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ABSTRACT 

Microsoft Research is now in its fourth year of awarding 

Windows Azure cloud resources to the academic 

community.  As of April 2014, over 200 research projects 

have started.  In this paper we review the results of this 

effort to date.   We also characterize the computational 

paradigms that work well in public cloud environments and 

those that are usually disappointing.   We also discuss 

many of the barriers to successfully using commercial 

cloud platforms in research and ways these problems can 

be overcome.   

Categories and Subject Descriptors 

[Cloud Computing, Applied Computing]: cloud architecture, 

distributed systems and applications, parallelism, scalable 

systems, bioinformatics, geoscience, data analytics, 

machine learning, web services. 

Keywords 

Cloud computing, map reduce, scalable systems, platform 

as a service, infrastructure as a service, cloud programming 

models. 

1. INTRODUCTION 
Four years ago Microsoft Research began a series of 

programs to allow researchers access to cloud computing 

on our Windows Azure platform.  The first three years we 

worked closely with research funding agencies including 

the National Science Foundation, The European 

Commission, The Chinese National Academy of Science 

and others.  This program resulted in over 80 awards to 

academic researchers around the world.  In August of 2013 

the Microsoft Research team began a new, more open 

program that allowed researchers to apply directly to 

Microsoft for the grants.  The first deadline for proposals 

was Oct 15, 2013 and we review proposals every 2 months.  

As of April 2014 over 140 proposals have been selected for 

the program. We expect that 180 will be selected by the end 

of the project’s first year.    

In addition to the grant program, MSR has created an 

extensive training program to introduce researchers to the 

best practices of building applications on the Windows 

Azure cloud.  The training consists on one and two-day 

events that are mostly held at university facilities around 

the world.  To date, over 500 researchers have attended 

these sessions.  So far we have held 18 of these training 

events in 10 countries.  A partial list of the current projects 

is available at the project website [1] along with 

information on how to apply for one of the grants or the 

training program. 

In this paper we describe the design patterns that have been 

most effective for applications on Windows Azure and 

illustrate these with examples from actual projects.  The 

patters we discuss are 

1. Ensemble computations as map-reduce. 

2. Science portals and gateways 

3. Community data collections 

4. Shared VM science images 

5. Streaming data to the cloud 

For each we will enumerate the specific lessons learned 

through the experiences of our users. 

2. DEFINING THE CLOUD 
Seven years ago the topic of cloud computing was very 

new.   Amazon, Google and Microsoft were beginning to 

realize their massive data center infrastructure could be 

used for more than their own internal business needs and 

they began to offer various parts of their capabilities to the 

public as services.  The computer science research 

community also began building out infrastructure services 

through server virtualization, one of the key cloud 

concepts, and many of these experiments have matured into 

sophisticated, open source software stacks.  Seeing a 

possible new tool for research, the scientific community 

has also been drawn to the cloud.   

The earliest attempts to use cloud computing for scientific 

application were based on the assumption that “the cloud” 

may be a replacement for supercomputer.   A careful study 

of this conjecture led to disappointing results when large-

scale applications and standard supercomputing 

benchmarks were ported to cloud platforms [2].  (A follow 

up study showed more promise [3] and relates to 

approaches described here.)  To avoid this confusion we 

will describe the cloud here in terms of the capabilities of 

Microsoft Azure and note that very similar capabilities 

exist on the other major public cloud platforms.   

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page.  Copyright of 

this article is subject to Microsoft Research Open Access Policy.   

mailto:dennis.gannon@microsoft.com


Microsoft Azure is best described as a layers of services for 

building large scale web-based applications. At the 

hardware level it is a global-scale collection of data centers 

with millions of compute and data servers and a content 

delivery network.  The “fabric controller” that monitors and 

manages the hardware resources handles automatic OS and 

service patching and automatic data and service replication 

across fault domains.    At the lowest software level for 

application development Azure is an Infrastructure-as-a-

Service (IaaS) platform for hosting Windows or Linux 

virtual machines (VMs).   

2.1 Cloud Services 
The next levels up are cloud services.   These are 

applications with web front ends and one or more levels of 

backend worker processes.  These are designed as stateless 

distributed services that are well suited for hosting multi-

user, scalable analysis tasks.   

The cloud service programming model provides an 

abstraction for building applications as scalable collections 

of stateless communicating processes as illustrated in 

Figure 1 below.   

 

Figure 1.  A cloud service composed of web roles that control 

input and output to remote users, a message queue for delivery of 

tasks to one type of worker role and a “reducer” worker role that 

summarizes output to return to the user.  

 

In this model the programmer builds “web roles” and 

“worker roles” and defines the communication between 

them with message queues.  Each role is realized as a 

continuously running process on one or more CPU cores in 

the data center.  Web roles interact with the users by taking 

input which is packaged into tasks and handed to a pool of 

worker roles for execution.  Upon completing a task a 

worker can send a message back to a web role that can 

provide a notification to the user about the result. 

Alternatively, the worker can send the result to a midlevel 

“reducer” worker that filters and accumulates a final result. 

While the roles are stateless they have full access to the 

blob and table storage systems.   Statelessness is extremely 

important for assuring fault tolerance.  If a worker crashed, 

the system will automatically restart it. 

A number of important services exist to help building 

scalable cloud applications.   These include 

 Caching to help applications keep data closer to 

the application logic.   Memcached protocols are 

supported as are multi-tenant shared caches.    

 Messaging between application services in the 

cloud or to on premise servers is supported by the 

Service Bus.   This allows a pub-sub topic-based 

subscription model as well as brokered messaging 

in the case that senders and receivers are not 

online at the same time. 

 Media Services and the Content Delivery Network 

allow you to build high performance application 

that deliver media to clients running Xbox, 

Windows, MacOS, iOS and Android.    

 Mobile application services are also supported 

with native client libraries for Windows Phone 

and iOS.   The messaging services facilitate 

pushing notifications to mobile apps. 

 Access Control Services let you easily include 

sophisticated authentication and authorization 

capabilities in your application.  User 

authentication is via various identity providers 

including Facebook, Twitter, Google and 

Microsoft. 

2.2 Data Services 

The cloud is not really complete unless there is a rich 

collection of data services.  Windows Azure has: 

 Blob Storage in which each byte of data is 

replicated at least three times across fault domains 

or across multiple data centers.  The replication 

policy is up to the application designer.   

 Table Storage provides a distributed NoSQL 

capability for unstructured data.   

 SQL Relational databases that allow replication to 

support multiple physical servers for high 

availability. 

 Apache Hadoop is provided as a service that allow 

the user to create Hadoop clusters on demand that 

integrate with SQL databases and the other storage 

services. 



All of these services are managed remotely by REST 

interfaces and programmatic APIs in languages such as 

Python, Java, PHP and C#. 

3. SCIENCE IN THE CLOUD 

3.1 Scalable Simulation 
The extensive cloud services stack described above is a 

result of the evolution of Windows Azure over the last 

seven years.  When we began providing Azure to the 

scientific community in 2009, the only capability that was 

available was the cloud services layer.      

When deploying a cloud service the programmer need only 

tell Azure how many instances of each type of role to 

create.  This allows applications to be very easily scaled 

from small number of compute cores to very large 

numbers.   Cloud services are designed to run continuously 

and scale up or down based on the user load.    

The cloud service model is clearly very different from the 

traditional batch supercomputing model. Cloud applications 

are designed to be fault tolerant, long running, dynamically 

scalable services that support many concurrent users and 

provide access to large data collections.  Supercomputers 

are optimized to provide scalable computation in a batch 

execution environment.   Consequently early attempts to 

port HPC MPI-based applications to Windows Azure were 

largely unsuccessful.  However, by 2011 Windows HPC 

had been ported to Azure and it because possible to use 

Azure as a way to “burst” MPI computations from a local 

cluster to the cloud.  This approach was used by Marty 

Humphrey and John Goodall in a study of watershed 

modeling using a cluster at the University of Virginia in 

combination with HPC on Microsoft Azure [4] 

3.1.1 Map-Reduce and Pleasingly Parallel 

Computations.  
The cloud service model has proved to be extremely 

powerful for simulation and data analysis with ensemble 

computations, parameter sweeps and basic map-reduce 

computations.   In 2009 we created a cloud service for 

metagenomics based on the standard genomics Blast 

application [5].  Using this service a user could upload a 

collection of DNA samples to the web role and the workers 

would execute the Blast application on each sequence in 

parallel.  The ensemble of results would then be gathered 

and returned to the user as a summary report.    

This form of map-reduce in which a large number of 

computational tasks is mapped onto large number of 

workers and the result is reduced to a single result is 

extremely common.  Radu Tudoran, Gabriel Antoniu, 

Bertrand Thirion and Alexandru Costan from INRIA 

investigated the use of the cloud for joint genetic and 

neuroimaging data analysis on large cohorts of subjects.  

The scientific goal of the project is to understand the link 

between genetic factors and certain brain diseases that can 

be detected through fMRI scans.  To do this they needed to 

discover a significant correlation between a genetic SNP 

and a neuroimaging trait, or through a regression analysis 

discover some set of SNPs that predict a specific brain 

image characteristic.   The team built a special-purpose 

map-reduce framework to tackle the data analysis.   The 

key contribution of the project was a concurrency-

optimized data storage system which federates the virtual 

disks associated to VMs [6].  The computations were 

distributed over 300 cores and they demonstrated that their 

map-reduce framework scaled well for this high 

dimensional data analysis challenge.    

Many other research projects used the same approach for 

scalable simulation and data analysis on Azure.  For 

example Sushil Prasad and Dinesh Agarwal used this 

approach for polygon overlay processing for geographic 

information systems [7].  Nikolas Sgourakis, while he was 

at the University of Washington ported the BOINC based 

Rosetta@home application to Azure.  Using this 

application he was able to use 2000 Azure cores to do a 

major study of protein folding was to elucidate the structure 

of a molecular machine called the needle complex, which is 

involved in the transfer of infectious agents into cells from 

dangerous bacteria, such as salmonella, e-coli, and others 

[8].   We currently have over 20 bioinformatics research 

project running on Windows Azure.   

Scalable Simulation Lessons 

1.  It is possible to create a virtual HPC cluster in 

the cloud but unless there is a HPC scheduler and 

a high-bandwidth, low latency hardware network 

available, the performance of MPI-intensive codes 

will suffer.  However, large scale ensemble 

computations and map-reduce tasks are very well 

suited to the cloud because network demands are 

very small.   

2. The traditional commercial cloud infrastructure is 

designed to host long running web services. To 

support dynamic loads on web services it is 

common for a cloud to have dynamic scaling 

capability that allows new-VMs to be created on-

demand and decommissioned when no longer 

needed.   (This is essential if you want to keep the 

cost of using the cloud down.)  However, 

deployment of new VMs takes much longer 

(seconds) than most scientific applications 

programmers expect.  So applications that require 

a large number of VMs should have a total 

execution time that is long enough so that these 

startup delays are not significant fraction of the 

total time. 

3. Building a dynamically scaled web service is not a 

trivial programing exercise.   Most scientific 

programmers have not had this type of distributed 

systems training. There is an opportunity for 

systems builders to create efficient, easy to use 

frameworks for the scientific researcher that does 

not want to become a cloud computing specialist.    

Because this basic map-reduce model of computation is so 

common, we have developed a new tool that can be easily 



configured by researchers to run large ensemble 

computations involving compiled Matlab, R or Python 

applications.  The input data and application code for the 

computations can be configured to come from Drop Box, 

oneDrive or Azure blog storage.  We will release this to the 

research community in 2014.   

Another approach to doing this type of map-reduce is to use 

Hadoop, which is now available on Azure as a service 

called HDInsight.   Wuchun Feng and his team at Virginia 

Tech used HDInsight for doing genome analysis [9] and, in 

the process, helped the HDInsight team debug the early 

release of the system.  

For many large data analysis tasks map-reduce is only a 

small component of the computation.   It is often the case 

that the map-reduce component is part of an in iterative 

process.  In this case there are many optimizations that can 

be made to improve locality and overall performance. Judy 

Qiu, Thilina Gunarathne, Geoffrey Fox and Xiaoming Gao 

from Indiana University have developed Twister4Azure as 

one such system for optimized iterative map reduce 

computations [10].  

3.2 Science Gateways and Community Data 

Collections. 
A science gateway [11] is a web portal that provides 

registered users with access to tools and data collections 

specific to some discipline.  This concept was first 

introduced in the NSF TeraGrid project and continued with 

the XSEDE project.   The cloud is an ideal host for science 

gateways and several of our projects have supported them.  

In fact many of the architectural elements of the cloud 

services described above fit this definition however in those 

examples the gateway users were restricted to the small 

research teams that built and deployed the service.  A true 

science gateway should be designed to concurrently 

support a large number of users.   

There are many examples of these services that are 

intended for broader communities of users.   Ignacio 

Blanquer has built a gateway for support next generation 

genomic sequencing on Windows Azure [12].   The portal 

provides a web client for accessing bioinformatics tools 

such as BLAST, BWA, FASTA bowtie, BLAT, and 

SSAHA that can be configured into pipelines and run on 

Azure.   Additional support for more complex workflow is 

provided by Jacek Cala and Paul Watson from the 

University of Newcastle based on their e-Science Central 

system running on Azure [13]. 

Jennifer Dunne of the Santa Fe Institute and Sanghyuk 

Yoon and Neo Martinez from Pacific Ecoinformatics and 

Computational Ecology Lab have developed a web portal 

for ecological network simulations and analysis.  This one 

uses Network3D to provide a game-like environment for 

simulating ecological modeling [14] 

FetchClimate [15,16] is a science gateway for retrieving 

climate data for any geographical region, at any grid 

resolution: from global, through continental, to a few 

kilometers, and for any range of years, days within the 

year, and/or hours within the day. FetchClimate can also 

return information on the uncertainty associated with the 

climate data and data sources used to fulfil the request. 

When multiple sources of data could potentially provide 

data on the same environmental variable FetchClimate 

automatically selects the most appropriate data sources. 

Finally, the entire query can be shared as a single URL, 

enabling others to retrieve the identical data. FetchClimate 

was developed by Drew Purves and the Computational 

Science Lab at Microsoft Research Cambridge, in 

collaboration with Microsoft Research Redmond and the 

MSTLab at Moscow State University. 

3.2.1 Community Data Collections 
Community data collections such as those supported by 

FetchClimate are critical resource for scientific 

communities.   A big component of presenting a 

community data collection involves active curation: making 

sure that the metadata for elements of the collection is 

available and the data can be indexed and searched.  A 

project from the California Digital Library and Microsoft 

Research is DataUp [17].  An open-source tool to help 

researchers document, manage, and archive their data.  

DataUp assists with data management and preservation, 

supports archiving and publishing of tabular data among 

scientists, allows repository administrators to upload or 

create required and optional metadata fields using preferred 

standards and ensures that data is valid for downstream 

data processing. It can be deployed as a web gateway on 

Azure with a SQL server backend.   

Another interesting example comes from Harris Wu, Kurt 

Maly and Mohammad Zubair of Old Dominion University.  

They created a web-based system (FACET [18]) that 

allows users to collaboratively organize and classify 

multimedia collections on Azure.   

To simplify the challenge of managing research data, Bill 

Howe, Garret Cole, Alicia Key, Nodira Khoussainova, and 

Leilani Battle of the University of Washington e-Science 

Institute has built a cloud-based relational data sharing and 

analysis platform called SQLShare [19] that allows users to 

upload their spreadsheet data and immediately query it by 

using SQL—no schema design, no reformatting, and no 

database administrators are required.  

The British Library has published one million illustrations 

from 17th, 18th, and 19th century books scanned from their 

historic collections. These are made available on the Flickr 

photo sharing service, to provide public access to the 

images [20]. Copies of the images are also stored on 

Microsoft Azure, using the Flickr API to provide user 

interaction. Hosting the images on Azure allows them to 

run analytics for quality assurance, computer vision 

algorithms using OpenCV, and to choose related images to 

rotate on the Flickr web page. They use Tumblr hosted on 

Azure to publish updates and tweets about the illustrations 

every hour [21]. 

 



Science Gateway and community data collection lessons. 

1. Gateway longevity depends upon community 

support.  A science gateway is like other online 

services.  Without users it will die.  And to keep 

users it will need to be refreshed and maintained. 

2. Getting data to the cloud. One of the most 

common concerns about starting a cloud projects 

is the challenge of uploading a large data 

collection.  While Internet2 has a 100Gb backbone 

network, it does not mean a researcher can move 

a terabyte in 10 seconds from a machine is a 

university lab.  Because of the way TCP works it is 

better to use a tool that moves the data on many 

parallel channels simultaneously.  Shipping disks 

is another solution.    The most successful 

community data collections are the ones where 

many community members add data over an 

extended period of time or when existing cloud 

data collections can be integrated and shared. 

3. Data Curation is an essential component of any 

community data collection.   This fact is well 

understood now in many scientific disciplines and 

well curated collections are appearing. 

4. A challenge for those building science gateways 

and community data collections is financial 

sustainability.  Cloud data storage is expensive 

because it is replicated and on-line.   In addition 

to good curation, large scale data collection need 

to manage multi-level storage strategies where 

“hot” data is kept near servers in the cloud and 

the rest stored in archival services.  Subscription-

based business models are needed to allow broad 

access and still pay the bills.  Academic research 

projects can be given free access, especially if they 

contribute to the data quality and curation and 

commercial use can pay commercial rates. 

3.3 Shared VM Science Images 
It is standard practice for scientific communities to share 

important open-source, domain-specific software tools. 

However, using these tools often involves complex 

installation procedures or the resolution of library conflicts. 

Cloud computing obviates such impediments by enabling 

communities to share a complete operating system image, 

pre-installed with all the tools needed by specialized groups 

of users. Thus, a newcomer to the community can install 

the image in the cloud and be doing productive work very 

quickly. Moreover, the community can keep the cloud-

based VM image updated with the latest version of the 

software.  

Microsoft Open Technologies operates VM Depot [22], a 

community-driven catalog of preconfigured operating 

systems, applications, and development stacks—VM 

images that can installed in minutes by anyone with a 

Microsoft Azure account. Several VM Depot images have 

proven popular with the scientific community. For 

example, Elastacloud has donated an image called Azure 

Data Analysis, which includes R, IPython, and a number of 

high quality open-source, data analysis tools.  

Several other domain-specific VMs are in the works. One is 

an instance of the Dataverse platform for Harvard 

University [23].  Dataverse is designed as a web of data 

repositories.  Having a VM image for Dataverse will make 

it very easy for anybody to create their one instance that 

can be linked into the Dataverse network.  Another 

available VM image is BioLinux.  This version has been 

enhanced with additional support for scripting from Python.  

Several other examples of science VMs will be announced 

soon. 

We are currently soliciting proposals for Microsoft Azure 

resources to develop other science VM images.  More 

information is available on the project website [1]. 

Challenges and lessons for Science VMs. 

1. A limitation of the Science VM is the problem of 

updates.   If a user installs additional software in 

a science VM, the user will need to reinstall that 

software when the new version of the VM image is 

available.   This problem goes away if the original 

VM hosts services and the additional user 

software accesses those services from a different 

VM.   

2. There is an interesting tradeoff between Science 

VMs and Science Gateways. Software updates to a 

Science Gateway are largely invisible to the user. 

But unless the gateway owner has a way to bill the 

user, the owner must subsidize the cost of the 

user’s gateway computations.   By providing a VM 

image, the user is responsible for his or her own 

account and there is no additional cost for the 

provider of the VM image.   This makes the VM 

image a very scalable solution.   

    

3.4 Streaming Data to the Cloud 
One of the most common uses of public cloud resources is 

data streaming.  The public clearly appreciates the data that 

streams out of the cloud in the form of movies and music. 

But the cloud is also a place that can be the sync of rich 

collections of data streams.  There are obvious examples of 

data streaming into the cloud: E-mail, Twitter streams, 

images from cell phones and the vast quantities of data 

from the “Internet of Things” consisting of billions of on-

line instruments.  While we all are currently dealing with 

the policy challenges that arise from the pernicious use of 

this data to invade our privacy, there are many exciting and 

beneficial applications.  

A great example is the work we supported at the University 

of the Aegean in Greece.  They developed the VENUS-C 

Fire app [24] featuring Bing Maps, Microsoft Silverlight, 

and Microsoft Azure to determine the daily wildfire risk 

and fire propagation in the vulnerable island of Lesvos 

during its dry season. The data gathered involves weather 

data, ground instruments that monitor the dryness of 



ground vegetation, GPS data of the firefighting resources 

and satellite imagery. The university team, led by Nikos 

Athanasis generates a visualization of environmental 

factors each morning for the island’s fire management 

team, who then use the app to determine optimal resource 

allocation across the island for the day.  This is another 

excellent example of a science gateway where the users are 

the firefighters themselves. 

Cloud computing is well-suited to periodic processing of 

data from instruments. Johnston et al [25] created a space 

situational awareness cloud system for processing data 

from the Department of Defense Space Surveillance 

Network to predict space debris collisions and near-earth 

object events. This space data is published twice daily 

online, and is processed by the Azure service using 

hundreds of Monte-Carlo simulations, with the end-to-end 

pipeline managed through the Azure Service Bus. This 

architecture is designed to accommodate computing 

asteroid surface impact prediction on Earth. Cloud 

computing is ideal for this scenario, as in the event of a 

potential earth impact, hundreds or thousands of cores 

would be required on-demand as there would be a 

diminishing job time to completion for such a crisis 

scenario. 

In our new program of grants we have several projects that 

are addressing streaming data topics.  For example, Yung-

Hsiang Lu of Purdue University is working on Cloud-

Based System for Continuous Analysis of Many Cameras.  

Yuejie Chi from Ohio State University is looking at online 

distributed inference of large-scale data streams in the 

cloud.  Blesson Varghese from the University of St 

Andrews is working on real-time financial catastrophic risk 

management on Microsoft Azure. And Victor O.K. Li from 

the University of Hong Kong has a project on data stream 

analysis for hidden causality detection in urban informatics.  

Lessons from streaming data to the cloud. 

Most of the early experience with streaming has been 

positive, but it is still early and more research and 

experimentation is needed.   

 

4. CONCLUSION 
In this paper we have described the ways the Microsoft 

Azure public cloud has been used by researchers in the 

grant program run by Microsoft Research.  While this is not 

the only such grant program and there are scientists that are 

using the cloud who work for private research laboratories, 

we feel that the cross section of project mentioned here are 

typical.  We have organized them into four categories: large 

scale simulation, web-based science gateways and 

community data collections, shared virtual machine image 

for science and streaming data collection and analysis.  

With the exception of streaming, where our experience is 

still in its early stages, we have provided a summary of 

outcomes and best practices.   

The examples we have chosen are, for the most part, those 

that were begun early enough to have published scientific 

outcomes.  In one respect the sample presented here is not 

representative of many of the newer projects.    In the past 

year we have seen a greater emphasis on “Big Data” 

analysis and machine learning.   

We are also seeing an explosion of interest in the topic of 

urban informatics.  This has arisen from the need of cities 

to better plan and manage the challenges of growth, traffic, 

pollution, crime, emergency services and general social 

welfare.  New York City, Beijing, Chicago, Singapore have 

all initiated major programs in this area and they are 

actively involving the research community.   

Examples of recent Microsoft Azure award projects in 

urban informatics include: Yanmin Zhu, Shanghai Jiao 

Tong University, China. “NoiseSense: Crowdsourcing-

based Urban Noise Mapping with Smartphones”, Peng 

Gong, Tsinghua University, China. “Satellite Remote 

Sensing for Urban Computing—40 Year Dynamic 

Information on Land Use for Beijing City from Time Series 

Landsat Data and Computer Simulation”, Hojung Cha, 

Yonsei University, Korea. “Development of a Crowd 

Sensing Framework for Inducing User Participation in 

Urban Environments”, Vassilis Glenis, Newcastle 

University, United Kingdom, “Modelling Flood Risk in 

Urban Areas” and our favorite project title “Does 

‘Gangnam Style’ really exist? - Answers from data science 

perspective” a study by Joon Heo from Yonsei University 

of open data sets from the city of Seoul to understand the 

governing factors for differentiating between Gangnam and 

other districts in the city. 
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