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ABSTRACT
Models for statistical spoken language understanding (SLU) systems
are conventionally trained using supervised discriminative training
methods. In many cases, however, labeled data necessary for these
supervised techniques is not readily available necessitating a labo-
rious data collection and annotation effort. This often results into
data sets that are not expansive enough to cover adequately all pat-
terns of natural language phrases that occur in the target applications.
Word embedding features alleviate data and feature sparsity issues
by learning mathematical representation of words and word associ-
ations in the continuous space. In this work, we present techniques
to obtain task and domain specific word embeddings and show their
usefulness over those obtained from generic unsupervised data. We
also show how we transfer these embeddings from one language to
another enabling training of a multilingual spoken language under-
standing system.

Index Terms— spoken language understanding; natural lan-
guage processing; word embedding; named entity recognition;
vector space models

1. INTRODUCTION

State-of-the-art spoken language understanding (SLU) systems con-
sist of models which are trained with various machine learning tech-
niques to detect the domain of the user input, classify the user input
into a set of known intents, and extract domain relevant entities using
a sequence tagger (a task, we will refer to as slot filling). The train-
ing process uses supervised data to build these models. The training
data corpus consists of natural language phrases that match the do-
main and tasks of interest and is annotated with labels for events that
are relevant for modeling such as intents and slots. In many cases
this data is not readily available for applications of language under-
standing (LU) and before model building, a laborious data collection
and annotation effort is necessary to generate the required supervised
data corpus. Due to effort and time constraints it is often the case that
the data is not expansive enough to cover adequately all patterns of
natural language phrases that occur in the target applications.

The state-of-the-art approaches for slot filling [1, 2, among oth-
ers] use discriminative statistical models, such as conditional random
fields, (CRFs) [3], Deep Neural Networks [4] for modeling. Typical
set of features used in these classifiers include the identity of the cur-
rent and past few words along with a few future words, named entity
features provided as lexicons, part of speech tags etc. In all of these
cases, the features used to learn the association of the word and the
corresponding slot tag are either the identity of the word and its left
and right context or some function of these. To elaborate, in an enter-
tainment domain, such as Movies, if the user issues the query “show

me funny movies with brad pitt”, then typically the model looks up
all word combinations including the named entity “brad pitt” and
identifies it positively as a celebrity name and uses this information
as an additional feature. Similarly, if the word “funny” is recognized
as a known feature from the training data and is tagged appropriately
by the model with the slot type “genre”, then SLU system will even-
tually issue an action of searching a comedy movie with Brad Pitt as
an actor. These additional features along with the identity of the
words themselves will then be used to learn the association of the
tag/slots with the words during supervised training and also predict
these tag/slots during testing / evaluation.

The models learn associations among observations and features
in the training data. In the previous example the models learn that
“brad pitt” and “matt damon” are used in the same context “show
me movies with . . .”. Learning the associations is facilitated further
with the use of lexicons that contain groups of related entities. Lex-
icons offer a limited association capability through the presence or
absence of entities in them. There is no additional detail about the
degree or strength of this association. This limitation is more severe
for rare or unseen entities. For rare entities the model may not build
any associations and it relies on lexicons. For unseen entities that
may also not be included in the lexicon there is very little evidence,
taken primarily from the surrounding context about the relationship
to known entities.

Previous work in SLU has employed features extracted from
unsupervised data in order to expand existing lexical tokens and
ngrams, for example using word sense disambiguation through
WordNet [5] for named entity recognition. In [6] several methods
are surveyed to augment labeled data with web search query logs
in order to capture semantic components of utterances. Similarly,
there is extended work in topic modeling using LSA and LDA ap-
proaches to extract underlying topics for words and phrases in an
unsupervised way and use these topic clusters as features in NLP
tasks [7, 8]. In this work, we describe an approach to obtain domain
and task specific continuous valued vector of word embeddings
i.e. a mathematical representation of words, virtue of which, as-
sociation between words is formed in a latent space. Continuous
representation of words, when used as additional features, help to
overcome the limitation of the supervised models in dealing with
rare and unseen words. We build on the work of Collobert et.al. [9]
and Huang et.al. [10] and describe a scheme to derive task specific
word representations (embeddings), which we then use in our slot
sequence classification task. We show that task specific word em-
beddings outperform task independent embeddings when used as
additional features in a slot sequence tagging task. The motivation
behind obtaining task specific embeddings is that words form dif-
ferent associations depending upon the context they are in (here, by



context we mean the underlying domain). Word embeddings trained
on some generic data may not capture domain specific word associ-
ations. In this paper, we address this problem and present a strategy
to come up with domain and task specific word embeddings.

A related problem is the development of SLU systems in mul-
tiple languages, for example building a movie navigator system in
French or German. Existing solutions follow the standard method-
ology of collecting sufficiently large amounts of relevant data in the
target language, a practice that is very costly, time consuming, and
not scalable. In this work, we present a novel embedding transfer
technique to obtain word embeddings in target languages. Our pro-
posed technique does not require us to obtain domain specific data
in target languages, which may not be even possible to obtain.

The rest of the paper is organized as follows: we describe our
proposed technique in Section 2. Experimental setup and results
are discussed in Section 3. We finally summarize and conclude in
Section 4.

2. MODEL DESCRIPTION

In this section we describe the neural language model used to derive
the word representations. We employ the model described by Col-
lobert et al [9] and then extended by Huang et al [10] with the use of
global context. In this model each word i is represented by a real vec-
tor in a m-dimensional space using a lookup table LTw(i) = Wi,
where Wi is the i-th column of matrix W ∈ Rm×|V |, |V | is the
word vocabulary size and m is the dimension of the word embed-
dings space. Each input text sequence {t1, . . . , tj} is transformed
into a series of vectors {wt1 , . . . , wtj}. Using a fixed-length win-
dow of text, l words, the model learns how related is the last word
to its preceding local context, while also learning the word repre-
sentations matrix W . We substitute the word at the end of the text
window with a randomly selected word, and denote this as a cor-
rupted sequence. The hypothesis is that the relevance of the last
word to its context would be higher in the original sequence than in
the corrupted sequence. A two-class classification task can be con-
structed using the original sequence as the positive examples and the
corrupted sequence as the negative examples. The learning task is
to discriminate between these two sequences by ranking the original
sequence higher than the corrupted sequence.

Concretely, given a word sequence τ = {t1, . . . , tl} that ap-
pears in the document d, we compute scores g(τ, d) and g(τw, d),
where τw is the corrupted sequence produced by substituting tl with
a randomly selected word and g(·, ·) is the neural network scoring
function. The training algorithm minimizes the ranking loss:

c(τ, d) =
∑
w∈V

max(0, 1− g(τ, d) + g(τw, d)) (1)

for each (τ, d), that corresponds to ranking by the score g(·, ·) the
correct word sequence higher than the corrupted sequence by a mar-
gin of 1. During training the cost is sampled with respect to w. Pre-
vious work on neural probabilistic language models [11, 12] aims
at estimating the probability of a word given its local context (win-
dow of preceding words). This learning task learns a representation
of words given its context in order to predict the relevance of the
last word given its context. The resulting optimization problem is
simpler to train because it does not compute probabilities and thus it
is not burdened by normalization computations. In addition, it can
be modified to incorporate additional context information. Huang
et al [10] introduces a component that captures global context by
parameterizing the document that the word sequence appears. The

document is treated as a bag-of-words model and represented by the
weighted average of the embeddings Wi of the words that it con-
tains. The weighting function is chosen to capture the importance of
the words in the document. In [10] the inverse document frequency
(IDF) is used as the weighting function and we follow this choice
which is common in many information retrieval tasks.
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Fig. 1. An overview of the proposed neural network architecture
(Adapted from [10])

Figure 1 depicts the proposed neural network architecture to
compute the word embeddings. It uses a 3-word window and com-
putes the local context score sl of the word “batman” in the context
of the preceding two words. The local score captures syntactic in-
formation of the short length word sequence. It also computes the
global context score sg by combining the embedding of the word
“batman” with the average semantic vector of the document that the
text window was sampled from, thus capturing broader semantics of
the word. The neural network output is the sum of these two scores.

The two context scores are computed with two layer neural net-
works:

αl = f(W
(l)
1 [xl] + bl1) αg = f(W

(g)
1 [xg] + bg1) (2)

sl =W l
2αl + bl2 sg =W g

2 αg + bg2 (3)

where xl is the concatenation of the word embeddings in the se-
quence τ , xg is the concatenation of the last word embedding
with the document semantic vector and f is an element-wise ac-
tivation function such as tanh. The hidden layer of the local
score consists of h(l) hidden nodes and W

(l)
1 and W

(l)
2 are re-

spectively the hidden layers of the local context neural network.
The training process estimates the parameters of the network:
{W (l)

1 , b
(l)
1 ,W

(l)
2 , b

(l)
2 ,W

(g)
1 , b

(g)
1 ,W

(g)
2 , b

(g)
2 } and the embedding

matrix W .

The use of the document semantic vector captures long range
semantics. By changing the definition of the document, we have
control over the granularity of semantics that we model in the sys-
tem. In SLU applications each user turn is relatively short, and is
modeled primarily by the local context window. The document in
this case can expand over a user session, where a user interacts with
the system over multiple turns. In the case of unsupervised learning,
where data is not annotated with session information or other labels,
we employ self-training using existing domain classifiers to produce
noisy labels for the data and create pseudo documents by grouping
utterances with the same label. Words and phrases in these pseudo
documents will exhibit similar syntactic and semantic properties.



2.1. Application in CRF

Conditional Random Fields (CRF) [3] models the posterior proba-
bility of a slot sequence given a word sequence as shown below:

P (C|W) =
1

Z(W)

T∏
t=1

ψt

(
ct, φ(c

t−1
1 ), γt(W)

)
(4)

where, φ(ct−1
1 ) is an equivalence classification of the slot sub-

sequence up to the (t − 1)th position. In the first order linear chain
CRFs, this function returns ct−1. γt(W) is a position specific
equivalence classification of the entire word sequence. In practice,
this function returns local features around the current word i.e. some
representation of wt+n−1

t−n+1 i.e., n-grams around the tth word. ψ(·)
is the local potential function. This is nothing but an exponentiated
weighted sum of active features. Z(W) is the partition function that
ensures the probability of all state sequences sum to 1. It is simply
given as: Z(W) =

∑
C

∏T
t=1 ψt

(
ct, φ(c

t−1
1 ), γt(W)

)
.

In our baseline model, γt(W) returns n-gram lexical tokens
around the current word while the setup which uses word embed-
dings, this function returns not only the n-gram lexical tokens but
also their continuous valued representations. Potential function en-
codes association of a feature (either the lexical token, wt, or its
continuous valued representation) with the current tag ct as well as
the pair of tags (ct−1, ct), thus modeling emission and transition
probabilities.

In our work, we use state-of-the-art off the shelf CRF imple-
mentation: CRFsuite by Naoaki Okazaki [13]. This package sup-
ports numerical features thus allowing us to experiment with word
embeddings. We modified its feature generation module so that each
dimension of the embedding is treated as a separate feature.

2.2. Use in Multilingual setting

In this section we introduce a novel technique called cross lingual
word embedding projection for learning domain dependent word em-
beddings for resource poor languages. Resource poor is an over-
loaded term, we refer to a language as resource poor only if finding
huge amounts of domain dependent unsupervised data may become
challenging. It may not be always possible to garner unsupervised
domain specific data in a target language such as say Finnish or some
Indian languages, say Hindi. So applying the above described do-
main dependent word embedding techniques to these low resource
language could pose some serious limitations. Some approaches use
automatic translation to convert existing English corpora to the target
language where some quality is compromised by the translation pro-
cess. The data sparsity as described earlier has significantly higher
effect in the quality of the models in multilingual deployments. De-
veloping the capability to compute word and phrase associations
from unsupervised data and transfer of such embeddings from a re-
source rich to a resource poor language application is very impor-
tant for multilingual system development. The continuous represen-
tations in multilingual SLU modeling address correlations between
entities in a much richer way than lexicons do, mitigate the problem
of unseen and rare entities as described in the single language mod-
eling case and in addition provide rapid model building capabilities
from the bilingual association from resource-rich to resource-poor
languages. In this work, we obtain parallel corpus between English
and low resource languages, a task relatively easy compared to find-
ing domain specific data in target language. We align the parallel
corpus and learn word pair mappings. We propose to transfer the do-
main specific word embeddings, learned for a resource rich language

such as English, to a resource poor language by way of learned word
pair mappings.

We applied these ideas to an SLU task in French. We obtain
European parliament parallel corpus (Europarl) [14] of English and
French and train a word alignment system. We use GIZA++ for the
alignment purposes [15]. Once trained, for each word in the target
language, wt, we find that word from the source language (English)
vocabulary, ws, such that it has the maximum posterior probabil-
ity of alignment with the target word. We then simply transfer the
embedding of the source language to this target language. More for-
mally, Embedding(wt) = Embedding(argmaxws P (ws|wt)).

3. EXPERIMENTAL EVALUATION

We have focused on slot sequence tagging task for spoken language
understanding on Microsoft’s SLU system. Our SLU task pertains
to three entertainment domains: movies, music and games. In this
setup, a user issues a natural language query to retrieve movies, mu-
sic titles, games and/or information there of. For instance, a user
could say “show me movies with brad pitt” or “find
beyonce’s music”. Our slot sequence tagger is trained with
Conditional Random Fields (CRF) using lexical features with and
without word embeddings. We used a window of 5 words around
the current word to extract local features. The semantic space con-
sists of 30 slots for movies, 23 slots for music and 24 slots for games.
This semantic space consists of both named slots (game name, music
title, movie name etc.) as well as unnamed slots (genre, description
etc.).

Table 1 shows the properties of the data sets used in our exper-
iments. In this study we used only written sentences (rather than
spoken). On average, there are about 3.5 words and 1 slot per utter-
ance. Table 2 shows the vocabulary sizes and data set coverage. The
vocabulary size ranges from 4.3K words for games domain to 6.7K
words for music to 8K words for movies.

Domains
Training

Utterances
Test

Utterances

games 26451 7196
movies 43784 12179
music 31853 8615

Table 1. Labeled data set size for games, movies and music domains
partitioned into training and test subsets

Domains
Training

Vocabulary
Test

Vocabulary
Test

Coverage

games 4359 2321 76%
movies 8081 4589 82%
music 6744 3539 78%

Table 2. Labeled data set vocabulary size. The test coverage shows
the test vocabulary fraction that is covered in the training data

In order to train domain dependent word embeddings, we ob-
tained unlabeled (unlabeled in terms of domain information and the
underlying intent and slot tags) voice search queries from the Bing
query logs. We first tagged these queries with some baseline mod-
els predicting one of the entertainment domains (movies, music or



Domains Vocabulary Sentences

games 56434 221041
movies 29606 362343
music 56782 92283

Table 3. Unlabeled data set size for games, movies and music do-
mains

Wikipedia Unlabeled
Domains Train Test Train Test

games 78.9% 82.9% 78.3% 83.2%
movies 80.9% 86.4% 65.1% 74.2%
music 74.5% 81.6% 74.2% 82.6%

Table 4. Vocabulary coverage of domain data with Wikipedia and
unlabeled data. This table shows the fraction of vocabulary in the
labeled training and test sets that is covered by the Wikipedia data
set that consists of 130K words and the unlabeled data set

games), thus giving us domain labels, albeit noisy, for the huge unsu-
pervised corpus. Table 3 shows the properties of the unlabeled data
tagged with domain information using baseline domain classifiers.
Table 4 shows the coverage of the training and test data sets with
respect to the vocabulary extracted from the above described unla-
beled corpus. As mentioned earlier, the baseline word embeddings
of Collobert et.al [9] were trained on a large portion of Wikipedia
data. Size of this Wikipedia vocabulary is 130K. Table 4 shows
Wikipedia vocabulary coverage for the training and test sets. While
the vocabulary size of the “domain dependent” unlabeled data (29K
for movies and around 56K for games and music) is much smaller
in comparison to that of Wikipedia, the vocabulary coverage, how-
ever, for the training and test sets is similar (except for the movies
domain).

In the following experiments tabulated in Table 5 we investi-
gate the effect of continuous word embeddings in the slot tagging
performance task. Performance metrics are reported in terms of F-
measure, a standard measure in sequence tagging tasks that com-
bines precision and recall. Embeddings are used as additional fea-
tures over a baseline CRF model that employs lexical ngram features
and entity gazetteers. We first verify that the use of embeddings
offers improved performance over the baseline system as reported
previously for various NLP tasks [16]. The C&W embeddings are
trained on the Wikipedia corpus according to the description in [9]
and provided by the authors of the cited work. We then used the
unlabeled data sets to create domain-specific embeddings using the
neural network architecture described in section 2. We trained two
embeddings matrices, one using only local context score and one us-
ing the complete architecture that combines local and global context
in the estimation of the word embeddings. In both cases the perfor-
mance is inferior to the generic Wikipedia data embeddings. Besides
the data corpus differences, we should note that there are differences
between the implementations of [9] and the implementation in [10].
The use of the global context in the experiment of row 4, does not
offer any performance improvements as the definition of the docu-
ment is the whole corpus. In the following experiment we created
pseudo documents using the classification labels as described in sec-
tion 2. These labels represent subtasks within each domain such as
searching for a movie, or looking up information about an actor or a
film. These new embeddings outperform the previous models of the

generic corpus embeddings and the ones using a domain-based doc-
ument definition. In the last of these experiments we employ phrase
embeddings as features by using the product of W (l)

1 [xl] as defined
in equation 2 in order to associate words with longer span features
from their local context. These features provide vector space repre-
sentations of the standard ngram features used in the baseline CRF.

games movies music

Baseline CRF
ngram + entity gazetteers 85.77% 87.11% 84.14%

C&W embeddings
Wikipedia 86.15% 87.41% 84.79%

local context
domain specific embedding 85.45% 86.64% 83.53%

local and global context
domain specific embedding (1) 85.85% 86.56% 83.5%

local and global context
domain specific embedding
intent-based global context 88.53% 88.89% 88.49%

use of phrase embeddings 88.8% 88.99% 89.24%

Table 5. Experimental results using word and phrase embeddings
computed from generic corpus (Wikipedia) and a task specific cor-
pus

Finally, we present preliminary results of the application of em-
beddings in a multilingual setting. The experiments evaluate the use
of embeddings computed in the target resource-poor language ver-
sus using cross-lingual embeddings that have been computed in a
resource rich language and then using a machine translation method
to transfer these embeddings to the target language.

games movies music

Baseline model 82.88% 75.26% 81.18%
+Target embeddings 81.94% 74.56% 81.43%
multilingual embeddings 83.02% 76.85% 82.26%

Table 6. FR multilingual embeddings

4. SUMMARY

In this paper, we demonstrated techniques to obtain task and domain
specific word embeddings. We showed their usefulness over the em-
beddings obtained from task independent data. We showed that not
only does in domain data help in obtaining meaningful word em-
beddings, but the models benefit even more if we further cluster the
unsupervised data by their underlying intents. We also presented a
novel technique to transfer word embeddings from one language to
another enabling training of both mono and multilingual SLU sys-
tems using task and domain specific word embeddings. As part of
future work, we plan to extend this work to obtain phrasal embed-
dings and use these embeddings in not only sequence classification
but also other tasks such as intent detection and domain classifica-
tion.
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