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Abstract

In this paper, we study the problem of differen-
tially private risk minimization where the goal is
to provide differentially private algorithms that
have small excess risk. In particular we address
the following open problem: Is it possible to de-
sign computationally efficient differentially pri-
vate risk minimizers with excess risk bounds that
do not explicitly depend on dimensionality (p)
and do not require structural assumptions like re-
stricted strong convexity?

In this paper, we answer the question in the af-
firmative for a variant of the well-known output
and objective perturbation algorithms (Chaud-
huri et al., 2011). In particular, we show that un-
der certain assumptions, variants of both output
and objective perturbation algorithms have no ex-
plicit dependence on p; the excess risk depends
only on the Ly-norm of the true risk minimizer
and that of training points.

Next, we present a novel privacy preserving algo-
rithm for risk minimization over simplex in the
generalized linear model, where the loss func-
tion is a doubly differentiable convex function.
Assuming that the training points have bounded
Lso-norm, our algorithm provides risk bound
that has only logarithmic dependence on p. We
also apply our technique to the online learning
setting and obtain a regret bound with similar
logarithmic dependence on p. In contrast, the ex-
isting differentially private online learning meth-
ods incur O(,/p) dependence.

1. Introduction

Recently, there have been growing concerns regarding po-
tential privacy violation of individual users’/customers’
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data by modern systems that employ learning and statistical
analysis methods. Motivated by such concerns, several re-
cent works have proposed and analyzed privacy preserving
learning algorithms (Chaudhuri et al., 2011; Pathak et al.,
2010; Kiferet al., 2012; Jain et al., 2012; Duchi et al., 2012;
Smith & Thakurta, 2013). All these works use differential
privacy (Dwork et al., 2006b) as the notion to define privacy
of each individual training data point. Furthermore, they
show that not only their methods are differentially private,
but they also have bounded excess risk or bounded regret
that improves with larger number of training instances.

Most of these existing methods use the standard technique
of adding noise to either the learned model or some inter-
mediate construct of the algorithm (Chaudhuri et al., 2011;
Kifer et al., 2012; Jain et al., 2012). Subsequently, they
provide excess risk/generalization error bounds that scale
as a polynomial of the dimensionality (p) of the input data.

One of the achievement of machine learning has been that
for several learning problems that can be modeled using
generalized linear model, the excess generalization risk can
be shown to be independent of the dimensionality of input
data points (p), provided that the input data points and the
output model are constrained to have bounded Lo-norm.
Similarly, for several other classes of problems, the bounds
are known to grow only logarithmically with p (Shalev-
Shwartz et al., 2009; Negahban et al., 2009).

Hence, a long-standing open problem in the domain of
differential privacy has been: Can computationally effi-
cient differentially private learning algorithms be designed
which have excess risk/generalization error that is either
independent or only logarithmically dependent on the di-
mensionality of the problem? Recently, Kifer et al. (2012);
Smith & Thakurta (2013) obtained risk bounds for the
sparse regression problem that scale logarithmically with
p. However, their method needs additional restrictive as-
sumptions like restricted strong convexity (RSC).

In this paper, we provide the first dimension independent
risk bounds for generalized linear model based learning
methods. In particular, we show that while the “distance”
(such as Euclidean distance) between the differentially pri-
vate learned model and the optimal non-private learned
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model can depend polynomially on p, the excess risk can
still be independent of the dimensionality of the input data,
as long as the feature vectors and the underlying parame-
ter vector are bounded in the Lo-norm. Furthermore, we
show that if the feature vectors are bounded in the L. -
norm and the underlying parameter vector is bounded in
the Li-norm, we can get risk bounds which only depend
logarithmically on the dimensions.

We propose to use Gaussian noise based perturbation with
the output and objective perturbation algorithms by Chaud-
huri et al. (2011). While the privacy of such perturba-
tion was analyzed by Chaudhuri et al. (2011); Kifer et al.
(2012), their excess risk analysis for empirical risk mini-
mization (ERM) in the generalized linear models (GLM)
were loose and led to polynomial dependence on p. We
show that their analysis can be tightened to remove explicit
dependence on p and have dependence only on the Ly norm
of the input data points and the output parameter vector.

Our results hold for all L, regularized unconstrained ERMs
with 1-Lipschitz smooth convex function. We would like to
stress that this class of ERM is a popular class and includes
important problems such as logistic regression. Further-
more, for analysis of output perturbation based algorithms
we don’t need smoothness assumption as well and hence
can provide excess risk bounds for private-SVM as well.

We then study a class of problems where the parameter vec-
tor is bounded to be on a scaled simplex. Recently, such
problems have gained a lot of importance as they provide
excess risk bounds that scale only logarithmically in di-
mensions and linearly with the L;-norm of parameter vec-
tor, hence are well-suited for high-dimensional learning.

For these problems, we propose a novel privacy preserving
algorithm that draws multiple samples from a distribution
defined by the non-private optimal parameter vector and
outputs their average. We show that the excess risk for this
algorithm scale as O(logp/n'/3), where n is the number
of training examples. In comparison, existing approaches
(Chaudhuri et al., 2011; Kifer et al., 2012) incurs a poly(p)
dependence on the error. We would like to stress that our
algorithm fundamentally deviates from existing approaches
for private ERM as the existing techniques require O(p)
randomized operations to output the parameter vector while
we perform only sub-linear (in n) number of randomized
operations to give the output parameter vector. Hence, our
method requires significantly lesser randomness for p > n.

Furthermore, most of the existing differential private algo-
rithms either add explicit perturbation (Chaudhuri et al.,
2011; Kifer et al., 2012) or uses a well-known exponen-
tial mechanism (McSherry & Talwar, 2007). In contrast,
our algorithm uses a novel sampling approach which might
in itself be of interest for designing novel differentially pri-
vate algorithms. Our algorithm also ensures that the output
is in fact a sparse vector, hence it not only provides privacy
but also enables efficient computation.

As a direct application of our private algorithm over the
simplex, we provide a privacy preserving variant of the
Follow the Regularized Leader (FTRL) algorithm com-
monly used in online learning (Hazan et al., 2007; Shalev-
Shwartz, 2011). We show that if the cost functions (in the
online learning setting) are linear and the optimization is
performed over the simplex, then our proposed algorithm
achieves the optimal regret bound of O(y/T log p). Here,
T refers to the time horizon of the online learning algo-
rithm and p-refers to the dimensionality of the problem. A
similar result was obtained by Dwork et al. (2010b) that
guarantees /1 log p regret, however their analysis holds
only for a weaker model of privacy where the adversary
cannot distinguish between the presence or absence of one
coordinate in the linear cost function.

Finally, we provide empirical evaluation of our proposed
methods and compare them against the objective/output
perturbation methods of Chaudhuri et al. (2011) over
benchmark data sets. We show that the methods of Chaud-
huri et al. (2011) indeed incur test error that grows with
p, while our method is able to obtain accurate predic-
tions even for high-dimensional data sets. Similarly, we
also evaluate our proposed sampling based method for pri-
vacy preserving learning over simplex by simulations over
a benchmark data set.

Contributions:

1. We show that by sampling the perturbation from a Gaus-
sian distribution, instead of Gamma distribution as pro-
posed by Chaudhuri et al. (2011), we can obtain dimen-
sion independent excess risk for the well-known output and
objective perturbation algorithms (Chaudhuri et al., 2011)
when applied to the maximum-margin based problems.

2. We provide a sampling based differentially private algo-
rithm for solving a large class of ERMs over scaled simplex
and show that the obtained risk bound scales logarithmi-
cally in p. However, our excess generalization error rate
has a worse dependence of 1/n'/? on the size of the data
set (n), as compared to the optimal rate of 1/+/n.

3. We provide a differentially private version of the Fol-
low The Regularized Leader algorithm for online learning,
whose regret scales as O(+/T log p) when optimizing over
the simplex. Our regret bound matches the non-private re-
gret bound (under similar setting) up to factors depending
only on differential privacy parameters € and log(1/6).

4. We provide empirical evaluation of our methods on
benchmark data sets. Our evaluation clearly shows that the
proposed techniques not only provides significantly tighter
error bounds but also provide significantly more accurate
predictions on benchmark data sets.

2. Related Works

The problem of differentially private ERM has been stud-
ied extensively in the literature. Starting with (Chaudhuri
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& Monteleoni, 2008; Chaudhuri et al., 2011; Rubinstein
et al., 2009), there has been extensive work both in the low-
dimensional setting as well as the high-dimensional setting.
In the low-dimensional setting, where the dimensionality
of the problem (p) is smaller than the size of the training
data set (n), most of the existing methods provide an ex-
cess error bound that has a polynomial dependence on p
(Chaudhuri & Monteleoni, 2008; Chaudhuri et al., 2011;
Rubinstein et al., 2009; Kifer et al., 2012; Jain et al., 2012).
In the high-dimensional setting, where the dimensionality
of the problem exceeds the size of the data set, the existing
methods provide logarithmic dependence on p, but require
strong statistical assumptions like Restricted Strong Con-
vexity (Kifer et al., 2012; Smith & Thakurta, 2013). An ex-
ception to the above is the work by Jain & Thakurta (2013)
that provides a differentially private method for learning
with kernels, however their methods assume a stronger
model where a few samples from the unlabeled test data
set are also available.

In contrast, we show that for generalized linear models
with bounded feature space (either in the Lo-norm or L -
norm), we can use differentially private regularized ERM
that also guarantees excess risk bound which is indepen-
dent of p or depends logarithmically on the dimensions (p).

Chaudhuri & Hsu (2011) provided a differentially private
classifier where the excess generalization error is depen-
dent only the doubling dimension of the hypothesis space.
They also provided a matching lower bound. However,
their method is defined only for 0 — 1 loss function and
in general can take exponential time in the number of train-
ing points. We also note that the doubling dimension of
regularized linear learning models can be shown to be ei-
ther independent or logarithmically dependent on p (Zhang,
2002). Hence our results do not contradict the lower-bound
result of Chaudhuri & Hsu (2011).

3. Background and Problem Formulation

Risk Minimization and Excess Generalization Error:
Given a data domain X, an unknown but fixed distri-
bution Dist over X, a fixed convex set C C RP, and
a risk (loss) function ¢ : C x X — R, the objective
is solve the following stochastic minimization problem:
arg glelg Eq~pist[€(0;d)]. For a given vector 8 € C, the

excess generalization error (or risk) is defined as an upper
bound on:

E [¢(0;d)] —min E

d~Dist oeC d~Dist[£(0; d)]

To minimize the excess risk, we use the standard regular-
ized Empirical Risk Minimization (ERM) method:

- s r(9)
O_argglelgﬁ;é(e’dl)+ - (1)

where, the training data ( D) is drawn i.i.d. from the dis-
tribution Dist. Also, 7 : C — R is a twice differentiable
convex regularizer.

Now the goal of this work is to design differentially private
ERM with small excess risk bound. We focus on the gener-
alized linear models (GLMs), where each data point d is of
the form (x, y) with ¢ € RP and y € R, and the loss func-
tion £(0;d) is given by: £(6,d) = {({x,0);y). Logistic
regression, linear regression and support vector machines
are some of the classic examples of GLM.

Differential Privacy: Differential privacy (Dwork et al.,
2006b;a) ensures that the amount of information an adver-
sary can obtain about an individual from the output of an
algorithm A running on the data set D is roughly the same
irrespective of that individual’s presence or absence in the
data set D. Formally,

Definition 1 (Differential privacy (Dwork et al., 2006b;a)).
A randomized algorithm A is (e, §)-differentially private if
for any two data sets D and D' of size n drawn from the
domain X" with dg (D, D’) = 1 (dy being the hamming
distance), and for all (Borel) sets O C Range(A) the fol-
lowing holds: Pr[A(D) € O] < e Pr[A(D’) € O] + 6.

Choice of ¢, ) privacy parameters: Smaller values of € and
0 imply stronger privacy guarantees. Typically € is set to
be a small constant (say 0.1) and § should be o(1/n?),
where n is the number of records in the data set. See (Ka-
siviswanathan & Smith, 2008) (Lemma 3.3) for a rigorous
justification of the above choices of these parameters. Ka-
siviswanathan & Smith (2008) also show that the seman-
tic notion privacy (see Definition 2.3 in (Kasiviswanathan
& Smith, 2008)) is invariant to the size of the hypothesis
space and hence, to provide a fixed level of privacy to a
data point, ¢ is not required to depend on p.

A common approach for designing a differentially private
algorithm is via the global sensitivity framework defined
below. In a lot of the algorithms discussed in this paper,
this forms the basic building block. Let X" be a domain
of data sets (with n data points) and let f : X" — RP be
a function to be evaluated on a data set D € X". Global
sensitivity of the function f is defined as in (2). Here the
operator d refers to the hamming distance and || - ||, refers
to the L,-norm for a specific g.

GS(f) = max

D,D’'eX™,dy (D,D')=

@) =D, @

Let b € R? be a random variable sampled from the distri-
cllb]
bution with density proportional to e~ 5 . (Dwork et al.,

2006b) showed that for a given data set D, an algorithm
that outputs f(D) + b is e-differentially private.

Assumptions and notation: Throughout this paper we
will assume that the loss function ¢ : R x R — R is
in the generalized linear model, L-Lipschitz continuous in
its first parameter, and twice-continuously differentiable.
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The feature vectors are bounded in the L,-norm with the
bound being denoted with R,. We will set ¢ = 2 or
q = oo based on the context of the problem. For a
fixed distribution Dist over the data domain X', we denote
0* = arg min (m’y)IEDist[ﬁ(@, 0);y)]. We denote the di
ameter of the convex set C in Lg-norm as ||C||, (when the
diameter is finite). For the domain of data points X, R,

denotes an L, bound on the norm of any © € R? in X

4. Private Risk Minimization with No Explicit
Dependence on Dimensions

In this section, we present two privacy preserving ERM
algorithms with dimension independent excess generaliza-
tion error bounds for Lo-norm bounded data points and Lo-
norm bounded parameter space. We also assume that the
regularizer r(0) in (1) is %‘9”; (with A being the regular-
ization parameter) and the convex set C equals RP. One
way to interpret the assumption on the convex set is in
the improper learning setting. Although the true risk min-
imizer lies in a bounded convex set, the algorithm is al-
lowed to produce a hypothesis from RP. Settings as above
are common in several machine learning formulations, es-
pecially ones that try to find maximum margin learner such
as SVM, L, regularized logistic regression etc.

Chaudhuri et al. (2011) proposed two popular algorithms
for the problem of privacy preserving ERM, namely out-
put perturbation and objective perturbation. Roughly, the
output perturbation method perturbs the true minimizer of
the ERM (1), 6, to preserve privacy. While the objec-
tive perturbation method perturbs the objective function

J(0) = 3 20 (0, i) i) + % for privacy.

n

In the following, we provide tighter utility analyses for both
output and objective perturbation for GLMs.

4.1. Output Perturbation

The output perturbation method (Chaudhuri et al., 2011)
first computes the minimizer 6 of (1) and then adds noise
scaled according to the global sensitivity of 6. A formal
description of the algorithm is given in (3).

~

Output Perturbation: 6,,,,(D) =6(D)+b (3)

o~

Here (D) maps a data set D to the corresponding min-

o~

imizer @ of (1), and b € RP is a random vector whose
Lo-norm (v) is distributed according to the Gamma distri-

_ _weA
bution with kernel e 4LEz2

Chaudhuri et al. (2011) showed that if the bound
on the double derivative of /¢ is c¢o (W.rt. its
first parameter), the excess generalization error scales

as O (Lelplosp(Rall072) Y Kifer ot al. (2012);

evn

Thakurta (2013) showed that instead of adding Gamma

noise, if Gaussian noise N(0, 16(LR2)2}\(§Z§(1/5)+5)]I,,)
is added, then the generalization error improves to
1/3 * 4/3

o[ Le / p(log(léf/)ge)(RzHO ll2)*/ . Note the /p im-
proved dependence on the dimensionality compared to the
bound by Chaudhuri et al. (2011). However, the privacy
guarantee is weaker, i.e., the algorithm now satisfies (e, J)-
differential privacy compared to e-differential privacy guar-
antee provided by Chaudhuri et al. (2011).

In our work we improve the earlier analysis and show that
with the same Gaussian noise, one can get generalization
error guarantees that are independent of any explicit de-
pendence on p. Our result also has improved dependence
on parameters L, Ry and ||0*||2. We would like to note
that our results hold only for the generalized linear model
(GLM) and when the regularization function is the squared
Lo norm.

Theorem 1. Let D = {(x1,v1),  , (®n,yn)} be iid.
samples drawn from a fixed distribution Dist over the do-
main X. Also, let 0* = arg min E  [((0,z);y)]

OCER? (x,y)~Dist
If A = LBV then with probability at least 2/3 over the

612
randomness of the training data set D and the randomness

of the noise vector b, the following is true:

E [£(<0p7’71)7x>7y) 7€(<0*7$>7y)] =

(x,y)~Dist
LR2||0*H2 10g (%) +e€
ev/n ’

where 0,,,.;, is the output of the output perturbation method
2
(3) with b ~ N (0, 10EAL GO, )

€

Proof Idea: The main idea in our proof is that since the
learning model is a GLM, the prediction for a feature vector
x € RP with a parameter vector 6 depends only on (x, 8).

Now for the two parameter vectors 0 (from (1)) and 0,4,
(the output of the output perturbation algorithm), and any
data point (z, y), the difference in the loss is bounded by
the following.

[0((Bpriv, x)3y) — £((8, )3 )| < L|(b, )]

Since we are interested in bounding the excess generaliza-
tion error, we only need to bound the right hand side in
expectation over b (and then use Markov’s inequality). Re-
call that our noise vector b is a symmetric Gaussian ran-
dom vector. So, we have Il[;l[|<b, z)|] < ol|z||2, where o is

the standard deviation of b. Notice that a naive Cauchy-
Schwarz argument would result in a bound of /po||z||>.

The fact that we can bound the expectation with a quantity
that does not have any explicit dependence on the dimen-
sionality allows us to get our desired result in Theorem 1.
See Appendix A for a detailed proof.
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4.2. Objective Perturbation

In this section we discuss the objective perturbation algo-
rithm that perturbs the objective function in (1) by a random
linear term to guarantee differential privacy. That is,

Objective Perturbation: 0,,.;, =
(0,6)

arg min . if(w Ti);yi) + Ml + (4)
OcRr N, ] ’ ’ m n )

where A is a parameter to the algorithm and b is a zero-
mean perturbation. This algorithm was first proposed by
Chaudhuri et al. (2011) and was subsequently improved by
Kifer et al. (2012). Chaudhuri et al. (2011) showed that the

algorithm is e-differentially private when the noise vector b
_elbls
is drawn from the Gamma distribution with kernel e 2272

and A= 202R§, where [7((0,2);y)| < co, V(x,y) €

, VO € R (The double derivative is w.r.t. the first pa-
rameter of £.) While, when the noise vector b is drawn from
N (0 M%) , Kifer et al. (2012) showed that

the algorithm is (e, 0)-differentially private.

In terms of excess risk bounds, Chaudhuri et al. (2011)
showed that under suitable choice of parameter A, the gen-
eralization error of the private algorithm with Gamma noise
scales as:

0 ((LRz)IIf\ﬂzplogp>

Later, Kifer et al. (2012) improved the excess risk bound

to:
O( (LR2)[6|l2+/plog(1/9) )
ev/n

where the perturbation vector b is sampled from the Gaus-
sian distribution mentioned above and where \ parameter
is selected appropriately.

We now present our dimension independent excess risk
bound of the objective perturbation algorithm with Gaus-
sian noise. The dimension independent analysis for objec-
tive perturbation is significantly trickier than output per-
turbation, since unlike output perturbation the exact distri-
bution of 6, is hard to evaluate. Our analysis uses a
novel reduction of the analysis of objective perturbation al-
gorithm to the analysis of output perturbation as given in
Section 4.1.

Theorem 2. Let D = {(x1,y1),  , (Tn,yn)} be iid.
samples drawn from a fixed distribution Dist over the do-
main X. Also, let 0* = arg min E [€((0,x);y)]

O€R? (x,y)~Dist
in (4), then

LRa+/n
the following holds with probability at least 7/10 over the

If the regularization coefficient A = —=——
Viex|z+1
randomness of the training data set D and the randomness

of the noise vector b:
[€(<0priv7 w>; y) - £(<0*7

(z,y)~Dist
0 (log® n)(LR2)?||07[|2/10g (5) + ¢
ev/n ’

x);y)| =

where 0., is the output of the objective perturba-
tion method (4) where b ~ N (0, 02]11,) and 0> =
4(LR2)*(log 1 +¢€)

Do) e

Note that the generalization error for objective perturba-
tion is almost identical to that of output perturbation except
an extra poly logn factor and an extra factor of LRs. We
conjecture that extra poly logn factor is an artifact of our
analysis and leave further tightening of our bound as topic
of future research.

Proof of Theorem 2. Let,

1 NI b, 6
Jyrsl8) = 23 t((0,2,):) + A 0)
i=1
BN A b” b3
= Zf(wami),yi) o, H9+ N

1 T; 2
Let Hpriv(e) = %2?21 €(<07x1> - %ayl) + %
Note that,

b
(arg 61’1[6111& Hyrin (0)> —y =ag gl;ln Jpriv(0).

Recall that 6,,;, = arg ;n]iRn Jprin(0). Define 0,5, =
ERP

arg én]iRn H,»(0). By the observation above, we have
E p

Opriv = épm) — g. With this observation, we can intu-
itively think that 8,,.;,, is obtained after executing the output
perturbation algorithm with the objective function Jp,;.,.

We now artificially increase the dimensionality of the prob-
lem from p to p+1. For every feature vector x € RP, define

x! € RPH! as the vector = appended with — (&, w> in the last
i 7] 1 +1
coordinate. For the vector 0,,,.,, define ,,,, e RP™ to be

the vector ép,.iv appended with one in the last coordinate.
Using the definition of 6,,;,,, we have,

6 . = arg

priv

G(8")

min
ot eRr+1 01 (p+1)=1
= Zf

Now, by using the observation of the previous section,

01];”1) = [Opriv + g; 1]. Also, using the uniform conver-

gence theorem of Shalev-Shwartz et al. (2009) (re-stated in

) i) +—||0*H2 (5)
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Theorem 5 of Appendix A), the following holds with prob-
ability > 9/10 over the randomness of the sampling of the
data set D:

Bl ()l - Bfe (1070 - BT <
)2
"3+ 0 ((L”;’> L ©

where Ryl = \/ma%( |3 + <b’€>2. By using the above
E4S

equation and the observation that BITWU = [Opriv + /\, 1],
we get:

E 0y T) — @;y)} <

x 2
£ [1((0", &)~ "2 ) 0 340 (@) ,

Now, by using Lipschitz property of ¢, we get:

Bz y [(((Bpriv, T);
(z,b)
A

x);y)] <

D~ e,
A igerz o OW(LR)?
|+ ot + CHERT 0

2L'E[

Since, the noise vector b is a vector of ii.d. Gaus-
sian random variables with standard deviation o, by
the tail probability of Gaussian random vectors We can
conclude that with probability at least 9/10, R =

0 (Rg\/m).

probability at least 9/10 over the randomness of b,
EmNDist |: (w),\b} H =0 (JTR2)

Combining the above observations with (7), we get (w.p.
>9/10):

By a similar argument, with

Bz y [L((Opriv, x);y) — L((07, 2); )] <

- OWERE (,

o2log’n o
\ +

A2 LR, n

Theorem now follows by setting o according to the theorem

statement and by selecting A = Li\l;i\\(f' O

S. Private ERM Over Simplex with
Logarithmic Dependence on Dimensions

In this section we present a differentially private ERM al-
gorithm for L..-bounded data points and parameter vec-
tors restricted the simplex, with excess generalization error
bound that scales logarithmically in the dimensionality. As
a price for improved dependence on the dimensionality, our
excess generalization error has worse dependence on the

o<1>A||o*||%> |

data set size (n). Our error scales as 1/n'/3

the non-private optimum of 1/4/n.

, compared to

As a corollary of our result, we derive improved regret
bound for differentially private online learning with lin-
ear costs considered in (Dwork et al., 2010b). Our regret
guarantee depends logarithmically on the dimensionality,
compared to the polynomial dependence of (Dwork et al.,
2010b). However, our privacy guarantees are weaker, i.e.,
we guarantee (e, §)-differential privacy as compared to e-
differential privacy of (Dwork et al., 2010b).

5.1. Private ERM with Entropy Regularization

Consider the following ERM problem over simplex A =
{0 €RP:> 0, =1and Vi, 0; > 0}:

0= argmm — ZE ((x;,0

Ze log(6;), (8)

where (;,y;) ~ Dist, Vi. If we choose A = O(y/nlogp),
then using standard Rademacher or covering number argu-
ments one can show that the excess generalization error of

6 is bounded by O ( v lo\ng ) where R,
(Kakade et al., 2008; Shalev-Shwartz et al., 2009)

= max |z || o

If we use either output or objective perturbation algorithm
from Section 4 to obtain a differentially private variant of
the above, then the excess generalization error will scale as

O(\/PRoo/\/1), as opposed to O (v/Iog pR/y/1) in the

non-private case.

In this section, we present a novel differentially private
algorithm for solving ERM over simplex such that the
excess risk scales as O(lognlogpRas/n'/?). Our al-
gorithm heavily exploits the fact that the optimization
is over a simplex, and involves sampling non-uniformly
from probability vectors from the simplex. In our method
we first computes the non-private ERM solution 6 us-
ing (8). Now, we treat 6 as a discrete probability dis-
tribution over {1,2,...,p} and sample m ii.d. points
[ai as ... an),a; € [p], from 6. The private output vector
0, is given by:

m

=3 e, ©)

j=1

Hpriv

where e, ; denotes the a;-th canonical basis vector and m is
a parameter that we specify later in the theorems for privacy
and excess risk.

In the following, we provide formal privacy guarantee
(Theorem 3) and excess generalization risk bounds (The-
orem 4) for 6,4, (9). See Appendix B for proofs.

Theorem 3 (Privacy guarantee). Let { : R x R — R be
a differentiable smooth function. Let Ly be the Lipschitz



Dimension Independent Risk Bounds for Private Learning

constant of U’s gradient and let L be its Lipschitz constant.
Then:

e 0,., is edifferentially private when m =

2N (4+ QnROQZL )71
LR A g .

e 0, is (€ 0)-differentially private when m =
2

2 —

[2) 16N Roo 2
(1og(1/5)) (32+7A Lg) :
Theorem 4 (Utility guarantee). Let D =

{(x1,y1), s (@n,yn)} be i.id. samples drawn from a
fixed distribution Dist over the domain X. Also, let A\ =

n2/3 2N 2 16N Roo 2 —2
el/3logl/3 p (log(l/ﬁ)) (32+ A Lg) :
Then, the following holds with probability at least 2/3
over the randomness of the training data set D and the
randomness of the algorithm:

E £((0 rivs L); —/ O*a ; =

oo 06, 2hy) — (6" @)y

o (LR)3(1+ Lg)lognlogplog ()
(ne)1/3 ’

and m =

where 0* = arg géiIAl (m,y)]ZEVDiSt[E(<0,:1:>;y)] and By is

obtained by (9) with m as given above.

Similarly, with a proper choice of A and m, we can obtain
an e-differentially private algorithm whose excess risk scale

as O(poly(log nlog p) /(v/en'/*)).

5.2. Private Online Learning over Simplex

In this section, we study the problem of private online
learning over the simplex. The main goal of this section
is to demonstrate that the techniques developed in the pre-
vious section can be related to existing methods for private
online learning. Furthermore, it leads to improved regret
bound for differentially private online learning over sim-
plices as compared to the existing works of Dwork et al.
(2010a); Jain et al. (2012). In particular, similar to the of-
fline learning setting, existing privacy preserving methods
incur additional O(,/p) multiplicative factor in the regret.
In contrast, our proposed method is able to bring down the
multiplicative factor to /log(p) for online learning with
linear costs over the simplex.

We assume that the cost functions ¢;(6) provided at each
step are linear, i.e., /:(0) = (x,0). Also, we assume a
“weak” adaptive adversary which cannot see the prediction
at the ¢-th step beforehand. Now, we first consider the pop-
ular Follow-the-regularized-leader (FTRL) algorithm with
entropy regularization for this problem (Shalev-Shwartz,
2011). Using FTRL, the ¢-th step parameter vector is given
by:

. 1l A
Or1 = argmin — (6,x,) + ) 0ilog(0:), (10)
T=1 i

where 7-th step loss function is given by: £, (0) = (x, 0).
Notice that the optimization problem in (10) at every step
t, is equivalent to (8). Hence, we can use the same method
as given in the previous section for computing the privacy

preserving update Offf. In particular, we select m = 1 and

sample one index a from the probability distribution §t+1.
Hence, .

o = e
where a € {1,2,...
tribution ;1.

,p} is sampled from the discrete dis-

In online learning the objective is to bound the regret, given
by the following:

Regret(T) =E

T
;m,ef””)] —gggzt:<wt,9> (11)

From the standard online learning literature (Corollary 2.14
from (Shalev-Shwartz, 2011)), it follows that (11) is up-

2
per bounded by Alogp + TR%. And from the privacy
analysis of Theorem 3, it follows that the above algo-

rithm is (e, ¢)-differentially private (over all the T-steps)

as long as A > @

floo /8T 08P 108(1/0) 3 (10) directly gives us an (€,0)-

differentizflly private FTRL algorithm which has the fol-
lowing regret bound in (12).

Regret(T) = O (ROO Tloiplog(l/(;)) (12)

. Therefore setting, A =

Remark: The regret bound of our private algorithm

matches the non-private optimal regret bound up to factors
of log(1/§)/e. Our result directly improves on the result of
Dwork et al. (2010b) (adapted to our privacy model), where
the regret implied by the analysis of (Dwork et al., 2010b)

is O (s/(Tp)poly log(T)/e). It is worth mentioning that

we provide a weaker (e, §)-differential privacy guarantee as
opposed to e-differential privacy guarantee of Dwork et al.
(2010b). By adapted to our privacy model, we mean the
following: Dwork et al. (2010b) guarantees the indistin-
guishability of the presence or absence of one coordinate
of a single linear cost function, where as in this paper we
ensure the indistinguishability of one complete linear cost
function. In fact in the privacy model considered in (Dwork
et al., 2010b), they managed to get a regret guarantee that

scales as O(v/T log p poly log T').

6. Experiments

In this section, we first validate our theoretical anal-
ysis of the normal distribution based output and
objective-perturbation methods (denoted as Output-
Gauss, Objective-Gauss respectively) for Lo regularized
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Figure 1. (a), (b) Accuracy achieved by various methods for varying values of €. Objective-Gauss outperforms the other methods
significantly. (c) Accuracy achieved by various methods for artificially bloated dimensionality p of the dataset (¢ = 5, § = 107%).
Accuracy of both Objective-Gauss and Output-Gauss is nearly constant w.r.t. p, while Objective and Output’s accuracy suffers for large
p. (d) Accuracy achieved by our sampling based method for artifically bloated dimensionality of the dataset. Our method achieves
similar accuracy to the non-private classifier and is slightly better than Objective-Gauss and Objective perturbation methods.

ERM. Next, we show that our sampling based method
(denoted as Sampling) for entropy regularized ERM also
achieves similar accuracy to the non-private ERM.

For our first set of experiments, we apply SVM based clas-
sifiers on two benchmark datasets: URL and Cod-RNA.
We use a subset of the URL dataset which has 100, 000 data
points and its dimensionality is around 20M. Cod-RNA has
around 60K data points and its dimensionality is 8. We use
70% of the data for training and the remaining 30% for test.
All the results presented are averaged over 20 runs and our
code uses a modification of the LIBLINEAR method for
solving the perturbed SVM problem.

We evaluate the standard Output-perturbation (denoted as
Output) and Objective-perturbation (denoted as Objec-
tive) methods by (Chaudhuri et al., 2011) against Qutput-
Gauss, Objective-Gauss methods. We first show that as
shown by our theoretical analysis, the test error of Qutput-
Gauss and Objective-Gauss is indeed independent of the
training data’s dimensionality. Moreover, the test er-
ror of the gamma-distribution based perturbation used by
(Chaudhuri et al., 2011) indeed increases with the dimen-
sionality.

We first apply all the four methods mentioned above to the
URL and the Cod-RNA dataset. We set the regulariza-
tion parameter A = 0.001 and § = 1073, Figures 1 (a),
(b) shows accuracy achieved by different algorithms on the
URL, Cod-RNA dataset, with varying privacy parameter
€. Clearly, Objective perturbation methods are significantly
better than the Output perturbation based methods. More-
over, normal distribution based perturbation is able to ob-
tain significantly higher accuracy.

We now study how the accuracy of various methods vary
with the dimensionality of the dataset (Figure 1 (c)). To this
end, we use Cod-RNA dataset and artificially blot up its di-
mensionality by adding zeros to the feature space vectors.
Note that this does not effect the baseline classifier and its
accuracy. Clearly, as predicted by our analysis, accuracy of
the Objective-Gauss and the Output-Gauss does not change
with large increments in the ambient dimensionality p. In
contrast, accuracy of both Objective and Output perturba-
tion algorithms suffer heavily for larger p.

Above experiments suggest that our theoretical analysis of
objective perturbation (Theorem 2) may be loose. One
open problem is to investigate the tightness of the current
analysis.

Finally, we study our Sampling method for entropy reg-
ularized ERM. To this end, we first solve a entropy regu-
larized least squares problem. We then threshold predicted
values to obtain class values. We conduct experiments on
Cod-RNA dataset with ¢ = 10,6 = 1073 and by using
70% of the data for training and the remaining for test. Fig-
ure 1 (d) shows accuracy achieved by various methods with
artificially bloated dimensionality of the data. Clearly, ac-
curacy achieved by our Sampling method is similar to the
non-private classifier and is significantly better than both
Objective and Objective-Gauss for larger values of p.

7. Discussion

Our dimension independence analysis for objective pertur-
bation holds only if the optimization is over the uncon-
strained space R? (see Theorem 1). In fact, it can be easily
shown that both output and objective perturbation approach
will fail to provide dimension independent risk bound if the
solution of the ERM is contrained to lie in an arbitrary con-
vex set C C RP. For example, say optimal solution 0 is
constrained to lie in the positive orthant and let the optimal
solution to the ERM is 0. In this case, it is easy to see that
both objective and output perturbation methods will give
excess risk that scales as /p.

Another limitation of our analysis is that we need to as-
sume that the regularization function of the ERM is either
squared Lo norm or the negative entropy function. Tight
excess risk analysis (in terms of dependence on p) for other
regularization functions (for example, L; norm) is still an
open problem and is left as a topic of future research.

Finally, our algorithm for privacy preserving entropy regu-
larized ERM uses a sampling based technique that is signif-
icantly different from the existing differential privacy learn-
ing techniques. For future research, we want to explore this
technique in more detail and possibly, apply the technique
to other similar problems.
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