Dimension Independent Risk Bounds for Private Learning

A. Proof of Dimension Independence for
Output Perturbation (Theorem 1)

First, we prove the following lemma, which bounds the ex-
cess loss (empirical risk) due parameter vector 8,,.;, com-

pared to 6.
Lemma 1. Let £(6) = 13" 0((0,x;);y;). We have,
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By the Lipschitz property of the loss function ¢/, we have
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Notice that, each inner product (b,x;) is distributed as
N(0,02||z;||2), where o = (LRa)y/log(1/d) e W. Therefore,
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Now, let J(6) =

(x,y)~Dist

J(0) = L3 0((0,%:);y:) + 5]|0]|2. Also, let 6* =
i=1

[£((6,); )] + 3516113 and

arg mingerr J(0) and @ = arg mingeg» J(6). Then, us-
ing Lemma 1, we have:
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Now, we use the following excess risk theorem by (Shalev-

Shwartz et al., 2009).

Theorem S5 (One sided uniform convergence
(Shalev-Shwartz et al., 2009)). Let J(6), .J(6), 6,
and the loss function { be defined as above. Then, the
Jollowing holds Y@ € RP (with probability at least 1 — ~y):
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where L is the Lipschitz constant of the loss function {, and
Ro is an upper bound on the La-norm of the feature vectors
in the training data set.
Let F(0) = E
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(13), we have the following with probability at least 2/3
over the data generating distribution Dist:

[¢((6,x);y)]. From Theorem 5 and
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Theorem now follows by using o = (LRz)y/log(1/8) 1 Vl;ég(l/é)“, by
setting A = % in the above given bound and by using

Markov’s inequality.

B. Proofs for Private ERM over Simplex
B.1. Proof of Privacy Guarantee (Theorem 3)

Proof. We first characterize the optimal non-private 6 ob-
tained by solving (8). To this end, we form the Lagrangian
of (8):
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Now, using optimality conditions:
0,v") = in £(,v).
(6,v%) mgxgggﬁ( V)

By setting the gradient of the Lagrangian to be zero and by
using primal feasibility, we get:
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where ¢’ is the derivative of £ and &7 denotes the j-th coor-
dinate of x;.

That is,
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Similarly, let 5; be the solution to (8) but by us-
ing a different data set D’ that differs from D =
{(x1,y1),-..,(®n,yn)} in exactly one data point. With-
out loss of generality, we assume that D and D’ differs only
in the first entry (2}, y})-

Now, consider an index as that is sampled from the proba-
bility distribution 0. Now, probability of sampling as =
J, given that 0 is learned using data set D is given by:
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Now, first consider the following:
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where the last inequality follows by: a) using Lipschitz
continuity of £, i.e., ¢/(+;+) < L,b) ||&;|lcc < Roo,C) by us-

ing Lipschitz continuity of ¢’, and d) by apglying Holder’s
inequality |(z;, 0 — 0")| < ||i]|«]|0 — 0’|

Now, we bound ||§ - |1 using strong convexity of
the entropy regularlzer wrt Ly norm. Let J(0) =

Z ({x;,0);y;) + 2 Z 0;log(0;). As 6 is the mini-

mum of (8):
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2,16 = €'lli + J(6|D) < J(¢'D).
Similarly, using optimality of 8’ for (8) with data set D':
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Adding the above two equations, using the fact that D —
D' = (x1,y1), by applying the Lipschitz continuity of ¢,
and by using Holder’s inequality, we get:
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Now plugging the above bound in (17), we get:
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Using the above equation with (16), we get:
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Note that this ensures, that each “sample” as is € =

exp (4/;300 " 2nLR 5L, )

differentially private. Hence,

e and (¢, 0) d1fferent1al privacy for the computation of
the collection of m samples {a1,as,...,a;,} and conse-
quently 8,,.;, follows by using the weak and the strong
composition theorems of (Dwork et al., 2006b; 2010c) re-
spectively. O

B.2. Proof Utility Guarantee (Theorem 4)

We first prove in Lemma 2 the excess risk bound of Algo-
rithm (8) for any choice of m and A\. We then set m =

[ 2 16nRog> -2 n2/3
(W) <32 + ng) and A\ = W
get the final guarantee.

Lemma 2. Let L, L, be as defined in Theorem 3. With

probability at least 2/3 over the randomness of Dist and
the randomness of Op..;,,, the following is true.
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Here 0" = arg mingea E [£((0,x);y))].
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Proof. Recall that,
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where e, is the as-th canonical basis vector and as €
{1,2,. ..,p} Vs € [m] are sampled i.i.d. according to the

probability distribution 6.
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Now, for any fixed @: (x,0,,1) = = > (@, e,,). Note

that, E[(x, e, )] = (x,6). Therefore,
as
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Furthermore, [(x, e, )| < |#|l = Rso. Therefore by
Hoeffding’s inequality, with probability at least 1 — ~,

~ R log(1
(0. 0yr0) ~ (2.8)] = 0 (=201,
Observing |(x, Oprip) — (T, §>| is universally bounded by
R, and setting y = % we have
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Therefore, with probability at least 9/10 over the random-
ness of 6,,;,, we have
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Now, using standard uniform convergence bound of
(Shalev-Shwartz et al., 2009; Kakade et al., 2008), we get:
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