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Crowds vs experts labeling: strength

Time saving

Money saving

Big labeled data

More data beats cleverer algorithms
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Crowds vs experts labeling: weakness

Garbage in ... ... Garbage out

Crowdsourced labels
may be highly noisy




Non-experts, redundant labels
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Non-experts, redundant labels
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Workers

ltems

Observed worker labels

Unobserved true labels: y;




Roadmap: from multiclass to ordinal

1. Develop a method to aggregate general multiclass labels




Examples on multiclass labeling

Image categorization

Speech recognition




Introduce two fundamental concepts

Empirical count of wrong/correct labels
gij(c, k) = Q(Y; = c)l(xiy; = k)
Expected number of wrong/correct labels

¢ij(cn k) = Q(Yj = C)P(X’éj — k|Yg = ¢)

P: worker label distribution  Q: true label distribution
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Multiclass maximum conditional entropy

Given the true labels @, estimate P by

max H(X]Y)

subject to

éworker constraints > i, k) — iy (e, k)
S o —
~item constraints Y [¢i;(c.k) — gi(c. k)| = 0. V. k,c

S w """""""""""""" i

=0, Vi.k,c
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Multiclass minimax conditional entropy

Jointly estimate Pand Q by

minmax H(X|Y)
Q | P

subject to

éworker constraints > i, k) — iy (e, k)
S o —
~item constraints Y [¢ij(c.k) — gij(c. k)| = 0. V. k,c

S w """""""""""""" i

=0, Vi.k,c




Lagrangian dual

L =

H(X|Y)+LO'+LT+LA
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Probabilistic labeling model

By the optimization theory, the dual problem leads to

1
Z@j

P(Xi; = kY =c¢) = ——exploi(c, k) + 75(c, k)]

Z i normalization factor
worker ability item difficulty
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Dual problem

max ZQ(Y} — C) Zlog P(X?j — 32'?3|Yj7 — C)

1. This only generates deterministic labels
2. Equivalent to maximizing complete likelihood




Roadmap: from multiclass to ordinal

2. Adapt the general method to ordinal labels
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An example on ordinal labeling

machine learning p

Machine learning—=Wikipedia, the free en pedia

ign and study

of systéms that can learn from data. For example, a machine .
Definition - Generalization - Machine learning and ... - Human interaction

Machine Learning | Coursera
https://'www.coursera.org/course/ml -

Machine Learning. Learn about the most effective machine learning techniques, and
gain practice implementing them and getting them to work for yourself.

Machine Learning | Stanford Online
online_stanford.edu » Courses -

What is the format of the class? The class will consist of lecture videos, which are broke
into small chunks, usually between eight and twelve minutes each.

hine learning | Define Machine learning at Dictiona




To proceed to ordinal labels

* Formulate assumptions which are specific for ordinal labeling

* Coincide with the previous multiclass method in the case of binary
labeling



Our assumption for ordinal labeling

adjacency confusability

7 likely to confuse

/

unlikely to confuse
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Formulating this assumption though

pairwise comparison

Reference label

True label

Worker label
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Ordinal minimax conditional entropy

Jointly estimate Pand Q by

minmax H(X|Y)
Q P

subject to

----------------------------- l cAS kVS J
""" e consrants TTY [% k) = duile, )] =0, .
e } -------------------- ks 1

\A: take on values < or >
V: take on values < or >
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Ordinal minimax conditional entropy

Jointly estimate Pand Q by

minmax H(X|Y)
Q P reference label

subject to \

worker constramts TT Y [@3 ¢, k) — ‘%%(C k)} =0, Vi,s

~ item constraints Y: Y: Y: {sz‘j (¢, k) — i a@l =0, Vj,s
o w """"""""""""""""""" cAs kVs 1 /C

true label worker label



Ordinal minimax conditional entropy

Jointly estimate Pand Q by
minmax H(X|Y)
Q@ P reference label

su bject to \
worker constraints || > 2 [3 |9u(c:k) = dis(e. k)| = 0, Vi
""""""""""""""""" l cAs kVs| j
~ item constraints | >_ DD {sz'j (¢, k) — i (fa k)| =0, Vj,s
__________________________________________________________ cAs kVs| i

difference from multiclass true label ~ workerlabel




Explaining the ordinal constraints

For example, let A =<,V ==:

y:yza’ij(cn k) =

c<s k>s

counting mistakes in ordinal sense
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Probabilistic rating model

By the KKT conditions, the dual problem leads to

1
P(X;;=Fk|lY; =c¢) = Z exploi(c, k) + 7(c, k)]

]

worker ability  o:( 7 v_: aw [(cAs, kVs)
s>1 A,V

item difficulty (e, k) =) Y 7 VI(cAs, kVs)
s>1 AV

structured
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Regularization

Two goals:
1. Prevent over fitting
2. Fix the deterministic label issue to generate probabilistic labels



Regularized minimax conditional entropy

Jointly estimate Pand Q@ by

mén max H(X|Y) + regularization terms

subject to

~ item constraints Y Y f [¢ij (¢, k) — g’ij(ca ff)} ~ 0, Vj, s
- \ ''''''''''''''''''''''''''''''''''''''' cAs kVs 1
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Regularized minimax conditional entropy

Jointly estimate Pand Q by

. 1
mén m}gmx HX|Y)+4 HY) — 59(5) — E\I’(C)

subject to

I
~ item constraints >, [¢ij (¢, k) — ¢ij(c, ]{)} | Cﬁs’v

R 1 ''''''''''''''''''''''''''''''''''''''' cAs kVs 1




Dual problem

max Y Q5 =) log P(Xy = 7Y, = 0

+ H(Y) — aQ(J) — B (1)

1. This generates probabilistic labels
2. Equivalent to maximizing marginal likelihood
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Choosing regularization parameters

 Cross-validation: 5 or 10 folds

e Random split
 Compare the likelihood of worker labels

Don’t need ground truth labels for cross-validation!
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Experiments: metrics

e Evaluation metrics
— LO error: [.LO = ]I(y +
—Llerror: [,] =

y_
—L2error: L2 = |y —

)

)

N

<) S
()




Experiments: baselines

e Compare regularized minimax condition entropy to
— Majority voting

— Dawid-Skene method (1979, see also its Bayesian version in Raykar et
al. 2010, Liuetal. 2012, Chen at al. 2013)

— Latent trait analysis (Andrich 1978, Master 1982, Uebersax and Grove
1993, Mineiro 2011)



Web search data

machine learning 0 Perfect
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Web search data

* Some facts about the data:
— 2665 query-URL pairs and a relevance rating scale from 1to 5
— 177 non-expert workers with average error rate 63%
— Each query-URL pair is judged by 6 workers
— True labels are created via consensus from 9 experts
— Dataset created by Gabriella Kazai of Microsoft



Majority vote
Dawid & Skene
Latent trait

Entropy multiclass

Entropy ordinal

Web search data

0.269 0.428 0.930
0.170 0.205 0.539
0.201 0.211 0.481
0.111 0.131 0.419
0.104 0.118 0.384
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Probabilistic labels vs error rates
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Price prediction data
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Price prediction data

* Some facts about the data:
— 80 household items collected from stores like Amazon and Costco
— Prices predicted by 155 students of UC Irvine
— Average error rate 69% and systematically biased
— Dataset created by Mark Steyvers of UC Irvine



Price prediction data

Majority vote
Dawid & Skene
Latent trait

Entropy multiclass

Entropy ordinal

0.675 1.125 1.605
0.650 1.050 1.517
0.688 1.063 1.504
0.675 1.150 1.643
0.613 0.975 1.492
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Summary

 Minimax conditional entropy principle for crowdsourcing
* Adjacency confusability assumption in ordinal labeling
* Ordinal labeling model with structured confusion matrices

http://research.microsoft.com/en-us/projects/crowd/



http://research.microsoft.com/en-us/projects/crowd/

