A. Proof of Dimension Independence for Output Perturbation (Theorem 1)

First, we prove the following lemma, which bounds the excess loss (empirical risk) due parameter vector $\boldsymbol{\theta}_{priv}$ compared to $\hat{\boldsymbol{\theta}}$.

Lemma 1. Let
$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\langle \boldsymbol{\theta}, \boldsymbol{x}_i \rangle; y_i)$$
. We have,
$$\mathbb{E}\left[\mathcal{L}(\boldsymbol{\theta}_{priv}) - \mathcal{L}(\widehat{\boldsymbol{\theta}})\right] = O\left(\frac{(LR_2)^2 \sqrt{\log(1/\delta) + \epsilon}}{\lambda \epsilon}\right).$$

Proof. Now,

$$\mathcal{L}(\boldsymbol{\theta}_{priv}) - \mathcal{L}(\widehat{\boldsymbol{\theta}}) = \frac{1}{n} \sum_{i=1}^{n} \left(\ell(\langle \boldsymbol{\theta}_{priv}, \boldsymbol{x}_i \rangle; y_i) - \ell(\langle \widehat{\boldsymbol{\theta}}, \boldsymbol{x}_i \rangle; y_i) \right).$$

By the Lipschitz property of the loss function ℓ , we have

$$egin{aligned} \mathcal{L}(oldsymbol{ heta}_{priv}) - \mathcal{L}(\widehat{oldsymbol{ heta}}) & \leq rac{1}{n} \sum_{i=1}^n L |\langle oldsymbol{ heta}_{priv} - \widehat{oldsymbol{ heta}}, oldsymbol{x}_i
angle| \ & \leq rac{L}{n} \sum_{i=1}^n |\langle oldsymbol{b}, oldsymbol{x}_i
angle| \,. \end{aligned}$$

Notice that, each inner product $\langle \boldsymbol{b}, \boldsymbol{x}_i \rangle$ is distributed as $\mathcal{N}(0, \sigma^2 \|\boldsymbol{x}_i\|_2)$, where $\sigma = \frac{(LR_2)\sqrt{\log(1/\delta)+\epsilon}}{\lambda\epsilon}$. Therefore,

$$\mathbb{E}_{\boldsymbol{b}} \left[\mathcal{L}(\boldsymbol{\theta}_{priv}) - \mathcal{L}(\widehat{\boldsymbol{\theta}}) \right] \leq \frac{L}{n} \sum_{i=1}^{n} E_{\boldsymbol{b}} \left[|\langle \boldsymbol{b}, \boldsymbol{x}_i \rangle| \right] \\
\leq \frac{L\sigma}{n} \sum_{i=1}^{n} \|\boldsymbol{x}_i\|_2 \leq LR_2\sigma.$$

Hence Proved.

Now, let $J(\theta) = \underset{(\boldsymbol{x},y) \sim Dist}{\mathbb{E}} [\ell(\langle \boldsymbol{\theta}, \boldsymbol{x} \rangle; y)] + \frac{\lambda}{2n} \|\boldsymbol{\theta}\|_2^2$ and $\tilde{J}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n \ell(\langle \boldsymbol{\theta}, \boldsymbol{x}_i \rangle; y_i) + \frac{\lambda}{2n} \|\boldsymbol{\theta}\|_2^2$. Also, let $\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^p} \tilde{J}(\boldsymbol{\theta})$ and $\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^p} \tilde{J}(\boldsymbol{\theta})$. Then, using Lemma 1, we have:

$$\mathbb{E}_{\boldsymbol{b}}[\tilde{J}(\boldsymbol{\theta}_{priv}) - \tilde{J}(\widehat{\boldsymbol{\theta}})] \le O(LR_2\sigma) + \mathbb{E}_{\boldsymbol{b}}\left[\frac{\lambda \|\boldsymbol{\theta}_{priv}\|_2^2}{2n}\right].$$
(13)

Now, we use the following excess risk theorem by (Shalev-Shwartz et al., 2009).

Theorem 5 (One sided uniform convergence (Shalev-Shwartz et al., 2009)). Let $J(\theta)$, $\tilde{J}(\theta)$, $\hat{\theta}$, λ and the loss function ℓ be defined as above. Then, the following holds $\forall \theta \in \mathbb{R}^p$ (with probability at least $1 - \gamma$):

$$J(\boldsymbol{\theta}) - J(\boldsymbol{\theta}^*) \le 2\left(\tilde{J}(\boldsymbol{\theta}) - \tilde{J}(\widehat{\boldsymbol{\theta}})\right) + O\left(\frac{(LR_2)^2 \log(1/\gamma)}{\lambda}\right),$$

where L is the Lipschitz constant of the loss function ℓ , and R_2 is an upper bound on the L_2 -norm of the feature vectors in the training data set.

Let $F(\theta) = \underset{(\boldsymbol{x},y) \sim Dist}{\mathbb{E}} [\ell(\langle \boldsymbol{\theta}, \boldsymbol{x} \rangle; y)]$. From Theorem 5 and (13), we have the following with probability at least 2/3 over the data generating distribution Dist:

$$\mathbb{E}_{\boldsymbol{b}}[J(\boldsymbol{\theta}_{priv}) - J(\boldsymbol{\theta}^*)] \leq O(LR_2\sigma) + \mathbb{E}_{\boldsymbol{b}}\left[\frac{\lambda \|\boldsymbol{\theta}_{priv}\|_2^2}{2n}\right] + O\left(\frac{(LR_2)^2}{\lambda}\right).$$

That is,

$$\mathbb{E}[F(\boldsymbol{\theta}_{priv}) - F(\boldsymbol{\theta}^*)] \le O\left(LR_2\sigma + \frac{(LR_2)^2}{\lambda}\right) + \frac{\lambda}{2n} \|\boldsymbol{\theta}^*\|_2^2.$$

Theorem now follows by using $\sigma = \frac{(LR_2)\sqrt{\log(1/\delta)+\epsilon}}{\lambda\epsilon}$, by setting $\lambda = \frac{LR_2\sqrt{n}}{\|\theta^*\|_2}$ in the above given bound and by using Markov's inequality.

B. Proofs for Private ERM over Simplex

B.1. Proof of Privacy Guarantee (Theorem 3)

Proof. We first characterize the optimal non-private $\widehat{\theta}$ obtained by solving (8). To this end, we form the Lagrangian of (8):

$$\mathcal{L}(\boldsymbol{\theta}, \nu) = \frac{1}{n} \sum_{i=1}^{n} \ell(\langle \boldsymbol{x}_i, \boldsymbol{\theta} \rangle; y_i) + \frac{\lambda}{n} \sum_{j=1}^{p} \theta_j \log(\theta_j) + \frac{\nu}{n} (\sum_{i} \theta_i - 1) \quad (14)$$

Now, using optimality conditions:

$$(\widehat{\boldsymbol{\theta}}, \nu^*) = \max_{\nu} \min_{\boldsymbol{\theta} \in \Delta} \mathcal{L}(\boldsymbol{\theta}, \nu).$$

By setting the gradient of the Lagrangian to be zero and by using primal feasibility, we get:

$$\widehat{\theta}_{j} = \exp\left(-\frac{\nu^{*}}{\lambda} - 1 - \frac{1}{\lambda} \sum_{i} \ell'(\langle \boldsymbol{x}_{i}, \widehat{\boldsymbol{\theta}} \rangle; y_{i}) \boldsymbol{x}_{i}^{j}\right),$$

$$\exp\left(\frac{\nu^{*}}{\lambda}\right) = \sum_{r \in [p]} \exp\left(-1 - \frac{1}{\lambda} \sum_{i \in [n]} \ell'(\langle \boldsymbol{x}_{i}, \widehat{\boldsymbol{\theta}} \rangle; y_{i}) \boldsymbol{x}_{i}^{r}\right),$$

where ℓ' is the derivative of ℓ and x_i^j denotes the j-th coordinate of x_i .

That is,

$$\widehat{\theta}_{j} = \frac{\exp\left(-\frac{1}{\lambda}\sum_{i}\ell'(\langle \boldsymbol{x}_{i},\widehat{\boldsymbol{\theta}}\rangle; y_{i})\boldsymbol{x}_{i}^{j}\right)}{\sum_{r}\exp\left(-\frac{1}{\lambda}\sum_{i}\ell'(\langle \boldsymbol{x}_{i},\widehat{\boldsymbol{\theta}}\rangle; y_{i})\boldsymbol{x}_{i}^{r}\right)}.$$
 (15)

Similarly, let $\widehat{\theta}'_j$ be the solution to (8) but by using a different data set \mathcal{D}' that differs from $\mathcal{D} = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_n, y_n)\}$ in exactly *one* data point. Without loss of generality, we assume that \mathcal{D} and \mathcal{D}' differs only in the first entry $(\boldsymbol{x}'_1, y'_1)$.

Now, consider an index a_s that is sampled from the probability distribution $\widehat{\boldsymbol{\theta}}$. Now, probability of sampling $a_s=j$, given that $\widehat{\boldsymbol{\theta}}$ is learned using data set \mathcal{D} is given by: $Pr(a_s=j|\mathcal{D})=\widehat{\theta}_j$. Similarly, $Pr(a_s=j|\mathcal{D}')=\widehat{\theta}_j'$. Hence,

$$\max_{j} \frac{Pr(a_{s} = j | \mathcal{D})}{Pr(a_{s} = j | \mathcal{D}')} = \max_{j} \frac{\widehat{\theta}_{j}}{\widehat{\theta}'_{j}}$$

$$= \max_{j} \frac{\exp\left(-\frac{1}{\lambda} \sum_{i} \ell'(\langle \boldsymbol{x}_{i}, \widehat{\boldsymbol{\theta}} \rangle; y_{i}) \boldsymbol{x}_{i}^{j}\right)}{\sum_{r} \exp\left(-\frac{1}{\lambda} \sum_{i} \ell'(\langle \boldsymbol{x}_{i}, \widehat{\boldsymbol{\theta}} \rangle; y_{i}) \boldsymbol{x}_{i}^{r}\right)}$$

$$\cdot \frac{\sum_{r} \exp\left(-\frac{1}{\lambda} \ell'(\langle \boldsymbol{x}'_{1}, \widehat{\boldsymbol{\theta}}' \rangle; y'_{1}) \boldsymbol{x}_{1}^{\prime r} - \frac{1}{\lambda} \sum_{i=2}^{n} \ell'(\langle \boldsymbol{x}_{i}, \widehat{\boldsymbol{\theta}}' \rangle; y_{i}) \boldsymbol{x}_{i}^{r}\right)}{\exp\left(-\frac{1}{\lambda} \ell'(\langle \boldsymbol{x}'_{1}, \widehat{\boldsymbol{\theta}}' \rangle; y'_{1}) \boldsymbol{x}_{1}^{\prime j} - \frac{1}{\lambda} \sum_{i=2}^{n} \ell'(\langle \boldsymbol{x}_{i}, \widehat{\boldsymbol{\theta}}' \rangle; y_{i}) \boldsymbol{x}_{i}^{j}\right)}.$$
(16)

Now, first consider the following:

$$\frac{\exp\left(-\frac{1}{\lambda}\sum_{i}\ell'(\langle \boldsymbol{x}_{i},\widehat{\boldsymbol{\theta}}\rangle;y_{i})\boldsymbol{x}_{i}^{j}\right)}{\exp\left(-\frac{1}{\lambda}\ell'(\langle \boldsymbol{x}_{1},\widehat{\boldsymbol{\theta}}'\rangle;y_{1}')\boldsymbol{x}_{1}^{\prime j}-\frac{1}{\lambda}\sum_{i=2}^{n}\ell'(\langle \boldsymbol{x}_{i},\widehat{\boldsymbol{\theta}}'\rangle;y_{i})\boldsymbol{x}_{i}^{j}\right)}$$

$$=\exp\left(-\frac{1}{\lambda}\ell'(\langle \boldsymbol{x}_{1},\widehat{\boldsymbol{\theta}}\rangle;y_{1})\boldsymbol{x}_{1}^{j}+\frac{1}{\lambda}\ell'(\langle \boldsymbol{x}_{1}',\widehat{\boldsymbol{\theta}}'\rangle;y_{1}')\boldsymbol{x}_{1}^{\prime j}\right)$$

$$+\frac{1}{\lambda}\sum_{i=2}^{n}\left(\ell'(\langle \boldsymbol{x}_{i},\widehat{\boldsymbol{\theta}}\rangle;y_{i})-\ell'(\langle \boldsymbol{x}_{i},\widehat{\boldsymbol{\theta}}'\rangle;y_{i})\right)\boldsymbol{x}_{i}^{j}\right)$$

$$\leq\exp\left(\frac{2LR_{\infty}}{\lambda}+\frac{nR_{\infty}^{2}L_{g}\|\widehat{\boldsymbol{\theta}}-\widehat{\boldsymbol{\theta}}'\|_{1}}{\lambda}\right)=A, \quad (17)$$

where the last inequality follows by: a) using Lipschitz continuity of ℓ , i.e., $\ell'(\cdot;\cdot) \leq L$, b) $\|\boldsymbol{x}_i\|_{\infty} \leq R_{\infty}$, c) by using Lipschitz continuity of ℓ' , and d) by applying Holder's inequality $|\langle \boldsymbol{x}_i, \widehat{\boldsymbol{\theta}} - \widehat{\boldsymbol{\theta}}' \rangle| \leq \|\boldsymbol{x}_i\|_{\infty} \|\widehat{\boldsymbol{\theta}} - \widehat{\boldsymbol{\theta}}'\|_1$.

Now, we bound $\|\widehat{\boldsymbol{\theta}} - \widehat{\boldsymbol{\theta}}'\|_1$ using strong convexity of the entropy regularizer w.r.t. L_1 norm. Let $J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n \ell(\langle \boldsymbol{x}_i, \boldsymbol{\theta} \rangle; y_i) + \frac{\lambda}{n} \sum_{j=1}^p \theta_j \log(\theta_j)$. As $\widehat{\boldsymbol{\theta}}$ is the minimum of (8):

$$\frac{\lambda}{2n} \|\widehat{\boldsymbol{\theta}} - \widehat{\boldsymbol{\theta}}'\|_1^2 + J(\widehat{\boldsymbol{\theta}}|\mathcal{D}) \le J(\widehat{\boldsymbol{\theta}}'|\mathcal{D}).$$

Similarly, using optimality of $\widehat{\theta}'$ for (8) with data set \mathcal{D}' :

$$\frac{\lambda}{2n} \|\widehat{\boldsymbol{\theta}} - \widehat{\boldsymbol{\theta}}'\|_1^2 + J(\widehat{\boldsymbol{\theta}}'|\mathcal{D}') \le J(\widehat{\boldsymbol{\theta}}|\mathcal{D}').$$

Adding the above two equations, using the fact that $\mathcal{D} - \mathcal{D}' = (x_1, y_1)$, by applying the Lipschitz continuity of ℓ , and by using Holder's inequality, we get:

$$\|\widehat{\boldsymbol{\theta}} - \widehat{\boldsymbol{\theta}}'\|_1 \le \frac{LR_{\infty}}{\lambda}.$$

Now plugging the above bound in (17), we get:

$$A \le \exp\left(\frac{2LR_{\infty}}{\lambda} + \frac{nLR_{\infty}^3 L_g}{\lambda^2}\right).$$

Using the above equation with (16), we get:

$$\max_{j} \frac{Pr(a_s = j | \mathcal{D})}{Pr(a_s = j | \mathcal{D}')} \le \exp\left(\frac{4LR_{\infty}}{\lambda} + \frac{2nLR_{\infty}^{3}L_g}{\lambda^2}\right). \tag{18}$$

Note that this ensures, that each "sample" a_s is $\epsilon = \exp\left(\frac{4LR_\infty}{\lambda} + \frac{2nLR_\infty^{3}L_g}{\lambda^2}\right)$ differentially private. Hence, ϵ and (ϵ, δ) differential privacy for the computation of the collection of m samples $\{a_1, a_2, \ldots, a_m\}$ and consequently θ_{priv} follows by using the *weak* and the *strong composition* theorems of (Dwork et al., 2006b; 2010c) respectively.

B.2. Proof Utility Guarantee (Theorem 4)

We first prove in Lemma 2 the excess risk bound of Algorithm (8) for any choice of m and λ . We then set $m = \left(\frac{\epsilon \lambda}{\log(1/\delta)}\right)^2 \left(32 + \frac{16nR_\infty^2}{\lambda} L_g\right)^{-2}$ and $\lambda = \frac{n^{2/3}}{\epsilon^{1/3} \log^{1/3} p}$ to get the final guarantee.

Lemma 2. Let L, L_g be as defined in Theorem 3. With probability at least 2/3 over the randomness of Dist and the randomness of θ_{priv} , the following is true.

$$\mathbb{E}_{(\boldsymbol{x},y)\sim Dist}\left[\ell(\langle\boldsymbol{\theta}_{priv},\boldsymbol{x}\rangle;y) - \ell(\langle\boldsymbol{\theta}^*,\boldsymbol{x}\rangle;y)\right] = O\left(\frac{LR_{\infty}\log m}{\sqrt{m}} + \frac{\lambda}{n}\log p + \frac{(LR_{\infty})^2}{\lambda}\right).$$

Here
$$\theta^* = \arg\min_{\theta \in \Delta} \underset{(x,y) \sim Dist}{\mathbb{E}} [\ell(\langle \theta, x \rangle; y)].$$

Proof. Recall that,

$$\boldsymbol{\theta}_{priv} = \frac{1}{m} \sum_{s} \boldsymbol{e}_{a_s},$$

where e_{a_s} is the a_s -th canonical basis vector and $a_s \in \{1,2,\ldots,p\}, \forall s \in [m]$ are sampled i.i.d. according to the probability distribution $\widehat{\boldsymbol{\theta}}$.

Now, for any fixed $m{x}$: $\langle m{x}, m{ heta}_{priv} \rangle = \frac{1}{m} \sum_s \langle m{x}, m{e}_{a_s} \rangle$. Note that, $\mathbb{E}[\langle m{x}, m{e}_{a_s} \rangle] = \langle m{x}, \widehat{m{ heta}} \rangle$. Therefore,

$$\mathop{\mathbb{E}}_{oldsymbol{ heta}_{nnin}}[\langle oldsymbol{x}, oldsymbol{ heta}_{priv}
angle] = \mathop{\mathbb{E}}_{a_s}[\langle oldsymbol{x}, oldsymbol{e}_{a_s}
angle] = \langle oldsymbol{x}, \widehat{oldsymbol{ heta}}
angle$$

Furthermore, $|\langle x, e_{a_s} \rangle| \leq ||x||_{\infty} = R_{\infty}$. Therefore by Hoeffding's inequality, with probability at least $1 - \gamma$,

$$|\langle \boldsymbol{x}, \boldsymbol{\theta}_{priv} \rangle - \langle \boldsymbol{x}, \widehat{\boldsymbol{\theta}} \rangle| = O\left(\frac{R_{\infty} \log(1/\gamma)}{\sqrt{m}}\right).$$

Observing $|\langle x, \theta_{priv} \rangle - \langle x, \widehat{\theta} \rangle|$ is universally bounded by R_{∞} , and setting $\gamma = \frac{1}{\sqrt{m}}$, we have

$$\underset{\boldsymbol{\theta}_{priv}}{\mathbb{E}} \left[|\langle \boldsymbol{x}, \boldsymbol{\theta}_{priv} \rangle - \langle \boldsymbol{x}, \widehat{\boldsymbol{\theta}} \rangle| \right] = O\left(\frac{R_{\infty} \log m}{\sqrt{m}} \right).$$

Now,

$$\begin{split} & \underset{\boldsymbol{\theta}_{priv}}{\mathbb{E}} \left[\underset{\boldsymbol{x} \sim Dist}{\mathbb{E}} \left[|\langle \boldsymbol{x}, \boldsymbol{\theta}_{priv} \rangle - \langle \boldsymbol{x}, \widehat{\boldsymbol{\theta}} \rangle | \right] \right] = \\ & \underset{\boldsymbol{x} \sim Dist}{\mathbb{E}} \left[\underset{\boldsymbol{\theta}_{priv}}{\mathbb{E}} \left[|\langle \boldsymbol{x}, \boldsymbol{\theta}_{priv} \rangle - \langle \boldsymbol{x}, \widehat{\boldsymbol{\theta}} \rangle | \right] \right] \\ & \leq \max_{\boldsymbol{x} \in \mathcal{X}} \underset{\boldsymbol{\theta}_{priv}}{\mathbb{E}} \left[|\langle \boldsymbol{x}, \boldsymbol{\theta}_{priv} \rangle - \langle \boldsymbol{x}, \widehat{\boldsymbol{\theta}} \rangle | \right] = O\left(\frac{R_{\infty} \log m}{\sqrt{m}} \right) \end{split}$$

Therefore, with probability at least 9/10 over the randomness of θ_{priv} , we have

$$\mathop{\mathbb{E}}_{(\boldsymbol{x},y)\sim Dist}[\ell(\langle\boldsymbol{x},\boldsymbol{\theta}_{priv}\rangle;y) - \ell(\langle\boldsymbol{x},\widehat{\boldsymbol{\theta}}\rangle;y)] = O\left(\frac{LR_{\infty}\log m}{\sqrt{m}}\right).$$

Now, using standard uniform convergence bound of (Shalev-Shwartz et al., 2009; Kakade et al., 2008), we get:

$$\mathbb{E}_{(\boldsymbol{x},y) \sim Dist} [\ell(\langle \boldsymbol{x}, \widehat{\boldsymbol{\theta}} \rangle; y) - \ell(\langle \boldsymbol{x}, \boldsymbol{\theta}^* \rangle; y)] = O\left(\frac{LR_{\infty} \log m}{\sqrt{m}} + \frac{\lambda}{n} \log p + \frac{(LR_{\infty})^2}{\lambda}\right).$$