary learning, sparse coding, overcomplete digras, alternating minimiza-
tion, lasso.

1. Introduction

The problem of dictionary learning can be stated as follows: given vaensY € R4*", the task
is to decompose it as

Y = A*X*, Af e R X* e R™™. (1)
A* is referred to as thdictionary matrix and X ™ is the coefficientmatrix, and both are unknown.
We consider the challenging case when the number of dictionary elements Without further
constraints, the solution td) is not unique. A popular framework is to assume that the coefficient
matrix X* is sparse, and that each observafigre R? is a sparse combination of the dictionary
elements (i.e. columns of the dictionary matrix). This problem is knowspasse codingnd it
has been argued that sparse coding can provide a succinct repteseof the observed data, given
only unlabeled samples, se@l¢hausen and Field997 Lee et al, 2006. Through this lens of un-
supervised learning, dictionary learning has recently received ipedeattention from the learning
community, e.g.Mehta and Gray2013 Balasubramanian et ak013 Maurer et al.2013.
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Although several methods exist for sparse coding, most of them lachkigeasSpielman et al.
(2012 recently provided a method for guaranteed recovery when the dicyiomatrix A* € R**"
is a basis. This implies that the number of dictionary elements d, whered is the observed
dimension. However, in most settings, the dictionarpyercompletgr > d) as overcomplete
representations can provide greater flexibility in modeling as well as bettestreess to noise,
see [ewicki and Sejnowski200Q Bengio et al. 2012 Elad 2010 for details. In this paper, we
establishexactrecovery of sparsely used overcomplete dictionaries.

Summary of Results: We establish exact recovery of the dictionary and the coefficient matrix
under a set of natural conditions, viz., the dictionary satisfies a mutudiéneoce condition, each
observation consists efdictionary elements, and the coefficients are generated from a probabilistic
model with a uniformly random sparsity pattern. Our method for dictionaryniegrthat consists

of two phases. The initialization phase is a clustering-based proceduee@wvering the dictionary
with bounded error. In particular, we establish that the recovery efiibie initialization procedure

is bounded by a constant (dependent onlypras long as the sparsity satisfies: O (d'/4,r1/4).

The number of samples needed for this initialization procedure scates-aQ (r(logr + log d)).

The second stage of our method consists of an alternating minimization scheote out
puts successively improved estimates of the coefficients and the dictiomangkthlasso and least-
squares steps respectively. We establish convergence to the gldibalimpwhen the alternating
minimization is initialized with an approximate dictionary, with an error of at n@él/sz). Fur-
ther, whens = O (d1/6) and the number of samples satisfies- O (r?), we establish a linear rate
of convergence for the alternating minimization procedure to the true dicgionar

Thus, taken together, the two stages of our method yield exact recavioftothe dictionary
and the coefficient matrix, as long as the sparsity level satisfie® (d'/%, /%), and the number
of samplesis = O (r2). We believe that this is the first exact recovery result for dictionannlear
ing in the overcomplete setting. Note that our alternating minimization guaranteesseindent of
the initialization procedure, and it is entirely possible to use other initializatiocepres for the
alternating minimization algorithm. Indeed, the recent and concurrent wokkara et al.(2013
can be seen as another initialization procedure for alternating minimizationwewdiscuss these
implications in related work below.

Finally, we present numerical simulations confirming the linear rate of cgemee for the
alternating minimization procedure, and thereby demonstrating the extennsflggyond the ini-
tialization step. We also empirically test the recovery performance of theguoe, and find that it
succeeds withh = O () samples, and hence suggesting room for tightening our analysis in future
work.

Related Work:  There have been many works on dictionary learning both from a thedretica
and empirical viewpointHillar and Somme(2011) consider conditions for identifiability of sparse
coding. However, the number of samples required to establish identifiabilikp@ential inr for
the general case. Most closely related to our w&ielman et al(2012 provide exact recovery
results for ar?y; based method, but they focus on tiledercompletesetting, where- < d. We
consider the overcomplete setting where d.

There exist many heuristics for dictionary learning, which work well inrcpca in many con-
texts, but lack theoretical guarantees. For instahee,et al.(2009 propose an iterativé; and
£y optimization procedure similar to the the method of optimal directidfrsgan et al. 1999.
Another popular method is K-SVD, which iterates between estimatioX @&fnd given an esti-
mate of X, updates the dictionary estimate using a spectral procedure on the tes@itleer
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works establish local optimality of the true solutigd*, X*) for certain non-convex programs

in the noiselessJenatton et g/.201Q Geng et al. 2011 as well as noisy Jenatton et al.2012
Gribonval and Schnas2010, but do not prescribe algorithms which can reach the true solution
(A*, X*). Recent works \(ainsencher et gl.2011, Mehta and Gray2013 Maurer et al, 2012
Thiagarajan et 812013 provide generalization bounds for predictive sparse coding, witbaormut
putational considerations.

Finally, our results are closely related to the recent workraofra et al.(2013, carried out inde-
pendently and concurrently with our work. They provide an approximetevery result followed
by an alternating minimization procedure. A key distinction between our altegnatinimiza-
tion procedure as compared to theirs is that we usesdneesamples in each iteration, while they
require fresh samples for each iteration of alternating minimization. This enabl®o obtairex-
actrecovery of the dictionary when = Q(r?), whereas the error in their method is only below
exp (—O (n/r?)). Our algorithm is also robust in the sense that we do not expect to rettwve
complete support in the first iteration — we gradually recover more and maneets of the support
as our dictionary estimate gets better. On the other harata et al.(2013 employ different prob-
abilistic arguments allowing them to handle larger levels of sparsity, in termsanéld. Overall,
we believe the techniques of two papers can be combined to have a bettée samplexity with
respect to both sparsityand the desired accuracy parameter

The remainder of the paper is organized as follows. We present ouithigs next, followed
by our assumptions and the recovery results. We provide proof skdttBection 3, and simulation
results are described in Section 4. Detailed proofs can be found in therleaigions of the paper,
with the initialization technique idgarwal et al(20130 and the alternating minimization analysis
in Agarwal et al.(20133.

2. Algorithm

Notation:  Let [n] := {1,2,...,n}. For a vector or a matrixiW, we will use the shorthand
Supp(v) and Supp(W) to denote the set of non-zero entriesvoind IV respectively. Let|wl|
denote thes norm of vectorw, and similarly for a matriXV, ||W|| denotes its spectral norm. For
amatrix X, X*, X; andX;f denote the™ row, i"™ column andi, j)™ element ofX respectively. For
agraphG = (V, E), let N (i) denote set of neighbors for nodén G.

2.1. Initial Estimate of Dictionary Matrix

The first step is to obtain an initial estimateof the dictionary elements, and is given in Algoritdm
The estimated is then employed in alternating steps to estimate the coefficient matrix and re-
estimate the dictionary matrix respectively.

Given sampled’, we first construct the correlation graph,.(,), where the nodes are samples
{Y1,Ys,...Y,} and an edggY;,Y;) € Geor(p implies that|(Y;, Y;)| > p, for some threshold
p > 0 (Figurel shows an example of a typical correlation graph under our assumptideshen
determine a good subset of samples viausteringprocedure on the graph as follows: we first
randomly sample an edd&-, Y;-) € G.q.(,) and consider the intersection of the neighborhoods

of Y+ andY-, denoted by§. We further employ Uniquelntersection routine in Procedute de-
termine if S’ is a “good set” for estimating a dictionary element. This is done by ensuringhinaet
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Figure 1: Sample correlation gragh..» with nodes{Y}} and edgg;,Y;) s.t. |(Y;,Y;)| > p.
§1,§2 are the sets returned as true from Uniquelntersection procedureedfss la-
beled “good” above refers to good anchor pairs which satisfy unigeesiection in Al-
gorithm1,while the bad anchor pair does not satisfy the unique intersection. Goebdran
pairs lead to formation of sef§ and.S,.

S has a sufficient number of edden the correlation graph. For instance, the procedure will return
true when evaluated on the green edges lab@leald but false on the red edges labeRad Once

S is determined to be a good set, we then proceed by computing the empiricahnoeamatrixf

of the samples irb, and output its top singular vector as the estimate of a dictionary element. The
method is repeated over all edges in the correlation graph to ensure ttnat dittionary elements

get estimated with high probability.

At a high level, the above procedure aims to find large cliques in the correlgtaph. For
instance, in Figuré, the setsS;, S» are the sets which are returned as true by the Uniquelntersection
Procedure, when the node pairs labeled as “good” in the figure aleassenchor samplés- and
Y;«. On the other hand, note that a bad anchor pair which sits at the overtapltyle cliques
is not returned as true by the Uniquelntersection Procedure. Thugyrtiisdure yields subsets of
samples which correspond to large cliques in the correlation graph. @ude a subset is found,
Algorithm 1 computes SVD over the samples in such sets. As our proofs will demonsimgteiich
cquue§Z~ involves samples that all contairuaiguedictionary element in common, which can then
be recovered approximately by the subsequent SVD step.

2.2. Alternating Minimization

Once an initial estimate of the dictionary is obtained, we alternate between teedues, viz., a
sparse recovery step for estimating the coefficients given a dictiomahy Beast squares step for a
dictionary given the estimates of the coefficients (details are presentedanithlg 2).

The sparse recovery step of Algorith2ris based orf;-regularization, followed by threshold-
ing. The thresholding is required for us to guarantee that the suppat ser coefficient estimate
X (t) is asubsetof the true support with high probability. Once we have an estimate of the co-
efficients, the dictionary is re-estimated through least squares. Thalloadgiorithmic scheme is
popular for dictionary learning, and there are a number of variants dbak& method. For in-
stance, the/;-regularized problem in step 3 can also be replaced by other robusesgeovery

1. For convenience to avoid dependency issues, in Procéd\zmspartition§ into sets consisting of disjoint node pairs
and determine if there are sufficient number of node pairs which dgéiners.



LEARNING SPARSELY USED OVERCOMPLETEDICTIONARIES

Algorithm 1 InitDictionaryLearr{Y, eqict, p): Initial step for estimating dictionary elements.
Input: SamplesY” = [Yj|...|Y,]. Correlation thresholg. Desired separation parametgr.;
between recovered dictionary elements.
Output: Initial Dictionary EstimateA.
Construct correlation grapcorr(p) St (Y3, Y;) € Georr(p) When|(Y;, Y;)[ > p.
SetA « ().
for each edgeYi-, Yj:) € Geopr(p) dO
S%NGcor (Y )mNGLOrr(p)<Y “).
if Unlquelntersectlo@? Georr(p)) then
L« ZY 5 YY anda <+ u1, whereu; is top singular vector of..
if min,e 5 ||a - bH > 2€gict then
A+ Au{a}
end if
end if
end for
ReturnA

Procedure 1Uniquelntersectiofs, G): Determine if samples i have a unique intersection.
Input: SetS with 27 vectorsYy, . .. Yoz and graphG with Y7, . . ., Yo5 as nodes.
Output: Indicator variable UNIQUBENT
PartitionS into setsSy, . .., Sz such that eachS;| = 2.
if [{t|S; € G} > &7 then
UNIQUE.INT <— 1
else
UNIQUELINT «+ 0
end if
Return UNIQUEINT

procedures such as OMPropp and Gilbert2007) or GraDeS Garg and Khandeka2009. More
generally the exact lasso and least-squares steps may be replaced witbpitmization methods
for computational efficiency, e.gJénatton et al2010.

3. Guarantees

In this section, we provide our exact recovery result and also clepdyify all the required as-
sumptions orA* and X *. We then provide guarantees for each of the individual steps (initialization
step and alternating minimization steps) in SecBahand Sectior8.3, respectively. We provide a
brief sketch of our proof for each of the steps in SecBch

3.1. Assumptions and exact recovery result

We start by formally describing the assumptions needed for the main rga@sgeiit of this paper.

Assumptions on the dictionary:
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Algorithm 2 AltMinDict (Y, A(0), €p): Alternating minimization for dictionary learning
Input: SamplesY’, initial dictionary estimated(0), accuracy sequence and sparsity levek.
Thresholding functioV,(a) = a if |a] > p and0 o.w.
1. for iterationst = 0,1,2,...,7T —1do

2. for samples =1,2,...,ndo
3 X(t+1), = argmingepr-||z||;
such that]|Y; — A(t)z||, < €.

4: end for
5. Threshold:X (t + 1) = Tgse, (X (t + 1)).
6: EstimateA(t+ 1) =Y X(t+1)"
7. Normalize:A(t + 1), = %
8: end for
Output:  A(T)

(A1) Mutual Incoherence: Without loss of generality, assume that all the elements are normal-
ized: ||Af|| = 1, fori € [r]. We assume pairwise incoherence condition on the dictionary
elements, i.e., for some > 0, we havel(A], A7)| < % foralli,j € [r].

(A2) Bound on the Spectral Norm: The dictionary matrix has bounded spectral norm, i.e., for
somey; > 0, we havel| A*|| < /.

Assumptions on the coefficients:

(B1) Non-zero Entries in Coefficient Matrix: We assume that the non-zero entriesXof are
drawn i.i.d. from a zero-mean unit-variance distribution, and satisfy theaoitpa.s.:m <
| X5 < M, Vi, j.

(B2) Sparse Coefficient Matrix: The columns of coefficient matrix hagenon-zero entries which
are selected uniformly at random from the set okadized subsets df], i.e. | Supp(X})| =
s, Vi € [n].We requires to satisfy

A md/t fd mA\Y? 178 (M4
s < c1 min Mi\//_TO7 <M%]\44> , T (M) s

for some universal constant > 0. Constantsn, M are as specified above.

Assumption(A1) on normalization of dictionary elements is without loss of generality since

we can always rescale the dictionary elements and the correspondiffigieots and obtain the
same observations. However, the incoherence assumption is crucitdldisteng our guarantees.
In particular, incoherence also leads to a bound on the restricted isomepryriy (RIP) constant
(Rauhut 2010. The assumptiorfA2) provides a bound on the spectral normA4if. Note that
the incoherence and spectral assumptions are satisfied with high prob@hilitp.) when the
dictionary elements are randomly drawn from a mean-zero sub-gausstidioution.

Assumption(B1) imposes lower and upper bounds on the non-zero entries*of We use
the lower bound assumption oxi*(i, j) for simplicity of exposition, as explained in SectiBr,
we can remove this assumption as the thresholding coefficient in AlgoBttetreases with each
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iteration. Assumptiofi32) on sparsity in the coefficient matrix is crucial for identifiability of the
dictionary learning problem.
We now give the main result of this paper.

Theorem 1 (Exact recovery) Suppose assumptiofdl) — (A2) and (B1) — (B2) are satisfied.
Then there exists a universal constagsuch that, if

1. Sample Complexity: n > c3 rQ%—f log .,

2. Choice of Parameters for Initial Dictionary Estimation: inputsp andeg;.¢ to Algorithm1
are chosen such that

m?  s2M?pg 1 1 2 1
= — -2 50, and Z (s ) <A<
=" Vd ’ 2 <259252> Cdict = 4

3. Choice of Parameters for Alternating Minimization: Algorithm 2 uses a sequence of ac-
curacy parametersy = 1/2592s? and

25050/1153 < €t
€41 = —F—=€ < .
Vd 2

Then the alternating minimization procedure (AlgoritBnwhen seeded with Algorithfy outputs
A(t) at thet-th step { > 1) that satisfies the following with probability at leaist- 26 — 2n26:

(@)

min_[|zA4;(t) — Af|ly, < V2e, V1 <i <,
ze{—-1,1}
wheree, is as given in hypothesig) above. In particular, aftefl’ = O(log(<2)) steps of Algo-
rithm 2, we obtain:

min [|zA;(t) — Af|l, <€ V1 <i<rVe>0.
ze{-1,1}
Remarks: Note the sign ambiguity in recovery of the dictionary elements, since we charge
the signs of the dictionary elements and the coefficients to obtain the sameatioses.

Note that Theorem guarantees that we can recover the dictiondfyto an arbitrary precision
¢ (based on the number of iteratiofisof Algorithm 2), givenn = O (r%) samples. We contrast
this with the results ofArora et al.(2013, who also provide recovery guarantees to an arbitrary
accuracy, but only if the number of samples is allowed to increas®4s?log 1).

Establishing the above result requires two main ingredients, viz., guairsgtae error bound
for the initial dictionary estimation step, and proving a local convergersdtrior the alternating
minimization step, and obtaining a bound on tiasin of attractionfor the solution consisting of
the true dictionary and coefficient matrices. Below, we provide theseithdil/results explicitly.

3.2. Guarantees for the Initialization Step

We now give the result for approximate recovery of the dictionary in the iiziéigon step.

Theorem 2 (Approximate recovery of dictionary) Suppose the output of Algorithinis A(0).
Fix o € (0,1/20). Under assumptiongAl) — (A2) and(B1) — (B2), and if
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1. Sample Complexity: n > c3 -5 log %, for a large enough constart, andn?§ < 1,

a2
2. Choice of Parameters for Initial Dictionary Estimation: inputsp andeg;.; to Algorithm1
are chosen such that

1

2 2
> 0, and32$M</“‘1 M 7

2772 3
m 5°M=pg s 5 9
— ——tFt+—Fa+ =) <€t <
m? r s dict

PT YT TV Vs d NE

then, with probability greater thah — 2n26, there exists a permutation matriX such that:

2 2 3
€ = ?é%"}]{ze{ril}{l—i-l} |zAF — (PA(0))i]l3 < 328% <\5(% + % + 87 +a? + 2) .

Remarks: We note that the error in Theorethdoes not go down with the number of samples
n, since it depends on geometric properties of the dictionary, that arerdeést by the dimension
dependent factors such as- andd. However, the error probability does go down with the number
of samples, since the sample correlation graph becomes an increasinglgtagepresentative of
the population version.

For the approximate recovery of dictionary elements, it turns out that atlsgent requirement
on the sparsity level and the sample complexity suffices. Specifically, weepdace assumption

(B2) with the weaker conditioR < ¢; min <%%, ;%LML:, r1/4\/%), which suffices for the error
in Theorem2 to beo(1). The more stringent requirement on sparsity arises in Theargimce we
need the error from Theorefto be at mosO (1/s?) for the subsequent alternating minimization
steps to succeed. Note that the initialization step also has a milder requiremiget mummber of
samples, and does not need the conditior= O (r?log(1/4)). Thus, we obtain a near linear

sample complexity for our initialization method.

3.3. Guarantees for Alternating Minimization

We now prove a local convergence result for alternating minimization. \8fnas that we have
access to a good initial estimate of the dictionary:

(C1) Initial dictionary with guaranteed error bound: ~ We assume that we have access to an
initial dictionary estimated(0) such that

1
& = i AF — A < ——
G=max min 247 = AQO)ll; < 55555

Theorem 3 (Local linear convergence) Under assumption§A1)-(A2), (B1)-(B2) and (C1), if
1. Sample Complexity: n > ¢3 max (r?,7M?s) log %T,
2. Choice of Parameters for Alternating Minimization: Algorithm 2 uses a sequence of ac-
curacy parametersy = 1/2592s? and
o 25050“1836
t+1 \/g t-
Then, with probability at least — 24 the iterateA(t) of Algorithm2 satisfies for alk > 1:

min [|zA4;(t) — Af|l, < V2e, V1 <i <7
ze{-1,1}
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Remarks: The consequences of Theor@ware powerful combined with our Assumptigis2)
and the recurrence (since(B2) ensures that, forms a decreasing sequence). In particular, it is
implied that with high probability we obtain,

min A, = A%l < 027"

Given the above bound, we need at m@s@og2 ) in order to ensurdizA(T), — A%, < €
for all the dictionary elements = 1,2,...,r. In the convex optimization parlance, the result
demonstrates a local linear convergence of Algorithio the globally optimal solution under an
initialization condition. Another way of interpreting our result is that the glaipiimum has &asin
of attractionof size(2 (1/s?) for our alternating minimization procedure under these assumptions
(since we requiréy = O (1/5%)).

We note that Theorerf does not crucially rely on initialization specifically by the output of
Algorithm 1, and admits any other initialization satisfying Assumpt{6fi). In particular, some of
the assumptions ifB1) — (B2) are not essential for TheoreBnbut are onIy made for the overall

result of Theoreni. Indeed, it suffices to have a sparsity level satlsfyqng 1/3 for a universal

constant, > 0 (without any dependence of). The theorem also does not rer on lower bounded
entries, and only needsX*|| ., < M. We also recall that the lasso step in Algoritihcan be
replaced with a different robust sparse recovery procedure, wélitgtively similar results.

As remarked earlier, the recent workAifora et al.(2013 provides an alternative initialization
strategy for our alternating minimization procedure. Indeed, under ouplsacomplexity assump-
tion, their OVERLAPPINGAVERAGE method provides a solution witfh = O (s/4/r) assuming

s=0 (max(r2/5, ﬂ))

3.4. Overview of Proof

In this section, we first provide a proof for Theordmsing Theorem& and3. We then outline the
key steps in proving Theoren2sand3.

Proof of Theorem1 In order to establish the theorem, we just need to verify that all the precon-
ditions of Theorem® and3 are satisfied. We start by checking the preconditions of The@em
for which we need to specify a value of the constantWe will choosen = em?/(s~%/2M?) for

a small enough universal constantThis imposes the requirement that> c3r/(a?s) log(d/§).

Note that we have

r _r58M4 < r M? < r2 M?
a2s 2 mt ~2m?2 = 2Zm?’

where the first equality follows from the setting@fnd the first inequality comes from Assumption
(B2) on the sparsity level. This establishes the sample complexity requiremEmdmen?2. Based
on this setting ofx, we observe thata/s + o?s)M?/m? = O(s™*). Similarly, based on the
assumption (B2), it can be verified that all the remaining terms in the errochduaf Theorem2
areO(s™4), yieldinge} = O(s™).

Specifically, this ensures that Theor@maupplies a dictionaryl(0) satisfying Assumption (C1)
in Theoren®. Itis easily checked that using Assumption (B2)/%s < r2, so that the sample com-
plexity assumption in Theorefis also met. Consequently the result of Theof@will guarantee
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local linear convergence, establishing Theorems one final remark, it is also using Assumption
(B2) that we can verif25050p1 5% /v/d < 1/2, so thate;, 1 < €;/2, ensuring that we always reduce
our error by a factor of 2. This completes the proof.

Analysis of initial dictionary estimation:  The core intuitions for this step can be described in
terms of the relationships between the two graphs, viz., the coefficientiBgaaphB...¢ and the
sample correlation grapfi..,r, shown in Figure® andl respectively.B .. consists of dictionary
elements{ A} on one side and the samplg¥;} on the other. There is an edge betwégmand A’
iff X*. + 0, and\/5(Y;) denotes the neighborhood Bfin the graphBeoc.

Now given this bipartite grapB..., for each dictionary element;, consider a set of sampfes
which (pairwise) have only one dictionary elemetjtin common, and denote such a setdpy.e.
Ci = {Vi,k € S: Np(Yi) N N(Y)) = A%, Yk, € S}. Intuitively, the setsS constructed in
Algorithm 1 are our proxies fo€;. Indeed, the first part of the proof is to demonstrate that for a
random coefficient matriX *, adequately large cliqué$ exist in the graptB et -

Figure 2: Bipartite graptis mapping dictionary elements], . .. Ay to samples7,...Y,,. See text
for definition of C;.

Our subsequent analysis is broadly divided into two parts, viz., estalgithan (large) setsC; }
can be found efficiently, and that the dictionary elements can be estimatgdi@tg once such sets
{C;} are found. We start with a proposition that demonstrates the correcthssaedurel at
identifying these cliques. We use the notatlénig-intersect(Y;, Y;) to denote thak; andY; have
exactly one dictionary element in common.

Proposition 4 (Correctness of Procedurel) Suppos€Y;«, Yj«) € Geor(p)- SUppose that® <
r/1536 andy < 1/64. Then Algorithml returns the value oUnig-intersect(Y;«, Y;+) correctly
with probability at leastl — 2 exp(—+27n).

Given a large sample of elements with a unique dictionary element4$ayn common @ in
Algorithm 1), we next show that the subsequent SVD step recovers this dictioleainget approx-
imately. Intuitively this happens since each sanilec S containsAj with a coefficient at least

m (in absolute value). Hence the covariance matrias a larger component alody than other
dictionary elements, which leads to approximate recovery via the top singdeory

Proposition 5 (Accuracy of SVD) Consider anchor samplé$- andY« such thatUniq-intersect(Yj«, Y+)
in Algorithm 1 is satisfied, and wlog, leV/ z(Y;+) N N p(Yj+) = {A]}. Recall the definition of

2. Note that such a set need not be unique.

10
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in Algorithm 1, and further defind. := > Vi, andn = |S|. If @ is the top singular vector of
L, then there exists a universal constarsiuch that for any) < o < 1/20 we have:

32sM? [y p2 s3 a
, oA < 1 2
ety 76— il m? (\/% ¢ Tyt Vs)'

with probability at leastl — d exp (—can).

Note the ambiguity in signs above, since SVD cannot recover the sign of ghgrtgular vector.
The proposition essentially yields the Theorem since the error bouna &bwlentical to the bound
in Theorem2, and the result follows by lower bounding the number of samplés the above
proposition.

Analysis of alternating minimization:  Given an approximate estimate of the dictionary, we then
establish a local convergence result for alternating minimization.

For ease of notation, let us consider just one iteration of Algorizremd denoteX (¢t + 1) as
X, A(t + 1) asA and A(t) asA. Then we have the least-squares update

A—A =YX T - A" = A*X*XT - A* XXt = A*AXXT,

whereAX = X* — X. This means that we can understand the error in dictionary recovery by
the error in the least squares operatok X ™. In particular, we can further expand the error in a
columnp as: A, — A*, = A*,,(AXX*)]IZ + A*\p(AXX+);p, where the notatiolyp represents the
collection of all indices apart from. Hence we see two sources of error in our dictionary estimate.
The eIemen(AXX*)i causes the rescaling df, relative toA*,. However, this is a minor issue
since the renormalization would correct it.

More serious is the contribution from the off-diagonal terMsXXJF);p, which corrupt our
estimateA,, with other dictionary elements beyounti,. Indeed, a crucial argument in our proof is
controlling the contribution of these terms at an appropriately small level. derdo do that, we
start by controlling the magnitude &f X .

Lemma 6 (Error in sparse recovery) LetAX := X (t) — X*. Assume thaugs/+/d < 0.1 and
/3¢, < 0.1 Then, we hav8upp(AX) C Supp(X*) and the error bound AX ||, < 9se;.

This lemma is very uesful in our error analysis, since we establish that amix r1ia satisfying
Supp(W) C Supp(X*) has a good bound on its spectral norm (even if the entries depend on
A* X¥).

Lemma 7 With probability at least. — r exp (—<2), for everyr x n matrix W' s.t. Supp(W) C

Supp(X*), we have| IV, < 2{[ W/ =2,

A particular consequence of this lemma is that it guarantees the invertibility afatex X X 7, so
that the pseudo-inversg T is well-defined for subsequent least squares updates. Next, wanpres
the most crucial step which is controlling the off-diagonal te(ms‘(XJf)Z\]p.

Lemma 8 (Off-diagonal error bound) With probability at least —r exp (—-$%-)—rexp (— <),

rM?s
we have uniformly for eveny € [r] and everyAX such tha| AX ||, < g5

196852 || AX |

O R O
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The lemma uses the earlier two lemmas along with some other auxilliary results. Basm
lemmas, the proof of the main theorem follows with some algebra. Specificallgnjounit vector
w such thatw | A*,, we can bound the normalized inner prodget A,)/||A,||, which suffices
to obtain the result of the theorem.

4. Experiments

Error vs Iteration (d=100, r=200, s=3) Error vs N (d=100, r=100, s=3, n=C s r log(r))
©en=15srlogr 10°
#n=2srlogr
¥n=25srlogr
“+n=3srlogr
n=3.5srlogr

i

o o
o ®

10’5‘M

o
i

Error in A (log scale)
Error in A (log scale)
Prob. of success

Q
)

) - Initialization
© Alternating Minimization

4
5 g 107]15.5 2 3 3! 9.&@"‘%@5 3 35 4 45

25
C (n=C srlog(r)) n/r

4
:flerauon No.

(@) (b) (©)

Figure 3: (a): Average error after each step alternating minimization sté&ggofithm 2 on log-
scale. (b): Average error after the initialization procedure (Algorithnand after5
alternating minimization steps of Algorithgx (c): Sample complexity requirement of the
alternating minimization algorithm. For ease of experiments, we initialize the dictionary
using a random perturbation of the true dictionary rather than using Algodtivhich
should in fact give better initial point with smaller error.

Alternating minimization/descent approaches have been widely used forndigtitearning
and several existing works show effectiveness of these methodsabwaedd/synthetic datasets
(Balasubramanian et aR013 Thiagarajan et al2013. Hence, instead of replicating those results,
in this section we focus on illustrating the following three key properties ofabgorithms via
experiments in a controlled setting: a) Advantage of alternating minimization oeesloot ini-
tialization, b) linear convergence of alternating minimization, c) sample compleikéjternating
minimization.

Data generation model Each entry of the dictionary matriA is chosen i.i.d. from\V (0, 1).
Note that, random Gaussian matrices are known to satisfy incoherentigessykectral norm bound
(Vershynin 2010. The support of each column &f was chosen independently and uniformly from
the set of alls-subsets ofr|. Similarly, each non-zero element &fwas chosen independently from
the uniform distribution orf—2, —1] U [1, 2]. We use the GraDeS algorithm Gfrg and Khandekar
(2009 to solve the sparse recovery step, as it is faster than lasso. We measuiie the recovery

(Ai,AF)?
- ABIATTE
the third plot averages ovef runs. The implementation is in Matlab.

Linear convergence In the first set of experiments, we fixed= 100, » = 200 and measured
error after each step of our algorithm for increasing values. dfigure3 (a) plots error observed
after each iteration of alternating minimization; the first data point refers tatbeiecurred by the
initialization method. As expected due to Theorgmve observe a geometric decay in the error.

One-shot vs iterative algorithnt It is conceivable that the initialization procedure of Algo-
rithm 1 itself is sufficient to obtain an estimate of the dictionary upto reasonable auycuiof
Algorithm 2. Figure3(b) shows that this is not the case. The figure plots the error in recegery
the number of samples used for both Algoritinand Algorithm?2. It is clear that the recovery

of dictionary byerror(A) = max; 4/1 . The first two plots are for a typical run and

12
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error of the alternating minimization procedure is significantly smaller than ththeanhitialization
procedure. For example, far = 2.5sr logr with s = 3,7 = 200,d = 100, initialization incurs
error of .56 while alternating minimization incurs error aH~¢. Note however that the recovery
accuracy of the initialization procedure is non-trivial and also crucial écstitcess of alternating
minimization- a random vector iR¢ would give an error of — é = 0.99, where as the error after
initialization procedure is= 0.55.

Sample complexity Finally, we study sample complexity requirement of the alternating minimiza-
tion algorithm which isn = O (r2 log r) according to Theoreri, assuming good enough initial-
ization. Figure3(c) suggests that in fact onty () samples are sufficient for success of alternating
minimization. The figure plots the probability of success with respeét fior various values of-.

A trial is said to succeed if at the end 2if iterations, the error is smaller thad—%. Since we focus
only on the sample complexity of alternating minimization, we use a faster initializatomegure:
we initialize the dictionary by randomly perturbing the true dictionanA@8) = A* + Z, where
each element of is an/\/ (0, 0.5) random variable. Figur (c) shows that the success probability
transitions at nearly the same value for various values stiggesting that the sample complexity
of the alternating minimization procedure in this regime-ef O (d) is justO(r).

5. Conclusion

In this paper we present an exact recovery result for learning @reohand overcomplete dictionar-
ies with sparse coefficients. The first part of our result uses a mutielization procedure, which
uses a clustering-style algorithm to approximately recover the dictionary etentghe second step
of our approach is an alternating minimization procedure which is quite widely g practition-
ers for this problem already. We believe that our results are an importdriraely advance in the
understanding of this problem. There is an increasing interest on ssp@&iand unsupervised fea-
ture learning methods in machine learning. However, we have an extrendétyentary theoretical
understanding of these problems as compared to standard classificatammesfsion problems. A
systematic understanding of dictionary learning and related models (bathv&eul and unsuper-
vised) can help bridge this gap. Moreover, the applications of dictionaryileg in other areas such
as signal processing and coding make these results of broader ilgyeati machine learning.

We believe that our work suggests several avenues for futurercbsefle focus on the unsu-
pervised setting in this paper, but extensions to supervised setting woultebesting for future
work. Our theory also suggests room for strengthening the lasso stefunthier constraints on
the global structure of the iteratés(¢), which might lead to better recovery properties with milder
assumptions. Our simulations hint at the possibility of a better sample compleXigsatin cer-
tain regimes of parameters. Understanding these issues, as well assotttees noise robustness
remain important questions for further research in this area.
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