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ABSTRACT
Enterprises are adapting large-scale data processing platforms,
such as Hadoop, to gain actionable insights from their “big data”.
Query optimization is still an open challenge in this environment
due to the volume and heterogeneity of data, comprising both struc-
tured and un/semi-structured datasets. Moreover, it has become
common practice to push business logic close to the data via user-
defined functions (UDFs), which are usually opaque to the opti-
mizer, further complicating cost-based optimization. As a result,
classical relational query optimization techniques do not fit well in
this setting, while at the same time, suboptimal query plans can be
disastrous with large datasets.

In this paper, we propose new techniques that take into account
UDFs and correlations between relations for optimizing queries
running on large scale clusters. We introduce “pilot runs”, which
execute part of the query over a sample of the data to estimate se-
lectivities, and employ a cost-based optimizer that uses these selec-
tivities to choose an initial query plan. Then, we follow a dynamic
optimization approach, in which plans evolve as parts of the queries
get executed. Our experimental results show that our techniques
produce plans that are at least as good as, and up to 2x (4x) better
for Jaql (Hive) than, the best hand-written left-deep query plans.

Categories and Subject Descriptors
H.4 [Database Management]: Systems

Keywords
query optimization; large-scale data platforms; adaptive query pro-
cessing; pilot runs

1. INTRODUCTION
Large scale data processing platforms, such as Hadoop, are being

extensively used by enterprises in order to store, manage, analyze
and exploit their “big data”. These large scale data platforms are
popular for various different types of applications, including text
∗Work done while the author was at IBM Research.
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analytics on unstructured data or log analysis over semi-structured
data, while they are also increasingly used for relational-like pro-
cessing with many joins over semi-structured and structured data,
which is the focus of this paper. In addition to the large data vol-
umes, there are other important characteristics that distinguish this
environment from traditional relational query processing. First,
nested data structures, such as structs, maps, and arrays, are perva-
sive as users are commonly storing data in denormalized form. Sec-
ond, users push more complex business logic closer to the data, re-
sulting in heavy usage of user-defined functions (UDFs) in queries.

High-level declarative languages for large scale data platforms,
such as Hive [36], Pig [18] and Jaql [5], gained popularity due
to their ease of use, and increased user productivity. As with any
declarative query language, query optimization is a key challenge,
as the system has to decide in which order to execute various query
operators, as well as which implementation method to use for each
operator. Join is a particularly important operator with alternative
implementations that have very different performance characteris-
tics depending on cardinalities of inputs and output. As a result,
many techniques of relational query optimization, such as selec-
tivity and cardinality estimation, join method selection, and join
ordering are still applicable to the new large scale data languages.

Obviously, not all aspects of traditional query optimization fit
well in these new environments. Traditional query optimizers rely
on data statistics to estimate predicate selectivity and result cardi-
nality, and use these estimates to decide on join method and order-
ing. Even in the relational setting, optimizers are plagued with in-
correct cardinality estimates, mainly due to undetected data corre-
lations, existence of UDFs and of external variables (in parameter-
ized queries). Various solutions have been proposed to capture data
correlations, such as CORDS [26], but these require very detailed
and targeted statistics. Collecting such statistics on all datasets may
be prohibitively expensive in large clusters.

In this paper, we address the query optimization problem for
large scale data platforms, by continuously collecting statistics dur-
ing query execution, and feeding these statistics to a cost-based
query optimizer to decide the next query sub-expression to execute.
We have implemented our techniques in the context of Jaql. When
a query is submitted to Jaql, we first identify operations that are
local to a table1, such as selections, projections, and UDFs. We uti-
lize “pilot runs” to execute these local plans over a sample of each
base dataset, until enough results are produced to collect meaning-
ful statistics. Then, we present each local sub-plan, along with the
collected statistics and the corresponding join graph to a simple

1An operation is local to a table if it only refers to attributes from
that table.
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cost-based optimizer to decide the initial join order. Our optimizer,
built on top of the open-source extensible Columbia optimizer [12],
estimates join result cardinalities using textbook techniques, how-
ever, it operates on very accurate input cardinality estimates for
local sub-queries, as these are collected either during pilot runs or
previous execution steps. Our optimizer chooses the appropriate
join methods and order, as well as marks the joins that can be ex-
ecuted together in the same MapReduce job. We provide this join
order as input to the Jaql compiler, which generates the MapRe-
duce jobs to execute the query plan. As the query gets executed,
we collect statistics on the intermediate results, which we can use
to re-optimize the query, if needed. In our current implementation,
we re-optimize after each job, but the infrastructure is rich enough
to accommodate more complex conditions. For example, one can
decide to re-optimize if the difference between the observed result
cardinality and the estimated one exceeds a certain threshold.

There has been a lot of work on adaptive query processing [15,
28, 31, 22] to address the shortcomings of traditional optimizers.
These adaptive techniques use various run-time solutions that try
to adjust the query plan dynamically, similar to ours. However,
these works did not consider pilot runs, which provide the means
to accurately estimate the result sizes when there are UDFs, and
correlations between different attributes in the query. Although
pilot runs introduce overhead, they amortize it by avoiding really
bad plan choices. Earlier approaches on adaptive query processing
can also benefit from pilot runs, by avoiding mistakes in the first
optimization decisions. Further, in a relational setting queries are
mostly pipelined and it has been a challenge to identify the correct
re-optimization points. On the contrary, in a distributed large scale
cluster, checkpoints are typically present, since the system has to
account for failure recovery; restarting a long running query may
not be a viable option. These checkpoints also enable the system to
better utilize resources, as it greatly simplifies load balancing.

In our setting, we exploit the fact that MapReduce jobs always
materialize their output and use them as natural re-optimization
points, but our techniques are not restricted to MapReduce systems.
Pilot runs are applicable to any massively parallel data processing
system, provided that the query needs to scan large enough data to
amortize its overhead. We believe that intermediate result mate-
rialization, which provides us with the opportunity to re-optimize
a query, will always be a feature of many large scale data plat-
forms designed for long running queries (e.g., Spark, Tez), not only
MapReduce. It is also important to note that although our dynamic
techniques are developed within the context of Jaql, they are also
applicable to other large-scale query languages, such as Hive.

Our experimental results show that our techniques produce plans
that are at least as good as, and often even better than, the best hand-
written left-deep query plans. They are also most of the time better
than the plans produced by a state-of-the-art relational query op-
timizer for a shared-nothing DBMS. Pilot runs introduce a small
overhead, but provide accurate result size estimation, especially
when the query contains UDFs and data correlations. Accurate re-
sult size estimation not only leads to better execution plans, but also
prevents the optimizer from making fatal mistakes. Re-optimizing
the query as it executes proves to be very beneficial as we observed
many plan changes in some queries (see Figure 2).

In this paper, we make the following contributions:

• We propose pilot runs, which execute local plans over a sam-
ple of the base data, and provide accurate result size estimation,
which is essential to choose the right join method and order.

• We utilize a traditional query optimizer to determine the join
methods and global join ordering. The optimizer is provided

with the statistics of local plans, as if they are base tables, and
does not estimate local predicate selectivities.

• We collect result statistics, which can be used to re-optimize the
remaining of the query and hence provide a means to adapt the
execution plans at runtime.

• Our optimizer produces both left-deep and bushy plans. We
exploit bushy plans and explore novel strategies for scheduling
multiple jobs in parallel to run in a distributed environment.

• We provide detailed experiments, where we assess the overhead
of our techniques, study different execution strategies for bushy
plans, and demonstrate that pilot runs and re-optimization can be
very beneficial for Jaql, but also for other systems such as Hive.

The paper is organized as follows. Section 2 provides an
overview of Jaql, whereas Section 3 describes the architecture of
our system. Section 4 presents the pilot runs, and Section 5 de-
tails the dynamic re-optimization of execution plans. In Section 6
we present our experimental results, in Section 7 we review related
work, then we conclude.

2. JAQL OVERVIEW AND QUERY EXE-
CUTION

In this section we provide a general overview of Jaql [5], and
describe its join processing capabilities.

2.1 Jaql Overview
Jaql is a system for analyzing large semistructured datasets in

parallel using Hadoop’s2 MapReduce framework [14], and is part
of IBM BigInsights3. It shares common features with other data
processing languages that were also developed for scale-out archi-
tectures, such as Hive [36], Pig [18] and DryadLINQ [41]. These
common features make the techniques developed in this paper ap-
plicable to those systems with slight modifications, as will be dis-
cussed in Section 3. Jaql consists of a declarative scripting lan-
guage, a compiler, and a runtime component for Hadoop, which
we briefly present below.

Query language Each Jaql script consists of a set of statements,
which are either variable assignments or expressions to be evalu-
ated. Each expression gets an input and produces an output, which
can then feed another expression. Jaql supports all relational ex-
pressions, such as filter, join, sort, and group by, as well as other
expressions, such as split and tee. It also supports a SQL dialect
close to SQL-92; SQL queries submitted to Jaql are translated to
a Jaql script by the compiler. Finally, users can provide their own
UDFs, either as Jaql scripts or in an external language (e.g., Java).

Compiler Jaql’s compiler includes a heuristics-based rewrite en-
gine that applies a set of transformation rules in order to optimize
the input scripts. Such rules include simplification of the script,
translation of declarative expressions (e.g., joins) to low-level oper-
ators, various database-style optimizations (e.g., filter push-down),
etc. One of the most important rules is the toMapReduce rule that,
whenever possible, transforms an expression to a mapReduce func-
tion that can then be evaluated using the MapReduce framework.

Runtime The Jaql interpreter evaluates the script locally on the
computer that compiled the script, but spawns interpreters on re-
mote machines using MapReduce, in order to parallelize the exe-
cution. Expressions that cannot be parallelized (due to the nature
of the script or the limitations of the compiler) are executed locally.
2http://hadoop.apache.org
3www.ibm.com/software/data/infosphere/biginsights
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2.2 Join Processing in Jaql
In this section, we discuss the join algorithms and join optimiza-

tions supported by Jaql, as well as their limitations.

2.2.1 Join Algorithms
There are three possible join strategies in any distributed query

processing system regarding data movement: shuffle none, one
or both join tables. Shared-nothing databases implement all three
strategies [16, 4], whereas most query processors over large scale
data platforms implement only the second and third option (broad-
cast and repartition join, respectively) [7]. Jaql currently imple-
ments a flavor of both the repartition and broadcast joins.

Repartition join This join is implemented in one MapReduce job,
comprising a map and a reduce phase. Every map task operates
over a split from one of the two input tables, tags each record with
the table name, and then outputs the extracted join key value and
the tagged record as a (key, value) pair. The outputs are partitioned,
merged and sorted by the MapReduce framework, and all records
from both tables having the same join key are sent to the same
reducer. At every reduce task, for each join key, the corresponding
records are separated in two sets according to the table they belong,
and then a cartesian product is performed between the two sets.

Broadcast join This join method is implemented in a map-only job
and can be used if one of the two input tables fits in memory. Let
S be the small table and R be the bigger one. In that case, S is
broadcasted to all mappers, and a memory hash join is executed
between S and each split of R. Thus, S is the build input and
each split of R the probe input of the hash join. In the current Jaql
implementation spilling to disk is not supported. Hence, if the build
side of the join does not fit in memory (e.g., after the application of
a UDF that produces more tuples than its input), the execution of
the join, and hence the query fails due to an out of memory error.

As expected, the broadcast join is faster, because it avoids sorting
the small relation during the map phase, and, most importantly,
avoids reshuffling the big relation over the network.

2.2.2 Join Optimizations
The default join algorithm in Jaql is the repartition join. Hence,

the compiler translates each join operator to a repartition join,
which is executed as a single MapReduce job, that is, an n-way join
is translated to n MapReduce jobs. To improve the performance of
the join expressions, the user can provide a hint stating a relation
is small. In this case, the compiler creates a broadcast join having
the small relation at the build side of the join. Moreover, Jaql uses
a rewrite rule that checks the file size of the two join inputs, and, in
case one of them fits in memory, produces a broadcast join plan.

In case of n-way joins, the compiler is capable of producing only
left-deep plans. The exact order of the joins depends on the order
of the relations in the FROM clause of the query. In particular, the
relations are picked in the order they appear in the FROM clause,
as long as this does not lead to cartesian products; in that case, a
relation that avoids the creation of cartesian products is picked first.

Finally, when there are more than one consecutive broadcast
joins, and the relations that appear in the build side of these joins
simultaneously fit in memory, the join expressions can be chained
in order to be executed in a single map job in a pipelined way.

2.2.3 Limitations of Current Join Processing
The current join processing in Jaql has several limitations:
• There is no selectivity estimation for the predicates and UDFs.

As a consequence, the application of broadcast joins is limited
only to relations that already fit in memory. Thus, we are missing
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Figure 1: System Architecture.

opportunities for broadcast joins in case of relations that could fit
in memory after the application of a selective filter. On the other
hand, even in cases when relations fit in memory, a UDF could
increase the size of the relation, hence we have to be conservative
in the application of broadcast joins.
• There is no cost-based join enumeration. Therefore, the perfor-

mance of a query heavily relies on the way it has been written by
the user (order of relations in the FROM clause).
• Even if the order of relations in the FROM clause is optimal, Jaql

only produces left-deep join plans. In the traditional (central-
ized) relational setting, these plans are usually close to the opti-
mal ones, since they maximize the pipelining of operators. In the
MapReduce setting though, where the result of a job is always
materialized to disk and pipelining is not useful, the basic opti-
mization goal is to reduce the size of intermediate results. To this
regard, bushy plans may be much more efficient, while they also
allow executing parts of the plan in parallel. The importance of
bushy plans is also pointed out in [39].

The above limitations are present in most existing large scale
data platforms. Thus, the techniques presented in this work would
also be beneficial for those systems. We discuss how our techniques
can be extended to other systems in Section 3, while in Section 6.6
we experimentally show how Hive benefits from our techniques.

3. SYSTEM ARCHITECTURE
In this section we introduce DYNO, a system we built for opti-

mizing complex queries over Hadoop data. The architecture of the
system is shown in Figure 1. The dashed lines denote actions that
are performed only once, whereas the solid lines (associated with
primed numbers, 4’-7’) refer to repeated actions. When a query ar-
rives in the system (step 1), the Jaql compiler is invoked and some
logical heuristic rules, such as filter push-down, are applied [34]
(step 2). Once this is done, multiple join query blocks are created,
which are expressions containing n-way joins, filters and scan op-
erators. Join blocks are separated from each other by aggregates,
grouping and ordering operators. Before further optimizing and ex-
ecuting each join block, we first perform the pilot runs (step 3) in
order to collect statistics that take complex predicates and UDFs
into account. Hereafter, we will refer to such predicates/UDFs that
are applied right after a scan, simply as local predicates, distin-
guishing them from the non-local ones that are applied on results
of joins and cannot be pushed-down to the leaves of the operator
tree. For each scan in the join block, along with its local predi-
cates (pushed down by the compiler), we execute the correspond-
ing expression over a sample of the data and collect statistics. More
details about this process are given in Section 4.

After the pilot runs, in each join block we consolidate the scans
with their local predicates, since the pilot runs statistics capture the
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Figure 2: Execution plans for TPC-H query Q8′.

local predicate selectivities. Then, we feed each such join block
and the collected statistics to our cost-based optimizer, which now
only needs to focus on join enumeration. The best plan output by
the optimizer is then passed to the Jaql compiler that translates it
to a set of MapReduce jobs (step 5’). Note, however, that instead
of executing all the MapReduce jobs at once, we execute only a
subset of them (step 6’). The exact subset and the way the jobs
will be executed (possibly in parallel) is decided by the compiler.
During execution, we collect join column statistics over the output
of the jobs and update the existing statistics. Our optimizer is then
re-invoked over the part of the join block that was not yet executed
(coming back to step 4’). If the statistics of the previous step were
not accurate, a new plan, different than the previous one, may be
selected by the optimizer. This iterative process is continued until
the whole plan gets executed, and is detailed in Section 5. Finally,
the result is returned to the client that posed the query (step 8).

As an example, consider TPC-H [37] query Q8, which includes
a 7-way join block and to which we added a filtering UDF on the
result of the join between orders and customer tables. On the
lefthand side of Figure 2 we depict the plan that we obtained from
a state-of-the-art relational optimizer for a shared nothing DBMS4.
In the same figure, we also give the plans we obtained from our op-
timizer as the execution of Q8′ proceeds. In particular, plan1 is the
plan we got after the pilot runs. Then, during execution, we have
three re-optimization points that in turn produce plan2−4. Note that
the relational optimizer’s plan will be executed with one map-only
and four map-reduce jobs. On the other hand, plan1 includes four
map-reduce jobs, and after re-optimizations Q8′ finally gets exe-
cuted in three map-reduce and one map-only job.

Applicability to other systems Any query processing system over
a large scale data platform that supports the typical join and group-
by operators together with UDFs can incorporate our techniques
with the following changes:
• Instrument the runtime (e.g., the map and reduce tasks) to collect

statistics over attributes.
• Implement the pilot runs by executing the scans together with

their local predicates over a sample of the data.
• Our cost-based optimizer for join enumeration can be used as

is, since similar join algorithms are supported by most systems,
such as Hive and Pig (as discussed in Section 2.2).
• Create a new dynamic join operator that calls the optimizer at

runtime to re-optimize the remainder of the query.
• Identify re-optimization points in the plan. If the query al-

ready contains checkpoints (e.g., MapReduce job boundaries,
Tez stages, explicit checkpoints in Spark), those can be used.

4For readability, in both Figures 2 and 3, we use the initials of the
TPC-H tables, e.g., p denotes part and nx denotes nation.

Otherwise, strategies similar to the ones proposed for the re-
lational context [28, 2, 31, 22] can be used to identify the re-
optimization points.

4. PILOT RUNS
In this section, we describe the pilot runs, which we use to col-

lect the initial statistics for a given query q, taking into account the
predicates and UDFs that participate in q.

4.1 The PILR Algorithm
Most traditional relational optimizers rely on statistics for es-

timating the selectivity of operators, costing alternative execution
plans and finally choosing the minimum-cost plan. Some of these
optimizers use very detailed data distribution statistics and hence
can accurately estimate the selectivity of simple predicates. When
multiple predicates are applied on a relation, they usually rely on
the independence assumption and simply multiply the selectivities
of each simple predicate to compute the final selectivity [35]. How-
ever, the independence assumption does not hold when there are
correlations between the attributes used in predicates, and sim-
ply multiplying the selectivity of individual predicates leads to
overly underestimated result sizes. Underestimation can result in
extremely poorly performing query plans, as the optimizer will
choose operators that will work well when its operands fit in mem-
ory, such as sort-merge-join, or broadcast join. Incorrect selectivity
estimation is exacerbated in the presence of more complex predi-
cates or UDFs, or when the predicates involve complex data types,
such as arrays and structs.

As an example, consider the following queryQ1 that asks for the
names of the restaurants in California with zip code 94301, having
positive reviews (a UDF is used for the sentiment analysis of the re-
view). Each restaurant can have multiple addresses (thus the addr
is an array type), but we are interested only in the primary address.
The reviews are joined with tweets and a second UDF (checkid)
is applied to verify the identity of the users:
SELECT rs.name

FROM restaurant rs, review rv, tweet t

WHERE rs.id=rv.rsid AND rv.tid=t.id

AND rs.addr[0].zip=94301 AND rs.addr[0].state=CA

AND sentanalysis(rv)=positive AND checkid(rv,t)

First, notice the correlation between the two adress predicates: the
predicate on the state is redundant, since all restaurants with the
given zip code are in CA. In this case, even if the optimizer could
deal with the array datatype, the independence assumption would
lead to the wrong selectivity estimation. Moreover, the selectivity
of the two UDFs cannot be computed by a relational optimizer.

To account for such non-trivial predicates/UDFs in the queries,
we employ the pilot runs. The basic idea is to apply the pred-
icates/UDFs of each relation R over a sample of R and collect
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Algorithm 1: Pilot Runs Algorithm (PILR)
Input : query q, |R| relations in q, dataset D, number of records k to

collect statistics per relation, m map slots in the cluster
Output: Statistics over a sample of the data after applying local

predicates and UDFs.
1 queryExpr ← jaqlParse(q)
// Push down predicates/UDFs

2 queryExpr ← filterPushDown(queryExpr)
// Get table scans with predicates/UDFs

3 leafExprs← getLeafExprs(queryP lan)
4 foreach lexpR ∈ leafExprs do
5 if lexpR 6∈ Statistics then
6 mapJob← toMapReduce(lexprR)

// Pick m/|R| random splits for the
corresponding relation

7 splits← reservoirSample(input(mapJob),m/|R|)
// Collect statistics over k records

8 stats← execute(mapJob, splits, k)
9 addToStatistics(stats)

statistics based on the output. The corresponding algorithm (PILR)
is given in Algorithm 1. Given a query q, with R being the set
of relations in q, we first use the Jaql compiler to parse the query
and perform all the possible predicate/UDF push-downs (lines 1-
2). Then, we collect the leaf expressions of q, that is, the scans for
each relation in R together with the predicates/UDFs that appear
immediately above the scans (line 2). Clearly, there is one leaf ex-
pression for each relation R ∈ R, denoted lexpR. Subsequently,
we transform each lexpR to a map-only job and execute it over a
sample ofR until k tuples have been output by the filter or we have
finished scanning R (lines 6-8). More details about the sampling
process and the execution of the pilot runs (lines 7-8) are provided
in Section 4.2. The statistics that are collected during the execu-
tion of lexpR are added to the statistics metastore. In this paper,
we store the statistics in a file, but we can employ any persistent
storage, including key-value stores, and relational DBMSs.

Coming back to the above query Q1, three pilot runs need to
be executed: one for relation rs (applying the two predicates on
addr[0]), one for rv (applying the sentanalysisUDF), and one
for t (with no predicates). As a second example, consider TPC-H
query Q9, which includes a 5-way star join. We have added various
UDFs to it, so that all dimensions fit in memory. On the lefthand
side of Figure 3 we give the plan that is picked by a state-of-the-
art relational optimizer for a shared nothing DBMS. The optimizer
cannot estimate the selectivity of predicates involving UDFs and
produces a plan where all joins are expensive repartition joins. On
the other hand, after performing the pilot runs and feeding our opti-
mizer with the updated statistics, we get a plan having only broad-
cast joins (righthand side of figure).

Reusability of statistics To avoid performing unnecessary pilot
runs in cases when we have already collected statistics for a spe-
cific relationR with the same predicates, we associate the statistics
in the metastore with an expression signature (corresponding to the
leaf expression lexpR). Thus, before executing the pilot runs, we
look-up for existing statistics using the corresponding signature and
perform the run only in the absence of statistics (line 5). This is
useful in cases of recurring queries, or when the same relation and
predicates appear in different queries.

Moreover, note that if there are no predicates/UDFs participating
in a leaf expression lexpR and there are already available statistics
for relation R, we can avoid executing lexpR and instead use the
existing statistics for R. For instance, in Q1 above, since no predi-
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Figure 3: Execution plans for TPC-H query Q9′.

cates are applied on t, we do not need to execute the third pilot run
if we already have statistics for t.

Optimization for selective predicates When the predicates ap-
plied on a relation are very selective, the whole input relation may
be consumed before outputting k tuples. In this case, we use the
output of the corresponding map job (that is in any case written
to HDFS) during the actual execution of the query, instead of run-
ning it again. This is very beneficial especially for expensive predi-
cates/UDFs that take a considerable amount of time to be executed.
Taking this a step further, in such cases, if the job is close to com-
pletion when k tuples have been output (e.g., 80% of the base re-
lation is scanned), we can let the job finish in order to be able to
reuse the output when the query gets executed.

4.2 Execution of Pilot Runs
We have implemented two different ways of executing the PILR

algorithm: PILR_ST and PILR_MT. First, we started by imple-
menting PILR_ST, where we submit the i-th leaf expression lexpR
only after the (i-1)-th leaf expression has finished executing. For
each lexpR, all map tasks (or to be precise, at least the first wave
of map tasks) are started. Each map task increases a global counter
(that is stored in ZooKeeper5) as it outputs records. When the
global counter becomes bigger than k, the job gets interrupted. This
was the simplest approach to implement, since at the time Jaql did
not have support for submitting multiple MapReduce jobs in paral-
lel. However, it has various drawbacks. First, by not submitting the
leaf jobs simultaneously, we pay the startup cost of the MapReduce
jobs (which could be as high as 15-20 seconds) for each relation in
the query, and we underutilize the cluster. Moreover, as each job
terminates early, its tasks are interrupted before they finish process-
ing their input data blocks. This may lead to a bias in our estimates,
due to “inspection paradox”, as described in [32]. Essentially, tasks
that produce smaller outputs are likely to process records faster and
thus skew output statistics. We avoid this “inspection paradox” by
finishing processing each data block that we already started.

To address these drawbacks, we implemented the second vari-
ant, PILR_MT, where we have modified the input format so that,
given a query with |R| relations, we pick exactly m/|R| random
splits for each relation, where m is the number of map slots in the
cluster. We also modified the execution engine of Jaql to submit
multiple jobs at a time. To this end, we are now able to start all leaf
jobs together, avoiding the job startup cost |R| times, and better
utilizing the resources of the cluster. Note that if the m/|R| splits
are not sufficient for getting our k-record sample, we pick more
splits on demand with a technique similar to [38]. Our ability to
dynamically add random splits to the sample allows us to solve the
main problem of block-sampling, i.e., sample sizing [10]. Note that

5http://zookeeper.apache.org

947



Query SF100-ST SF100-MT SF300-MT SF1000-MT

Q2 100% 27.7% 26.2% 27.5%
Q8′ 100% 16.9% 19.1% 16.0%
Q9′ 100% 19.4% 18.9% 20.6%
Q10 100% 24.8% 24.2% 24.4%

Table 1: Relative execution time of PILR for varying queries
and scale factors.

requiring k output records is a generic yet imperfect method of as-
sessing the sample quality. However, using a shared data structure
in ZooKeeper, we can easily plug in other such methods, such as
cross-validation used in [10].

To show the impact of PILR_MT, we have used four TPC-H
queries to compare PILR_ST using scale factor 100 with PILR_MT
for increasing scale factors (100, 300, 1000). The results are given
in Table 1, where the numbers are normalized to the execution time
of PILR_ST for SF=100. PILR_MT brings an average performance
speedup of 4.6x over PILR_ST. Importantly, the performance of
PILR_MT does not depend on the size of the dataset, but only on
the size of the sample k.

In the rest of the paper, whenever we refer to PILR, we will be
using the PILR_MT variant. As will be shown in Section 6.2, the
overhead of PILR on the overall query execution is in most cases
about 3%, which is not significant, especially given its advantages.

4.3 Collected Statistics
During the pilot runs we keep global statistics for each table

(namely, table cardinality and average tuple size), as well as statis-
tics per attribute (min/max values, and number of distinct values).
In order to reduce the overhead of statistics collection, we only col-
lect statistics for the attributes that participate in join predicates.

For each pilot run over a relation R, let Ro be the tuples of
R that are output after the application of the predicates, |Ro| be
the corresponding number of tuples and size(Ro) the size (in
bytes) in disk (these numbers are computed by the counters ex-
posed by Hadoop). Then, the average record size6 is computed as
rec_sizeεavg = size(Ro)

|Ro| . Moreover, the table cardinality of R (af-

ter the predicates) is estimated as |R|ε = size(R)
rec_sizeεavg

.
Collecting the minimum and maximum value for each attribute

is done by finding for each HDFS split the corresponding values
and combining them to find the min and max values for the whole
sample. This combination is done in the Jaql client to avoid a re-
duce phase in the pilot run jobs. Estimating the number of distinct
values of an attribute is more involved and is detailed below.

Distinct values estimation via KMV synopsis LetR be one of the
relations of the dataset D and A be one of its attributes for which
we want to compute the number of distinct values DVA. Scan-
ning R and keeping track of all the distinct values of A can incur
a prohibitive cost for big relations, especially in terms of memory.
Instead, a synopsis for A can be created and then used to estimate
DVA (we denote the estimation by DV εA). In particular, we opted
for the KMV synopsis [6], which allows to create one synopsis for
each partitionRp ofR and then easily combine the partial synopses
to get a global synopsis for the whole relation. Thus, the process
can be executed in parallel for each HDFS split.

Let SARp be the KMV synopsis for partition Rp, and h be a hash
function with domain {0, 1, . . . ,M}. The synopsis SARp is a set
containing the k (with k>0) minimum hash values for the values
of A that appear in Rp. For a dataset with D distinct values, the
size of the synopsis is O(k logD), and the cost of creating it is

6We use the superscript ε to highlight that a value is an estimation.

O(|Rp| + logk logD), where |Rp| the number of tuples in Rp.
Creating the global synopsis SAR is equivalent to computing the
union

⋃
Rp∈R S

A
Rp of all partial synopses and then keeping the

k minimum values of the union. Let hk be the biggest value in
SR. Then, as shown in [6], we can estimate the number of distinct
values DV εA,R of A in R by using the unbiased estimator via the
following formula: DV εA,R = (k−1)M

hk
.

In our setting, we compute the synopsis for each HDFS split that
is processed at the map phase of the pilot runs, and then compute
the global synopsis out of the partial ones in the Jaql client. Using
this estimation, for k = 1024, the upper bound on the error ofDV εk
is approximately 6%.

Given that during our pilot runs we consume only a sampleRs of
each relation R (i.e., Rs ⊆ R), we need to extrapolate the distinct
value estimation we got over Rs to the whole relation R. Comput-
ing the number of distinct values based on a sample of the dataset
still remains a challenging task, especially when data is skewed
or when there are many distinct values, each having a low fre-
quency [9]. In this work, we used the following simple formula
for estimating the number of distinct values for R, given the dis-
tinct values for Rs: DV εA,R = |R|

|Rs|DV
ε
A,Rs . We plan to focus on

more precise extrapolations as part of our future work.

Additional statistics Further statistics can be collected, including
frequent values, percentile and histograms. This would lead to
more accurate cost estimations and possibly better plans, but would
increase the overhead of statistics collections. We chose to collect
the aforementioned statistics, since these are currently supported
by the cost-based optimizer we are using (see Section 5.2).

4.4 Discussion
Shortcomings of pilot runs Despite the significant advantages of
the pilot runs that we already discussed in this section, there are still
cases for which they may not be sufficient for accurately estimating
the costs of the join operators in a plan:
• The joins are not on primary/foreign keys.
• The query contains complex predicates/UDFs that are not local

but are applied on results of joins (hence, they cannot be pushed
down and are not considered by PILR).
• There are correlations among the join columns.
As we explain in the following section, for these cases it is benefi-
cial not only to perform the pilot runs, but also to adapt the execu-
tion plan at runtime, as parts of it get executed.

Placement of predicates in the plan In our approach, in case of
multiple predicates per relation, we do not consider an order in
their application, although this could have a considerable impact
on the execution time. Moreover, the heuristic of pushing selec-
tions/UDFs down does not always lead to optimal plans, when ex-
pensive predicates are present [24, 11]. Unlike our approach, these
works assume that the user provides the selectivity estimation of
such predicates, and then focus on finding their optimal place in
the execution plan. In practice, such selectivity is difficult to com-
pute, as it also depends on the data, and this is exactly what we try
to tackle with the pilot runs. Along the same lines, a recent devel-
opment in the Stratosphere system [25] focuses on the reordering
of expensive predicates, based either on user annotations or static
code analysis. We see these works as complimentary to ours. Once
we compute the selectivity of a predicate/UDF using the pilot runs,
we can use these algorithms to find the right place and order to eval-
uate those predicates. For instance, if a predicate involving UDFs
turns out to be expensive and not selective, we could reverse our
decision to push it down, and pull it back up in the query plan.
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Algorithm 2: Dynamic Optimization Algorithm (DYNOPT)
Input : join block expression jb, a set of relationsR
Output: jb(R)

1 while true do
2 bestJoinP lan← optimize(jb)
3 mapredP lan← toMapReduce(bestJoinP lan)
4 jobsToRun← pickLeafJobs(mapredP lan)
5 results← execute(jobsToRun)

// If the whole current plan will be
executed, exit and return result

6 if mapredP lan \ jobsToRun = ∅ then return result
7 updateStatistics()
8 jb← updatePlan(jb, jobsToRun, results)

5. DYNAMIC EXECUTION OF PLANS
As described in Section 3, after performing the pilot runs and

gathering the initial statistics, we start the execution of the query’s
join blocks. In the first iteration, we use the statistics collected
in the pilot runs, and find the best join order. After we execute a
subset of the joins, we re-optimize the remaining part of the join
block using the statistics collected in this execution step, and dy-
namically adapt the query plan as needed. This corresponds to the
loop including steps 4’-7’ in Figure 1. In this section we present
the corresponding DYNOPT algorithm.

5.1 The DYNOPT Algorithm
Our DYNOPT algorithm (Algorithm 2), takes a join block jb and

a set of relationsR, and returns jb(R), i.e., the result of evaluating
jb on R. It iteratively executes parts of jb, dynamically adapting
the query plan as needed, until the whole jb is executed.

At each iteration, we first optimize the current join block using
a cost-based optimizer (line 2), which we detail in Section 5.2. In-
terestingly, when we optimize the current join block, we do not
need to consider its local predicates, since local predicates have al-
ready been accounted for in its input statistics. The first iteration
uses the statistics gathered in the pilot runs, and optimizes the join
block where each node is a base relation. In subsequent iterations,
the nodes in the join block are the results of previous steps and the
statistics are collected during the execution of the jobs that com-
pute the new nodes. Hence, optimizing a join block is tantamount
to performing join enumeration, choosing the best join method for
each join and picking the join plan with the minimum cost. As an
example, the join block corresponding to query Q1 (introduced in
Section 4.1) that gets processed by the cost-based optimizer is the
following Q′1:
SELECT rs.name

FROM restaurant’ rs, review’ rv, tweet’ t

WHERE rs.id=rv.rsid AND rv.tid=t.id

In Q′1 the predicates have been removed, and each relation R is re-
placed by a new (virtual) relationR′ that is the result of applying its
local predicates. Although we do not materialize R′, the statistics
given to the optimizer correspond to R′.

Once the best plan is chosen by the cost-based optimizer, it gets
transformed to a workflow of MapReduce jobs (line 3). Then,
based on an execution strategy, we choose the leaf job(s) of the
plan that will be executed in this iteration (lines 4-5). We discuss
execution strategies in Section 5.3. During job execution, statistics
are collected for specific attributes (details in Section 5.4). If there
are no more jobs to execute, we output the result of the last job (line
6). Otherwise, we update the join block by substituting the part of
the plan that just got executed with the results of the jobs’ execution
(line 8), and start the next iteration. For instance, in Figure 2, in the
first iteration we execute the job corresponding to the circled part

of plan1 and save its results in relation t1. After re-invoking the
optimizer, we get plan2, in which the previously executed partial
plan is substituted with t1.

In our current implementation, we re-optimize in each iteration,
since the added overhead is not significant (see Section 6.2). How-
ever, the decision to re-optimize could be conditional on a threshold
difference between the estimated result size and the observed one.

Executing the whole query For a given query q, DYNOPT gets
invoked as many times as the number of join blocks in q. If there
are grouping and ordering operators in the query, they get executed
after the join that they depend on. Grouping and ordering operators
are inserted into the execution plan by the Jaql compiler, hence are
not considered by our cost-based optimizer, which focuses on join
optimization. When executing the join blocks through DYNOPT,
we need to respect the dependencies between blocks: a block can
be executed only after all blocks it depends on have already been
executed (or when it does not depend on other blocks). As long
as dependencies are respected, the exact order of execution of the
join blocks does not matter. However, if there are additional avail-
able resources in the cluster, there are cases where we can execute
join blocks in parallel (by simultaneous invocations of DYNOPT for
different blocks). This inter-block parallelism resembles the inter-
operator parallelism of a bushy plan that is discussed in Section 5.3.

5.2 Cost-Based Join Optimizer
We built the cost-based optimizer that we use for join enumera-

tion, as discussed in Section 5.1, by extending the Columbia opti-
mizer [12]. Columbia is an open source top-down optimizer, based
on the Cascades query optimizer framework [21], focusing on ex-
tensibility and efficiency. It takes as input a query, written in the
form of a logical operator tree and outputs the minimum-cost phys-
ical operator tree, along with the cost of each operator.

For the enumeration of equivalent plans and their translation to
executable operators, it relies on two types of rules: transformation
and implementation ones. The former transform a logical expres-
sion to an equivalent one, whereas the latter replace a logical oper-
ator with a physical one. Each rule has a priority, which defines the
order of application of the rules. A branch-and-bound algorithm is
used to search through the alternative plans for a given query, and
the execution cost of each plan is calculated using statistics for the
relations, selectivity estimations and cost formulas. The supported
statistics are the ones discussed in Section 4.3.

Since we are only interested in join enumeration, we deactivated
all other logical operators but the binary join and the scan. The
selectivity estimation of a join is computed based on the typical
relational formulas [35]. Notice that Columbia is capable of pro-
ducing bushy plans, whenever those are the cheapest ones. This
is a desired feature that enables us to execute parts of the plan in
parallel, as will be discussed in Section 5.3. However, the physical
join operators that Columbia supports (hash-join, merge-join, etc.)
are different from the two join operators that Jaql’s runtime sup-
ports, namely the repartition (./r) and broadcast (./b) joins. Thus,
we deactivated the physical joins of Columbia and added two new
ones. Given two relations R and S, the cost of the repartition join
consists of the cost of reading the relations, reshuffling them to the
reducers, doing the join in the reducers, and outputting the results.
Hence, the cost of the join is mostly linear in the size of the inputs
(plus the cost of outputting the result). The cost formula we use is
the following, where crep, cout are constants, with crep > cout:

C(R ./r S) = crep(|R|+ |S|) + cout|S ./ R|

As for the broadcast join, assuming S is the small relation, its
cost includes loading S and building the corresponding hashtable,
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reading R and probing each tuple to the hashtable, and finally
outputting the results. We use the following cost formula, where
cprobe, cbuild, cout are constants, with cprobe > cbuild > cout:

C(R ./b S) = cprobe|R|+ cbuild|S|+ cout|R ./ S|

Importantly, crep>>cprobe, which reflects the fact thatC(R ./r

S) > C(R ./b S), as long as S fits in memory. Note that al-
though the formulas rely only on the size of the relations and not
on the characteristics of the cluster or the available resources, they
serve the basic purpose of favouring broadcast joins over reparti-
tion joins. When applicable, broadcast joins are usually preferable,
since they get executed in map-only jobs and can also be chained,
decreasing the total number of map-reduce jobs needed for a query.

As discussed in Section 2.2.2, Jaql is capable of chaining broad-
cast joins. To do so, it solely relies on the size of relations in the
file system, without taking into account the filters that may be ap-
plied prior to the join. To avoid relying on this heuristic rule, we
added a new rule to our optimizer that takes as input the maximum
memoryMmax that will be available during execution, and dictates
which joins should be chained. Assume we want to join relations
R,S1, S2, . . . , Sk, and that all Si, i = 1, . . . , k fit in memory at
the same time. If we chain the k broadcast joins, we avoid the cost
of writing to and reading from disk the k−1 intermediate results of
the joins. The corresponding formula is the following:

C((R ./b S1) ./
b . . .) ./b Sk) = cprobe|R|+

cbuild(|S1|+ . . .+ |Sk|) + cout|R ./ S1 ./ . . . ./ Sk|

Our new rule traverses the operator tree and when it discovers two
or more consecutive broadcast joins whose build sides fit in mem-
ory, it updates the cost of the first join of the chain using the above
formula, setting the costs of the other joins of the chain to zero.
Jaql’s compiler has also been modified accordingly, in order to use
the chain information during the translation to MapReduce jobs.

5.3 Execution Strategies: Choosing Leaf Jobs
Bushy plans provide the opportunity to execute multiple leaf

joins in parallel. Various strategies can be used for choosing which
joins to execute at the same time. For instance, in plan1 of Fig-
ure 2, one could execute first the leftmost (circled) job j1 or the
repartition join j2 between l and p or both of them in parallel.

In static optimization where the query plan does not change, the
execution order of the (leaf) jobs does not impact query execution
time. In this case, we only need to determine which jobs to run in
parallel, as these jobs will strive for the same cluster resources [20].

On the contrary, when the execution plan can change at runtime,
deciding which leaf job(s) to execute first can have significant im-
pact on execution time, since it determines the way the plan dynam-
ically adapts. For instance, in the aforementioned plan1, executing
first j2 instead of j1 would lead to a different plan than plan2 of
the figure. Even more interestingly, executing more than one job
at a time has the additional side effect of changing the number of
re-optimization opportunities. For example, if we execute j1 and
j2 in parallel, we will have one less re-optimization point, since we
will only re-optimize at the end of the two jobs. Such an order of
application can be determined using an execution strategy. To the
best of our knowledge, we are the first to consider such strategies,
which can also be applicable in the relational setting.

There are two dimensions that an execution strategy has to con-
sider: 1) give a priority to each leaf job (higher priority jobs get
executed first), which changes as parts of the plan get executed;
2) decide how many jobs to execute at a time. Different metrics for
deciding the priority of the leaf jobs can be devised. Two interest-
ing ones are the following:

Cost The basic idea is to favour the cheapest jobs, so that we reach
re-optimization points as soon as possible.

Uncertainty With the notion of uncertainty of a job, we want to
reflect the expected error in the result size estimation. Note that
we use standard join selectivity formulas, and it has been shown
that the estimation error increases exponentially with the number
of joins [27]. As a result, we define uncertainty as the number of
joins that participate in the job. The idea here is that we want to
execute uncertain jobs first to gather actual statistics about them,
and fix the remaining plan through re-optimization if needed.

By combining the above dimensions we can get several strat-
egy variants. Our experiments in Section 6.3 include a comparison
among different strategies. As future work, we plan to determine
the most appropriate strategy for each query based on a cost model.

5.4 Online Statistics Collection
During the execution of a MapReduce job, we collect statistics

either at the map phase (if it is a map-only job) or the reduce phase
(if it is a map-reduce job). We keep the same statistics as the ones
for the pilot runs (see Section 4.3). To minimize the statistics col-
lection overhead, we keep statistics only for the needed attributes
for re-optimization, i.e., the ones that participate in join conditions
of the still unexecuted part of the join block. Moreover, we do not
keep statistics if we know we are not going to re-optimize (e.g., dur-
ing the last query job) or if statistics for the given job are already in
the metastore (see Section 4.1 for reusability of statistics).

For each MapReduce job, we first store in the job configuration
the list of attributes we will collect statistics for. Assume we exe-
cute a map-only job. During execution, each task collects statistics
for its input split. Instead of relying on an extra MapReduce job to
combine these partial statistics and get the global ones, every time
a task finishes it writes its statistics in a file and publishes the file’s
URL in ZooKeeper. Once all tasks are finished, the Jaql client that
submitted the job finds through ZooKeeper the URLs of all partial
statistics files, reads and combines them. The same technique is
followed when collecting statistics in the reduce phase.

6. EXPERIMENTAL EVALUATION
In this section, we present our experimental results for DYNO.

6.1 Experimental Setup
Cluster setup We performed our experiments on a cluster of 15
nodes, connected with 10 gigabit Ethernet. Each machine has two
2.2 GHz Intel Xeon E5-2430 6-core CPUs, with 96 GB of RAM
and 12 SATA disks of 2 TB each. We deployed Hadoop 1.1.1 with
each node having 10 map and 6 reduce slots (leading to a total
of 140 map and 84 reduce slots). Each slot was given 2 GB of
RAM. HDFS was configured to stripe across all disks of each node
(excluding one disk dedicated to the OS), and the HDFS block size
was set to 128 MB. For the number of map and reduce tasks per
MapReduce job, we used the same values that Hive uses by default.
All machines are running Ubuntu Linux 12.04 (with kernel version
3.2.0), Java 6 and ZooKeeper 3.4.5.

Datasets There are not many big data benchmarks, and none is
suitable for our study, which requires multiple joins. The Pavlo et
al. benchmark [33] has only two relations to be joined, the YCSB
benchmark [13] targets NoSQL systems, and the data generators
for BigBench [19], which would be a good candidate, were not
publicly available at the time of writing this paper. As a result, we
settled on TPC-H [37], which provides a data generator that allows
us testing at different scales, and contains 8 tables and queries with
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Figure 4: Overhead of pilot runs, re-optimization and statistics
collection in DYNOPT.

many joins. We generated datasets of size 100 GB, 300 GB and 1
TB (by using scale factors SF={100,300,1000}, respectively).

Queries From the 22 TPC-H queries, we chose those that include
joins between at least 4 relations, namely queries Q2, Q7, Q8, Q9,
Q10. We excluded Q5, because it contains cyclic join conditions
that are not currently supported by our optimizer. To better assess
the performance of DYNO, we used modified versions of Q8 and
Q9. In particular, we added a UDF in Q8 that filters the results of
the join between orders and customer. We also added two corre-
lated predicates on orders (correlations were identified using the
CORDS algorithm [26]). In Q9 we added various filtering UDFs
on top of the dimension tables to make them fit in memory. De-
pending on the experiment, for better readability, we may include
only the subset of the above queries that brings interesting insights.

Variants of execution plans We used the following variants of ex-
ecution plans to evaluate the characteristics of our system:

DYNOPT This is the dynamic execution of a query as dictated by
our DYNOPT algorithm (Algorithm 2, described in Section 5).
It includes the pilot runs, online statistics collection and re-
optimization points.

DYNOPT-SIMPLE This is the plan we get by removing the re-
optimization points from DYNOPT, that is, we perform the pilot
runs, call our optimizer once and then execute the resulting plan.
Apart from the pilot runs, no runtime statistics are collected.

RELOPT Here we employ a state-of-the-art relational optimizer
used in a commercial shared-nothing parallel database DBMS-
X, which also supports repartition and broadcast joins. DBMS-
X is capable of using more detailed statistics (e.g., histograms),
and all needed statistics are gathered by the system prior to query
execution in this case. The obtained execution plan is then hand-
coded to a Jaql script and executed. Note that DBMS-X does not
have enough information to estimate selectivity of UDFs during
optimization. We used this plan as a representative of the best
plan that can be obtained by an existing optimizer.

BESTSTATICJAQL As explained in Section 2, the existing version
of Jaql produces only left-deep plans and the join ordering is
determined by the order of relations in the FROM clause. For each
query, we tried all possible orders of relations and picked the best
one; BESTSTATICJAQL is the resulting plan. The rewrite rule for
using broadcast joins when relations are small is activated.

In our experiments, we used k=1024 for the KMV synopsis to
estimate distinct values (leading to a worst case error bound of 6%).
Moreover, we disabled the optimization that avoids executing the
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Figure 5: Comparison of execution strategies for DYNOPT.

pilot runs when there are already statistics computed for a given
expression. All numbers reported below are averaged over 3 runs.

6.2 Overhead of Dynamic Optimization
In this section we assess the overhead introduced to Jaql execu-

tion due to our dynamic optimization techniques, namely the pilot
runs, the statistics collection during the execution of the MapRe-
duce jobs, and the calls to the optimizer at each (re-)optimization
point. To this end, we report execution times of four TPC-H queries
for two different executions. In the first one, we provide upfront all
needed statistics to the optimizer, and the only overhead is the (re-
)optimization time. To do so, we previously execute the query to
add to the metastore all needed statistics, and then re-execute it af-
ter enabling the statistics reusability optimization. In the second,
all statistics are computed at runtime (through pilot runs and online
statistics collection). The overhead of the (re-)optimization and the
pilot runs are explicitly measured. The overhead of online statis-
tics collection can be computed by the difference in execution time
between the two executions, after the execution time of pilot runs
and total (re-)optimization time is deducted. The results are given
in Figure 4, where execution times are normalized to the execution
time with pre-collected statistics.

As can be seen, total (re-)optimization time is less than 0.25%
of the execution time in most cases. It is only for Q8′ that it is
approximately 7% as this query includes a 7-way join. Note that
although Q8′ gets (re-)optimized four times, only the initial call to
the optimizer (after the pilot runs) is costly, as it includes all 8 rela-
tions and is responsible for 90% of the total (re-)optimization time.
The subsequent calls are very fast, because, as part of the query has
been executed, less relations are included in the optimization.

Furthermore, the overhead of the pilot runs is between 2.5% and
6.7%. Online statistics collection brings a small overhead of 0.1%
to 2.8% to the total execution time, depending on the number of
attributes for which we need to keep statistics for. For instance,
Q10 that has the smallest number of join conditions, also has the
smallest statistics collection overhead. Overall, we observe a total
of 7-10% overhead. We believe this is acceptable given the benefits
brought by our approach, as will be shown in Sections 6.4 and 6.5.

6.3 Comparison of Execution Strategies
In this experiment, we compare various execution strategies both

for DYNOPT and DYNOPT-SIMPLE (see Section 5.3 for a related
discussion). For DYNOPT-SIMPLE, we use two variants: SO exe-
cutes only one leaf job at a time, and MO submits all leaf jobs at
the same time. For DYNOPT, we use: UNC-1 that executes the
single most uncertain leaf job first; UNC-2 that executes the two
cheapest most uncertain leaf jobs at the same time (if two leaf jobs
exist in the query plan, otherwise one); CHEAP-1 that executes the
cheapest leaf job first; CHEAP-2 that executes the two cheapest leaf
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Figure 7: Speedup of execution times for varying queries and scale factors compared to default Jaql execution.
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Figure 6: Performance impact of UDF selectivity on Q9′.

jobs first. When executing two jobs j1 and j2 in parallel, we use
the FIFO scheduler of Hadoop, so as to maximize the utilization
of the cluster resources. As future work, we plan to experiment
with different schedulers, such as the fair and capacity schedulers.
The resulting execution times, normalized to the execution time of
DYNOPT-SIMPLE_SO for each query, are given in Figure 6.

As expected, SIMPLE_MO always outperforms SIMPLE_SO,
since the former utilizes the cluster better (e.g., when a job is at its
reduce phase, another job can start its map phase). The only case
the two strategies coincide is for Q10, because a left-deep plan is
picked by the optimizer, thus there is no chance for parallelization.

Interestingly, for DYNOPT, parallelization is not always bene-
ficial: executing jobs in parallel increases cluster utilization, but
reduces the re-optimization points. For Q10, due to the chosen left-
deep plan, all strategies perform the same. However, for Q7 and
Q8′, UNC-1 is the winner strategy. For Q7, UNC-1 results in 40%
better time over UNC-2 and 13% over SIMPLE_SO. Moreover, ex-
ecuting the most uncertain jobs first is much better than executing
the cheapest ones for Q7. In the case of Q8, the cheapest and most
uncertain jobs coincide, thus the variants perform the same. Over-
all, it is more beneficial for DYNOPT to have more re-optimization
points than to execute more jobs in parallel. Due to their better
performance, hereafter we will use the MO variant for DYNOPT-
SIMPLE, and the UNC-1 variant for DYNOPT.

6.4 Star Join Sensitivity Analysis
In this section we study the performance of DYNOPT-SIMPLE

for star join Q9′, as the size of the dimensions changes (by chang-
ing the selectivity of the UDFs), in order to see the effectiveness of
pilot runs. The results are given in Figure 6, where the execution
times are normalized to the execution time of the plan picked each
time by RELOPT.

In all but the last case (100% selectivity), all dimensions fit in
memory and all joins are broadcast joins. However, not all di-

mensions fit in memory at the same time, hence the query is ex-
ecuted in multiple jobs. For 0.01% and 0.1% selectivity, all joins
are executed in 2 map-only joins (since more joins can be chained),
leading to a performance improvement of 1.78x and 1.71x over
RELOPT, respectively. For 1% and 10% selectivity, 3 map-only
jobs are needed, bringing a (smaller) performance speedup of ap-
prox. 1.15x over RELOPT. Finally, when the selectivity is 100%,
our optimizer picks the same plan with RELOPT (including 4 jobs),
and our execution is slightly worse due to the pilot runs overhead.

The pilot runs enable the optimizer to identify the cases when
tables can fit in memory for a broadcast join. Note that if the op-
timizer’s estimate is incorrect and the build table turns out to not
fit in memory, the query may not even terminate. As a result, most
systems are quite conservative and favour repartition joins to avoid
disastrous plans. However, repartition joins lead to worse perfor-
mance if the table is small enough to fit in memory. Our pilot runs
enable making this decision more accurately, avoiding both disas-
trous cases, as well as not missing good performance opportunities
when the build table is indeed small enough to fit in memory. As
future work we plan to experiment with more advanced implemen-
tations of the broadcast join (e.g., taking advantage of the Distribut-
edCache) to further boost our performance speedup.

6.5 Comparison of Query Execution Times
We now compare the performance of the four execution plans de-

scribed in Section 6.1 for various queries and scale factors. Figure 7
shows the query execution times normalized to the BESTSTATIC-
JAQL execution time.

First, notice that both our dynamic techniques (DYNOPT-SIMPLE
and DYNOPT) are at least as good as, and sometimes better than,
the best hand-written left-deep plan (BESTSTATICJAQL) for all
queries and scale factors. This is not always the case for RELOPT
(e.g., Q10 for SF=100, Q8′ for SF=1000). Our techniques produce
plans that are also better than the plans generated by the RELOPT in
most cases, except Q2 and Q8′ for SF=100, and Q10 for SF=300.
Moreover, there are cases for which we are up to 2x faster than
BESTSTATICJAQL.

Q2 benefits by considering bushy plans: for all three bushy
plans (RELOPT, DYNOPT-SIMPLE, DYNOPT) and all scale fac-
tors, there is a performance speedup of approximately 1.2x. This
confirms that in a shared-nothing architecture it is crucial to con-
sider bushy plans (to minimize intermediate results) during query
optimization. Moreover, given there are no UDFs and joins are on
primary/foreign keys, re-optimization does not bring further benefit
(in fact, there is a slight degradation due to the added overhead).

Q8′ includes a UDF over the result of a join and in this case
re-optimizing proves to be very beneficial: DYNOPT leads to a per-
formance speedup of 2x, 1.17x and 1.07x over BESTSTATICJAQL
for the three scale factors. The benefits of re-optimization are not as

952



0% 

20% 

40% 

60% 

80% 

100% 

120% 

Q2 Q8' Q9' Q10 

R
el

at
iv

e 
ex

ec
ut

io
n 

tim
e 

Queries (SF=300) 

BESTSTATICHIVE RELOPT 
DYNOPT-SIMPLE DYNOPT 

Figure 8: Benefits of applying DYNOPT in Hive.

pronounced for larger scale factors, because as data size increases,
there are less opportunities for applying broadcast joins. On the
other hand, RELOPT and DYNOPT-SIMPLE manage to speed-up
Q8′ only for SF=100. In the case of DYNOPT-SIMPLE, only pilot
runs are not sufficient to account for the non-local UDF.

Q9′ is the star join case discussed in Section 6.4. Due to the
presence of UDFs, RELOPT does not manage to improve the per-
formance of the query. On the other hand, our techniques manage
to make extensive use of broadcast joins, leading to speedups of
1.33-1.88x (depending on the SF). Notice that for larger data sizes,
avoiding repartition joins is even more important.

Finally, for Q10, the left-deep BESTSTATICJAQL is very close to
the best plan, so performance does not further improve with bushy
plans or dynamic optimizations. Notice, however, that even in that
case our techniques are as good as the best hand-written plan.

6.6 Benefits of DYNOPT in Hive
As discussed in Section 3, our techniques can be applied to other

systems. To show the benefits of using the execution plans pro-
duced by our dynamic techniques on a system other than Jaql, we
compare the performance of the four execution plans described in
Section 6.1 for various TPC-H queries and scale factor SF=300 us-
ing Hive. Note that instead of using the BESTSTATICJAQL plan, we
use the BESTSTATICHIVE one, that is, the best left-deep for Hive7.
We chose Hive for this experiment since it is currently one of the
most popular systems for SQL queries over HDFS data.

We took the execution plans of DYNOPT and DYNOPT-SIMPLE
that were generated by Jaql for the experiment of Section 6.5 (for
SF=300) and hand-coded them in Hive. Note that if we had im-
plemented the same sampling and statistics collection and used our
join optimizer in Hive, the same plans would have been generated.
Figure 8 shows the query execution times for these plans. These
numbers do not include the overheads of our techniques, which are
typically about 5% of the execution time (see Section 6.2).

We observe similar trends as the ones for Jaql. DYNOPT
and DYNOPT-SIMPLE always produce better plans than BEST-
STATICHIVE. It is interesting to note that Q9′ has a significantly
higher speedup than Jaql (3.98x instead of 1.88x). This is be-
cause broadcast joins in Hive 0.12 exploit the Distributed Cache
of MapReduce, leading to better performance. This brings an ad-
vantage for queries such as Q9′ that include many broadcast joins.

6.7 Discussion
The following are the highlights of our experiments:
• DYNOPT-SIMPLE always produces better plans than the best

left-deep plan. Moreover, it is always comparable and most of
7https://issues.apache.org/jira/browse/HIVE-600

the times better than the RELOPT plan (with the exception of
Q8′ for SF=300). This shows that although it introduces a small
overhead, it provides accurate selectivity and result size estima-
tion, especially when the query contains local UDFs and data
correlations, as exhibited by Q9′.
• DYNOPT subsumes DYNOPT-SIMPLE. Hence, when further

re-optimization is not beneficial, DYNOPT is a bit worse than
DYNOPT-SIMPLE due to the increased overhead it introduces.
However, it outperforms DYNOPT-SIMPLE when the join result
size estimation contains high uncertainty, due to correlations,
UDFs on results of joins (this is the case for Q8′), or non pri-
mary/foreign key join conditions.
• There are queries for which the left-deep plan is the optimal (see

Q10), but there are others that can benefit significantly by con-
sidering bushy plans (such as Q2).
• Our Hive experiments show that our techniques are also bene-

ficial for other systems, exhibiting similar performance trends.
Overall, notice that we get the most benefit from pilot runs,

which is an interesting remark as most dynamic optimization tech-
niques so far have focused on re-optimizing the query at runtime
and not on carefully selecting the first plan before the first re-
optimization occurs.

7. RELATED WORK
Several higher-level declarative languages have been proposed

lately for analyzing large datasets, such as Pig [18], Hive [36],
Jaql [5], Stratosphere [3], DryadLINQ [41], SCOPE [8], Spark [42]
and Shark [40]. Query optimization in this environment is crucial
for translating such higher-level scripts to efficient distributed ex-
ecution plans. However, most of these systems lack a cost-based
optimizer and rely on heuristics, e.g., Hive and Pig [17].

Dynamic techniques are natural in this setting and have already
started to be adapted by some of the systems. For instance, Shark
can switch from a repartition to a broadcast join at runtime. In
RoPE [1] recurring queries get optimized based on observations
from their previous executions. The most related work to ours is in
the context of SCOPE [8], where statistics are collected at runtime
and the execution plan gets re-optimized if needed. One difference
is that SCOPE relies on Dryad, which does not provide the natural
re-optimization points of Hadoop. Moreover, they do not consider
a way of automatically costing UDFs before choosing the initial
plan (as we do with the pilot runs). Work has also been done on
optimizing directly MapReduce jobs [30], by selecting the correct
job configuration based on the characteristics of a job or by merg-
ing MapReduce jobs whenever possible. We consider such works
as complimentary to ours: after our optimizer has picked an ex-
ecution plan and our compiler has transformed it to a MapReduce
workflow, we can use these works to further optimize the workflow.

Adaptive query processing has been extensively studied in the
relational setting [15]. Altering the execution plan at runtime has
been considered both in centralized [28, 31, 2] and distributed sce-
narios [22]. One of the important challenges in these works is
deciding when to block query execution and re-optimize the plan
(possibly throwing away work). Moreover, the initial plan in these
works is obtained from the optimizer using the base table statistics,
and as such is subject to potential incorrect result size and cost es-
timation due to data correlations and UDFs, leading to a possibly
suboptimal plan (until re-optimization is invoked).

As far as dealing with complex predicates and UDFs is con-
cerned, most existing works [24, 11] focus on placing such predi-
cates in the right order and position in the plan, given that the selec-
tivity of the predicate is provided. In [25], static code analysis and
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hints are used to reorder UDFs. Few works have focused on UDF
cost models that get adapted based on previous executions [29, 23].
To the best of our knowledge, we are the first to consider calculat-
ing the UDF selectivity at runtime through the pilot runs.

8. CONCLUSION AND FUTURE WORK
In this paper, we presented DYNO, which utilizes pilot runs, run-

time statistics collection, and re-optimization to optimize complex
queries over Hadoop data. We introduced pilot runs, which exe-
cute the local filters and UDFs over a small sample of each base
relation to collect statistics and estimate result sizes. Pilot runs are
especially beneficial when the query contains UDFs and data corre-
lations, because traditional static optimizers fail at estimating result
sizes correctly under these conditions. Underestimating result sizes
can lead the optimizer to make the wrong decision and use a broad-
cast join, which can be disastrous with a large data set. We provide
the statistics collected via pilot runs to a cost-based optimizer to
choose the join order and methods. As the query runs, we collect
statistics, and at the completion of each MapReduce job, we can
re-optimize the remaining parts of the query. Re-optimization is
especially beneficial when 1) there are UDFs that need to be ap-
plied on the result of a join, and can impact the intermediate result
size, 2) the join condition is not on primary/foreign key relation-
ship, and 3) there is data correlation between the join conditions.

We showed that the plans produced by our system, both DYNOPT
and DYNOPT-SIMPLE, are at least as good and often better than
the best hand-written left-deep plans, and are most of the times
better than the plans produced by a state-of-the-art relational opti-
mizer for a shared nothing DBMS. Finally, we identified interest-
ing strategies for choosing leaf jobs to execute at a given point, and
proposed some first heuristic choices. Experimenting with more
sophisticated (possibly cost-based) strategies is left as future work.

We are also planning to create a new dynamic join operator that
switches between a broadcast and repartition join, without waiting
for the current job to finish. Moreover, we consider adapting our
techniques to other platforms, such as Tez. Although our optimizer
currently focuses on join ordering, we plan to extend it to consider
grouping and ordering operators.
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