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Abstract
We consider the problem of learning sparsely used overcomplete dictionaries, where each observa-
tion is a sparse combination of elements from an unknown overcomplete dictionary. We establish
exact recovery when the dictionary elements are mutually incoherent. Our method consists of a
clustering-based initialization step, which provides an approximate estimate of the true dictionary
with guaranteed accuracy. This estimate is then refined via an iterative algorithm with the follow-
ing alternating steps: 1) estimation of the dictionary coefficients for each observation throughℓ1
minimization, given the dictionary estimate, and 2) estimation of the dictionary elements through
least squares, given the coefficient estimates. We establish that, under a set of sufficient conditions,
our method converges at a linear rate to the true dictionary as well as the true coefficients for each
observation.
Keywords: Dictionary learning, sparse coding, overcomplete dictionaries, alternating minimiza-
tion, lasso.

1. Introduction
The problem of dictionary learning can be stated as follows: given observationsY ∈ R

d×n, the task
is to decompose it as

Y = A∗X∗, A∗ ∈ R
d×r, X∗ ∈ R

r×n. (1)

A∗ is referred to as thedictionarymatrix andX∗ is thecoefficientmatrix, and both are unknown.
We consider the challenging case when the number of dictionary elementsr ≥ d. Without further
constraints, the solution to (1) is not unique. A popular framework is to assume that the coefficient
matrix X∗ is sparse, and that each observationYi ∈ R

d is a sparse combination of the dictionary
elements (i.e. columns of the dictionary matrix). This problem is known assparse codingand it
has been argued that sparse coding can provide a succinct representation of the observed data, given
only unlabeled samples, see (Olshausen and Field, 1997; Lee et al., 2006). Through this lens of un-
supervised learning, dictionary learning has recently received increased attention from the learning
community, e.g. (Mehta and Gray, 2013; Balasubramanian et al., 2013; Maurer et al., 2013).
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Although several methods exist for sparse coding, most of them lack guarantees.Spielman et al.
(2012) recently provided a method for guaranteed recovery when the dictionary matrixA∗ ∈ R

d×r

is a basis. This implies that the number of dictionary elementsr ≤ d, whered is the observed
dimension. However, in most settings, the dictionary isovercomplete(r ≫ d) as overcomplete
representations can provide greater flexibility in modeling as well as better robustness to noise,
see (Lewicki and Sejnowski, 2000; Bengio et al., 2012; Elad, 2010) for details. In this paper, we
establishexactrecovery of sparsely used overcomplete dictionaries.

Summary of Results: We establish exact recovery of the dictionary and the coefficient matrix
under a set of natural conditions, viz., the dictionary satisfies a mutual incoherence condition, each
observation consists ofs dictionary elements, and the coefficients are generated from a probabilistic
model with a uniformly random sparsity pattern. Our method for dictionary learning that consists
of two phases. The initialization phase is a clustering-based procedure for recovering the dictionary
with bounded error. In particular, we establish that the recovery errorof the initialization procedure
is bounded by a constant (dependent only ons), as long as the sparsity satisfiess = O

(
d1/4, r1/4

)
.

The number of samples needed for this initialization procedure scales asn = O (r(log r + log d)).
The second stage of our method consists of an alternating minimization scheme which out-

puts successively improved estimates of the coefficients and the dictionary through lasso and least-
squares steps respectively. We establish convergence to the global optimum when the alternating
minimization is initialized with an approximate dictionary, with an error of at mostO

(
1/s2

)
. Fur-

ther, whens = O
(
d1/6

)
and the number of samples satisfiesn = O

(
r2
)
, we establish a linear rate

of convergence for the alternating minimization procedure to the true dictionary.
Thus, taken together, the two stages of our method yield exact recovery of both the dictionary

and the coefficient matrix, as long as the sparsity level satisfiess = O
(
d1/9, r1/8

)
, and the number

of samples isn = O
(
r2
)
. We believe that this is the first exact recovery result for dictionary learn-

ing in the overcomplete setting. Note that our alternating minimization guarantee is independent of
the initialization procedure, and it is entirely possible to use other initialization procedures for the
alternating minimization algorithm. Indeed, the recent and concurrent work of Arora et al.(2013)
can be seen as another initialization procedure for alternating minimization, andwe discuss these
implications in related work below.

Finally, we present numerical simulations confirming the linear rate of convergence for the
alternating minimization procedure, and thereby demonstrating the extent of gains beyond the ini-
tialization step. We also empirically test the recovery performance of the procedure, and find that it
succeeds withn = O (r) samples, and hence suggesting room for tightening our analysis in future
work.

Related Work: There have been many works on dictionary learning both from a theoretical
and empirical viewpoint.Hillar and Sommer(2011) consider conditions for identifiability of sparse
coding. However, the number of samples required to establish identifiability is exponential inr for
the general case. Most closely related to our work,Spielman et al.(2012) provide exact recovery
results for anℓ1 based method, but they focus on theundercompletesetting, wherer ≤ d. We
consider the overcomplete setting wherer > d.

There exist many heuristics for dictionary learning, which work well in practice in many con-
texts, but lack theoretical guarantees. For instance,Lee et al.(2006) propose an iterativeℓ1 and
ℓ2 optimization procedure similar to the the method of optimal directions (Engan et al., 1999).
Another popular method is K-SVD, which iterates between estimation ofX and given an esti-
mate ofX, updates the dictionary estimate using a spectral procedure on the residual. Other
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works establish local optimality of the true solution(A∗, X∗) for certain non-convex programs
in the noiseless (Jenatton et al., 2010; Geng et al., 2011) as well as noisy (Jenatton et al., 2012;
Gribonval and Schnass, 2010), but do not prescribe algorithms which can reach the true solution
(A∗, X∗). Recent works (Vainsencher et al., 2011; Mehta and Gray, 2013; Maurer et al., 2012;
Thiagarajan et al., 2013) provide generalization bounds for predictive sparse coding, withoutcom-
putational considerations.

Finally, our results are closely related to the recent work ofArora et al.(2013), carried out inde-
pendently and concurrently with our work. They provide an approximate recovery result followed
by an alternating minimization procedure. A key distinction between our alternating minimiza-
tion procedure as compared to theirs is that we use thesamesamples in each iteration, while they
require fresh samples for each iteration of alternating minimization. This enables us to obtainex-
act recovery of the dictionary whenn = Ω(r2), whereas the error in their method is only below
exp

(
−O

(
n/r2

))
. Our algorithm is also robust in the sense that we do not expect to recover the

complete support in the first iteration – we gradually recover more and more elements of the support
as our dictionary estimate gets better. On the other hand,Arora et al.(2013) employ different prob-
abilistic arguments allowing them to handle larger levels of sparsity, in terms ofr andd. Overall,
we believe the techniques of two papers can be combined to have a better sample complexity with
respect to both sparsitys and the desired accuracy parameterǫ.

The remainder of the paper is organized as follows. We present our algorithms next, followed
by our assumptions and the recovery results. We provide proof sketches in Section 3, and simulation
results are described in Section 4. Detailed proofs can be found in the longer versions of the paper,
with the initialization technique inAgarwal et al.(2013b) and the alternating minimization analysis
in Agarwal et al.(2013a).

2. Algorithm

Notation: Let [n] := {1, 2, . . . , n}. For a vectorv or a matrixW , we will use the shorthand
Supp(v) andSupp(W ) to denote the set of non-zero entries ofv andW respectively. Let‖w‖
denote theℓ2 norm of vectorw, and similarly for a matrixW , ‖W‖ denotes its spectral norm. For
a matrixX, Xi, Xi andXi

j denote theith row, ith column and(i, j)th element ofX respectively. For
a graphG = (V,E), letNG(i) denote set of neighbors for nodei in G.

2.1. Initial Estimate of Dictionary Matrix

The first step is to obtain an initial estimatêA of the dictionary elements, and is given in Algorithm1.
The estimateÂ is then employed in alternating steps to estimate the coefficient matrix and re-
estimate the dictionary matrix respectively.

Given samplesY , we first construct the correlation graphGcorr(ρ), where the nodes are samples
{Y1, Y2, . . . Yn} and an edge(Yi, Yj) ∈ Gcorr(ρ) implies that|〈Yi, Yj〉| > ρ, for some threshold
ρ > 0 (Figure1 shows an example of a typical correlation graph under our assumptions).We then
determine a good subset of samples via aclusteringprocedure on the graph as follows: we first
randomly sample an edge(Yi∗ , Yj∗) ∈ Gcorr(ρ) and consider the intersection of the neighborhoods

of Yi∗ andYj∗ , denoted bŷS. We further employ UniqueIntersection routine in Procedure1 to de-
termine ifŜ is a “good set” for estimating a dictionary element. This is done by ensuring thatthe set
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Ŝ1 Ŝ2Bad

Good

Good

Figure 1: Sample correlation graphGcorr with nodes{Yk} and edge(Yi, Yj) s.t. |〈Yi, Yj〉| > ρ.
Ŝ1, Ŝ2 are the sets returned as true from UniqueIntersection procedure. Theedges la-
beled “good” above refers to good anchor pairs which satisfy unique intersection in Al-
gorithm1,while the bad anchor pair does not satisfy the unique intersection. Good anchor
pairs lead to formation of setŝS1 andŜ2.

Ŝ has a sufficient number of edges1 in the correlation graph. For instance, the procedure will return
true when evaluated on the green edges labeledGood, but false on the red edges labeledBad. Once
Ŝ is determined to be a good set, we then proceed by computing the empirical covariance matrixL̂
of the samples in̂S, and output its top singular vector as the estimate of a dictionary element. The
method is repeated over all edges in the correlation graph to ensure that allthe dictionary elements
get estimated with high probability.

At a high level, the above procedure aims to find large cliques in the correlation graph. For
instance, in Figure1, the setŝS1, Ŝ2 are the sets which are returned as true by the UniqueIntersection
Procedure, when the node pairs labeled as “good” in the figure are used as anchor samplesYi∗ and
Yj∗ . On the other hand, note that a bad anchor pair which sits at the overlap ofmultiple cliques
is not returned as true by the UniqueIntersection Procedure. Thus, thisprocedure yields subsets of
samples which correspond to large cliques in the correlation graph. Once,such a subset is found,
Algorithm 1 computes SVD over the samples in such sets. As our proofs will demonstrate,any such
cliqueŜi involves samples that all contain auniquedictionary element in common, which can then
be recovered approximately by the subsequent SVD step.

2.2. Alternating Minimization

Once an initial estimate of the dictionary is obtained, we alternate between two procedures, viz., a
sparse recovery step for estimating the coefficients given a dictionary, and a least squares step for a
dictionary given the estimates of the coefficients (details are presented in Algorithm2).

The sparse recovery step of Algorithm2 is based onℓ1-regularization, followed by threshold-
ing. The thresholding is required for us to guarantee that the support set of our coefficient estimate
X(t) is a subsetof the true support with high probability. Once we have an estimate of the co-
efficients, the dictionary is re-estimated through least squares. The overall algorithmic scheme is
popular for dictionary learning, and there are a number of variants of thebasic method. For in-
stance, theℓ1-regularized problem in step 3 can also be replaced by other robust sparse recovery

1. For convenience to avoid dependency issues, in Procedure1, we partitionŜ into sets consisting of disjoint node pairs
and determine if there are sufficient number of node pairs which are neighbors.
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Algorithm 1 InitDictionaryLearn(Y, ǫdict, ρ): Initial step for estimating dictionary elements.

Input: SamplesY = [Y1| . . . |Yn]. Correlation thresholdρ. Desired separation parameterǫdict
between recovered dictionary elements.

Output: Initial Dictionary EstimateĀ.
Construct correlation graphGcorr(ρ) s.t. (Yi, Yj) ∈ Gcorr(ρ) when|〈Yi, Yj〉| > ρ.
SetĀ← ∅.
for each edge(Yi∗ , Yj∗) ∈ Gcorr(ρ) do

Ŝ ← NGcorr(ρ)
(Yi∗) ∩ NGcorr(ρ)

(Yj∗).

if UniqueIntersection(Ŝ, Gcorr(ρ)) then

L̂←∑
Yi∈Ŝ YiY

⊤
i andā← u1, whereu1 is top singular vector of̂L.

if minb∈Ā ‖ā− b‖ > 2ǫdict then
Ā← Ā ∪ {ā}

end if
end if

end for
ReturnĀ

Procedure 1UniqueIntersection(S,G): Determine if samples inS have a unique intersection.
Input: SetS with 2n vectorsY1, . . . Y2n and graphG with Y1, . . . , Y2n as nodes.
Output: Indicator variable UNIQUEINT

PartitionS into setsS1, . . . , Sn such that each|St| = 2.
if |{t|St ∈ G}| > 61n

64 then
UNIQUE INT ← 1

else
UNIQUE INT ← 0

end if
Return UNIQUEINT

procedures such as OMP (Tropp and Gilbert, 2007) or GraDeS (Garg and Khandekar, 2009). More
generally the exact lasso and least-squares steps may be replaced with other optimization methods
for computational efficiency, e.g. (Jenatton et al., 2010).

3. Guarantees

In this section, we provide our exact recovery result and also clearly specify all the required as-
sumptions onA∗ andX∗. We then provide guarantees for each of the individual steps (initialization
step and alternating minimization steps) in Section3.2and Section3.3, respectively. We provide a
brief sketch of our proof for each of the steps in Section3.4.

3.1. Assumptions and exact recovery result

We start by formally describing the assumptions needed for the main recovery result of this paper.

Assumptions on the dictionary:
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Algorithm 2 AltMinDict (Y,A(0), ǫ0): Alternating minimization for dictionary learning

Input: SamplesY , initial dictionary estimateA(0), accuracy sequenceǫt and sparsity levels.
Thresholding functionTρ(a) = a if |a| > ρ and0 o.w.

1: for iterationst = 0, 1, 2, . . . , T − 1 do
2: for samplesi = 1, 2, . . . , n do
3: X(t+ 1)i = argminx∈Rr‖x‖1

such that,‖Yi −A(t)x‖2 ≤ ǫt.
4: end for
5: Threshold:X(t+ 1) = T9sǫt(X(t+ 1)).
6: EstimateA(t+ 1) = Y X(t+ 1)+

7: Normalize:A(t+ 1)i =
A(t+1)i

‖A(t+1)i‖2
8: end for

Output: A(T )

(A1) Mutual Incoherence: Without loss of generality, assume that all the elements are normal-
ized: ‖A∗

i ‖ = 1, for i ∈ [r]. We assume pairwise incoherence condition on the dictionary
elements, i.e., for someµ0 > 0, we have|〈A∗

i , A
∗
j 〉| < µ0√

d
for all i, j ∈ [r].

(A2) Bound on the Spectral Norm: The dictionary matrix has bounded spectral norm, i.e., for
someµ1 > 0, we have‖A∗‖ < µ1

√
r
d .

Assumptions on the coefficients:

(B1) Non-zero Entries in Coefficient Matrix: We assume that the non-zero entries ofX∗ are
drawn i.i.d. from a zero-mean unit-variance distribution, and satisfy the following a.s.:m ≤
|X∗i

j | ≤M, ∀i, j.

(B2) Sparse Coefficient Matrix: The columns of coefficient matrix haves non-zero entries which
are selected uniformly at random from the set of alls-sized subsets of[r], i.e. | Supp(X∗

i )| =
s, ∀ i ∈ [n].We requires to satisfy

s < c1min

(
m

M

d1/4√
µ0

,

(
d

µ2
1

m4

M4

)1/9

, r1/8
(m
M

)1/4
)
,

for some universal constantc1 > 0. Constantsm,M are as specified above.

Assumption(A1) on normalization of dictionary elements is without loss of generality since
we can always rescale the dictionary elements and the corresponding coefficients and obtain the
same observations. However, the incoherence assumption is crucial in establishing our guarantees.
In particular, incoherence also leads to a bound on the restricted isometry property (RIP) constant
(Rauhut, 2010). The assumption(A2) provides a bound on the spectral norm ofA∗. Note that
the incoherence and spectral assumptions are satisfied with high probability(w.h.p.) when the
dictionary elements are randomly drawn from a mean-zero sub-gaussian distribution.

Assumption(B1) imposes lower and upper bounds on the non-zero entries ofX∗. We use
the lower bound assumption onX∗(i, j) for simplicity of exposition, as explained in Section3.4,
we can remove this assumption as the thresholding coefficient in Algorithm2 decreases with each
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iteration. Assumption(B2) on sparsity in the coefficient matrix is crucial for identifiability of the
dictionary learning problem.

We now give the main result of this paper.

Theorem 1 (Exact recovery) Suppose assumptions(A1) − (A2) and(B1) − (B2) are satisfied.
Then there exists a universal constantc3 such that, if

1. Sample Complexity: n ≥ c3 r
2M2

m2 log 2r
δ ,

2. Choice of Parameters for Initial Dictionary Estimation: inputsρ andǫdict to Algorithm1
are chosen such that

ρ =
m2

2
− s2M2µ0√

d
> 0, and

1

2

(
1

2592s2

)2

< ǫ2dict <
1

4
,

3. Choice of Parameters for Alternating Minimization: Algorithm2 uses a sequence of ac-
curacy parametersǫ0 = 1/2592s2 and

ǫt+1 =
25050µ1s

3

√
d

ǫt ≤
ǫt
2
. (2)

Then the alternating minimization procedure (Algorithm2) when seeded with Algorithm1, outputs
A(t) at thet-th step (t ≥ 1) that satisfies the following with probability at least1− 2δ − 2n2δ:

min
z∈{−1,1}

‖zAi(t)−A∗
i ‖2 ≤

√
2ǫt, ∀1 ≤ i ≤ r,

whereǫt is as given in hypothesis(3) above. In particular, afterT = O(log( ǫ0ǫ )) steps of Algo-
rithm 2, we obtain:

min
z∈{−1,1}

‖zAi(t)−A∗
i ‖2 ≤ ǫ, ∀1 ≤ i ≤ r, ∀ǫ > 0.

Remarks: Note the sign ambiguity in recovery of the dictionary elements, since we can exchange
the signs of the dictionary elements and the coefficients to obtain the same observations.

Note that Theorem1 guarantees that we can recover the dictionaryA∗ to an arbitrary precision
ǫ (based on the number of iterationsT of Algorithm 2 ), givenn = O

(
r2
)

samples. We contrast
this with the results ofArora et al.(2013), who also provide recovery guarantees to an arbitrary
accuracyǫ, but only if the number of samples is allowed to increase asO

(
r2 log 1

ǫ

)
.

Establishing the above result requires two main ingredients, viz., guaranteeing an error bound
for the initial dictionary estimation step, and proving a local convergence result for the alternating
minimization step, and obtaining a bound on thebasin of attractionfor the solution consisting of
the true dictionary and coefficient matrices. Below, we provide these individual results explicitly.

3.2. Guarantees for the Initialization Step

We now give the result for approximate recovery of the dictionary in the initialization step.

Theorem 2 (Approximate recovery of dictionary) Suppose the output of Algorithm1 is A(0).
Fix α ∈ (0, 1/20). Under assumptions(A1)− (A2) and(B1)− (B2), and if
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1. Sample Complexity: n ≥ c3
r

α2s
log d

δ , for a large enough constantc3, andn2δ < 1,

2. Choice of Parameters for Initial Dictionary Estimation: inputsρ andǫdict to Algorithm1
are chosen such that

ρ =
m2

2
− s2M2µ0√

d
> 0, and

32sM2

m2

(
µ1√
ds

+
µ2
1

d
+

s3

r
+ α2 +

α√
s

)
< ǫ2dict <

1

4
,

then, with probability greater than1− 2n2δ, there exists a permutation matrixP such that:

ǫ2A := max
i∈[r]

min
z∈{−1,+1}

‖zA∗
i − (PA(0))i‖22 < 32s

M2

m2

(
µ1√
ds

+
µ2
1

d
+

s3

r
+ α2 +

α√
s

)
.

Remarks: We note that the error in Theorem2 does not go down with the number of samples
n, since it depends on geometric properties of the dictionary, that are determined by the dimension
dependent factors such ass, r andd. However, the error probability does go down with the number
of samples, since the sample correlation graph becomes an increasingly accurate representative of
the population version.

For the approximate recovery of dictionary elements, it turns out that a lessstringent requirement
on the sparsity level and the sample complexity suffices. Specifically, we canreplace assumption

(B2) with the weaker conditions < c1min
(

m
M

d1/4√
µ0
, dm4

µ2
1M

4 , r
1/4
√

m
M

)
, which suffices for the error

in Theorem2 to beo(1). The more stringent requirement on sparsity arises in Theorem1 since we
need the error from Theorem2 to be at mostO

(
1/s2

)
for the subsequent alternating minimization

steps to succeed. Note that the initialization step also has a milder requirement onthe number of
samples, and does not need the conditionn = O

(
r2 log(1/δ)

)
. Thus, we obtain a near linear

sample complexity for our initialization method.

3.3. Guarantees for Alternating Minimization

We now prove a local convergence result for alternating minimization. We assume that we have
access to a good initial estimate of the dictionary:

(C1) Initial dictionary with guaranteed error bound: We assume that we have access to an
initial dictionary estimateA(0) such that

ǫ̂0 := max
i∈[r]

min
z∈{−1,+1}

‖zA∗
i −A(0)i‖2 <

1

2592s2
.

Theorem 3 (Local linear convergence) Under assumptions(A1)-(A2), (B1)-(B2) and(C1), if

1. Sample Complexity: n ≥ c3 max
(
r2, rM2s

)
log 2r

δ ,

2. Choice of Parameters for Alternating Minimization: Algorithm2 uses a sequence of ac-
curacy parametersǫ0 = 1/2592s2 and

ǫt+1 =
25050µ1s

3

√
d

ǫt.

Then, with probability at least1− 2δ the iterateA(t) of Algorithm2 satisfies for allt ≥ 1:

min
z∈{−1,1}

‖zAi(t)−A∗
i ‖2 ≤

√
2ǫt, ∀ 1 ≤ i ≤ r.
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Remarks: The consequences of Theorem3 are powerful combined with our Assumption(B2)
and the recurrence2 (since(B2) ensures thatǫt forms a decreasing sequence). In particular, it is
implied that with high probability we obtain,

min
z∈{−1,1}

‖zA(t)i −A∗
i‖2 ≤ ǫ02

−t.

Given the above bound, we need at mostO
(
log2

ǫ0
ǫ

)
in order to ensure‖zA(T )i − A∗

i‖2 ≤ ǫ
for all the dictionary elementsi = 1, 2, . . . , r. In the convex optimization parlance, the result
demonstrates a local linear convergence of Algorithm2 to the globally optimal solution under an
initialization condition. Another way of interpreting our result is that the globaloptimum has abasin
of attractionof sizeΩ

(
1/s2

)
for our alternating minimization procedure under these assumptions

(since we requirêǫ0 = O
(
1/s2

)
).

We note that Theorem3 does not crucially rely on initialization specifically by the output of
Algorithm 1, and admits any other initialization satisfying Assumption(C1). In particular, some of
the assumptions in(B1) − (B2) are not essential for Theorem3, but are only made for the overall

result of Theorem1. Indeed, it suffices to have a sparsity level satisfyings < d1/6

c2µ
1/3
1

for a universal

constantc2 > 0 (without any dependence onr). The theorem also does not rely on lower bounded
entries, and only needs‖X∗‖∞ ≤ M . We also recall that the lasso step in Algorithm2 can be
replaced with a different robust sparse recovery procedure, with qualitatively similar results.

As remarked earlier, the recent work ofArora et al.(2013) provides an alternative initialization
strategy for our alternating minimization procedure. Indeed, under our sample complexity assump-
tion, their OVERLAPPINGAVERAGE method provides a solution witĥǫ0 = O (s/

√
r) assuming

s = O
(
max(r2/5,

√
d)
)

.

3.4. Overview of Proof

In this section, we first provide a proof for Theorem1 using Theorems2 and3. We then outline the
key steps in proving Theorems2 and3.

Proof of Theorem 1 In order to establish the theorem, we just need to verify that all the precon-
ditions of Theorems2 and3 are satisfied. We start by checking the preconditions of Theorem2,
for which we need to specify a value of the constantα. We will chooseα = cm2/(s−9/2M2) for
a small enough universal constantc. This imposes the requirement thatn ≥ c3r/(α

2s) log(d/δ).
Note that we have

r

α2s
=

rs8

c2
M4

m4
≤ r

c2
M2

m2
≤ r2

c2
M2

m2
,

where the first equality follows from the setting ofα and the first inequality comes from Assumption
(B2) on the sparsity level. This establishes the sample complexity requirement inTheorem2. Based
on this setting ofα, we observe that(α

√
s + α2s)M2/m2 = O(s−4). Similarly, based on the

assumption (B2), it can be verified that all the remaining terms in the error bound ǫ2A of Theorem2
areO(s−4), yieldingǫ2A = O(s−4).

Specifically, this ensures that Theorem2 supplies a dictionaryA(0) satisfying Assumption (C1)
in Theorem3. It is easily checked that using Assumption (B2),rM2s ≤ r2, so that the sample com-
plexity assumption in Theorem3 is also met. Consequently the result of Theorem3 will guarantee
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local linear convergence, establishing Theorem1. As one final remark, it is also using Assumption
(B2) that we can verify25050µ1s

3/
√
d ≤ 1/2, so thatǫt+1 ≤ ǫt/2, ensuring that we always reduce

our error by a factor of 2. This completes the proof.

Analysis of initial dictionary estimation: The core intuitions for this step can be described in
terms of the relationships between the two graphs, viz., the coefficient bipartite graphBcoeff and the
sample correlation graphGcorr, shown in Figures2 and1 respectively.Bcoeff consists of dictionary
elements{A∗

i } on one side and the samples{Yi} on the other. There is an edge betweenYi andA∗
j

iff X∗i
j 6= 0, andNB(Yi) denotes the neighborhood ofYi in the graphBcoeff .

Now given this bipartite graphBcoeff , for each dictionary elementA∗
i , consider a set of samples2

which (pairwise) have only one dictionary elementA∗
i in common, and denote such a set byCi i.e.

Ci := {Yk, k ∈ S : NB(Yk) ∩ NB(Yl) = A∗
i , ∀ k, l ∈ S}. Intuitively, the setŝS constructed in

Algorithm 1 are our proxies forCi. Indeed, the first part of the proof is to demonstrate that for a
random coefficient matrixX∗, adequately large cliquesCi exist in the graphBcoeff .

r

n

A∗
1 A∗

2 A∗
r

Y1 Y2 Yn

X∗

C1 Cr

Figure 2: Bipartite graphB mapping dictionary elementsA∗
1, . . . A

∗
r to samplesY1, . . . Yn. See text

for definition ofCi.

Our subsequent analysis is broadly divided into two parts, viz., establishing that (large) sets{Ci}
can be found efficiently, and that the dictionary elements can be estimated accurately once such sets
{Ci} are found. We start with a proposition that demonstrates the correctness of Procedure1 at
identifying these cliques. We use the notationUniq-intersect(Yi, Yj) to denote thatYi andYj have
exactly one dictionary element in common.

Proposition 4 (Correctness of Procedure1) Suppose(Yi∗ , Yj∗) ∈ Gcorr(ρ). Suppose thats3 ≤
r/1536 andγ ≤ 1/64. Then Algorithm1 returns the value ofUniq-intersect(Yi∗ , Yj∗) correctly
with probability at least1− 2 exp(−γ2n).
Given a large sample of elements with a unique dictionary element (sayA∗

1) in common (̂S in
Algorithm 1), we next show that the subsequent SVD step recovers this dictionary element approx-
imately. Intuitively this happens since each sampleYi ∈ Ŝ containsA∗

1 with a coefficient at least
m (in absolute value). Hence the covariance matrixL̂ has a larger component alongA∗

1 than other
dictionary elements, which leads to approximate recovery via the top singular vector.

Proposition 5 (Accuracy of SVD) Consider anchor samplesYi∗ andYj∗ such thatUniq-intersect(Yi∗ , Yj∗)
in Algorithm1 is satisfied, and wlog, letNB(Yi∗) ∩ NB(Yj∗) = {A∗

1}. Recall the definition of̂S

2. Note that such a set need not be unique.

10
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in Algorithm1, and further definêL :=
∑

i∈Ŝ YiY
⊤
i andn̂ := |Ŝ|. If â is the top singular vector of

L̂, then there exists a universal constantc such that for any0 < α < 1/20 we have:

min
z∈{−1,1}

‖zâ−A∗
1
‖2
2
<

32sM2

m2

(
µ1√
ds

+
µ2

1

d
+

s3

r
+ α2 +

α√
s

)
,

with probability at least1− d exp
(
−cα2n̂

)
.

Note the ambiguity in signs above, since SVD cannot recover the sign of the top singular vector.
The proposition essentially yields the Theorem since the error bound above is identical to the bound
in Theorem2, and the result follows by lower bounding the number of samplesn̂ in the above
proposition.

Analysis of alternating minimization: Given an approximate estimate of the dictionary, we then
establish a local convergence result for alternating minimization.

For ease of notation, let us consider just one iteration of Algorithm2 and denoteX(t + 1) as
X, A(t+ 1) asA andA(t) asÃ. Then we have the least-squares update

A−A∗ = Y X+ −A∗ = A∗X∗X+ −A∗XX+ = A∗△XX+,

where△X = X∗ − X. This means that we can understand the error in dictionary recovery by
the error in the least squares operator△XX+. In particular, we can further expand the error in a
columnp as:Ap−A∗

p = A∗
p(△XX+)

p
p+A∗

\p(△XX+)
\p
p , where the notation\p represents the

collection of all indices apart fromp. Hence we see two sources of error in our dictionary estimate.
The element(△XX+)

p
p causes the rescaling ofAp relative toA∗

p. However, this is a minor issue
since the renormalization would correct it.

More serious is the contribution from the off-diagonal terms(△XX+)
\p
p , which corrupt our

estimateAp with other dictionary elements beyondA∗
p. Indeed, a crucial argument in our proof is

controlling the contribution of these terms at an appropriately small level. In order to do that, we
start by controlling the magnitude of△X.

Lemma 6 (Error in sparse recovery) Let△X := X(t)−X∗. Assume that2µ0s/
√
d ≤ 0.1 and√

sǫt ≤ 0.1 Then, we haveSupp(△X) ⊆ Supp(X∗) and the error bound‖△X‖∞ ≤ 9sǫt.

This lemma is very uesful in our error analysis, since we establish that any matrix W satisfying
Supp(W ) ⊆ Supp(X∗) has a good bound on its spectral norm (even if the entries depend on
A∗, X∗).

Lemma 7 With probability at least1− r exp
(
−Cn

rs

)
, for everyr × n matrixW s.t. Supp(W ) ⊆

Supp(X∗), we have‖W‖2 ≤ 2‖W‖∞
√

s2n
r .

A particular consequence of this lemma is that it guarantees the invertibility of thematrixXX⊤, so
that the pseudo-inverseX+ is well-defined for subsequent least squares updates. Next, we present
the most crucial step which is controlling the off-diagonal terms(△XX+)

\p
p .

Lemma 8 (Off-diagonal error bound) With probability at least1−r exp
(
− Cn

rM2s

)
−r exp

(
−Cn

r2

)
,

we have uniformly for everyp ∈ [r] and every△X such that‖△X‖∞ < 1
288s .

∥∥∥
(
△XX+

)\p
p

∥∥∥
2
=
∥∥∥
(
X∗X+

)\p
p

∥∥∥
2
≤ 1968s2 ‖△X‖∞√

r
.
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The lemma uses the earlier two lemmas along with some other auxilliary results. Giventhese
lemmas, the proof of the main theorem follows with some algebra. Specifically, for any unit vector
w such thatw ⊥ A∗

p, we can bound the normalized inner product〈w,Ap〉/‖Ap‖2 which suffices
to obtain the result of the theorem.

4. Experiments
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Figure 3: (a): Average error after each step alternating minimization step ofAlgorithm 2 on log-
scale. (b): Average error after the initialization procedure (Algorithm1) and after5
alternating minimization steps of Algorithm2. (c): Sample complexity requirement of the
alternating minimization algorithm. For ease of experiments, we initialize the dictionary
using a random perturbation of the true dictionary rather than using Algorithm 1 which
should in fact give better initial point with smaller error.

Alternating minimization/descent approaches have been widely used for dictionary learning
and several existing works show effectiveness of these methods on real-world/synthetic datasets
(Balasubramanian et al., 2013; Thiagarajan et al., 2013). Hence, instead of replicating those results,
in this section we focus on illustrating the following three key properties of ouralgorithms via
experiments in a controlled setting: a) Advantage of alternating minimization over one-shot ini-
tialization, b) linear convergence of alternating minimization, c) sample complexity of alternating
minimization.

Data generation model: Each entry of the dictionary matrixA is chosen i.i.d. fromN (0, 1).
Note that, random Gaussian matrices are known to satisfy incoherence andthe spectral norm bound
(Vershynin, 2010). The support of each column ofX was chosen independently and uniformly from
the set of alls-subsets of[r]. Similarly, each non-zero element ofX was chosen independently from
the uniform distribution on[−2,−1]∪ [1, 2]. We use the GraDeS algorithm ofGarg and Khandekar
(2009) to solve the sparse recovery step, as it is faster than lasso. We measureerror in the recovery

of dictionary byerror(A) = maxi

√
1− 〈Ai,A∗

i 〉2
‖Ai‖22‖A∗

i ‖22
. The first two plots are for a typical run and

the third plot averages over10 runs. The implementation is in Matlab.
Linear convergence: In the first set of experiments, we fixedd = 100, r = 200 and measured

error after each step of our algorithm for increasing values ofn. Figure3 (a) plots error observed
after each iteration of alternating minimization; the first data point refers to the error incurred by the
initialization method. As expected due to Theorem3, we observe a geometric decay in the error.

One-shot vs iterative algorithm: It is conceivable that the initialization procedure of Algo-
rithm 1 itself is sufficient to obtain an estimate of the dictionary upto reasonable accuracy. of
Algorithm 2. Figure3(b) shows that this is not the case. The figure plots the error in recoveryvs
the number of samples used for both Algorithm1 and Algorithm2. It is clear that the recovery

12
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error of the alternating minimization procedure is significantly smaller than that ofthe initialization
procedure. For example, forn = 2.5sr log r with s = 3, r = 200, d = 100, initialization incurs
error of .56 while alternating minimization incurs error of10−6. Note however that the recovery
accuracy of the initialization procedure is non-trivial and also crucial to the success of alternating
minimization- a random vector inRd would give an error of1− 1

d = 0.99, where as the error after
initialization procedure is≈ 0.55.
Sample complexity: Finally, we study sample complexity requirement of the alternating minimiza-
tion algorithm which isn = O

(
r2 log r

)
according to Theorem3, assuming good enough initial-

ization. Figure3(c) suggests that in fact onlyO (r) samples are sufficient for success of alternating
minimization. The figure plots the probability of success with respect ton

r for various values ofr.
A trial is said to succeed if at the end of25 iterations, the error is smaller than10−6. Since we focus
only on the sample complexity of alternating minimization, we use a faster initialization procedure:
we initialize the dictionary by randomly perturbing the true dictionary asA(0) = A∗ + Z, where
each element ofZ is anN (0, 0.5) random variable. Figure3 (c) shows that the success probability
transitions at nearly the same value for various values ofr, suggesting that the sample complexity
of the alternating minimization procedure in this regime ofr = O (d) is justO(r).

5. Conclusion

In this paper we present an exact recovery result for learning incoherent and overcomplete dictionar-
ies with sparse coefficients. The first part of our result uses a novelinitialization procedure, which
uses a clustering-style algorithm to approximately recover the dictionary elements. The second step
of our approach is an alternating minimization procedure which is quite widely used by practition-
ers for this problem already. We believe that our results are an important and timely advance in the
understanding of this problem. There is an increasing interest on supervised and unsupervised fea-
ture learning methods in machine learning. However, we have an extremely rudimentary theoretical
understanding of these problems as compared to standard classification ofregression problems. A
systematic understanding of dictionary learning and related models (both supervised and unsuper-
vised) can help bridge this gap. Moreover, the applications of dictionary learning in other areas such
as signal processing and coding make these results of broader interestbeyond machine learning.

We believe that our work suggests several avenues for future research. We focus on the unsu-
pervised setting in this paper, but extensions to supervised setting would beinteresting for future
work. Our theory also suggests room for strengthening the lasso step withfurther constraints on
the global structure of the iteratesX(t), which might lead to better recovery properties with milder
assumptions. Our simulations hint at the possibility of a better sample complexity, atleast in cer-
tain regimes of parameters. Understanding these issues, as well as otherssuch as noise robustness
remain important questions for further research in this area.
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