Heap Analysis Design: An Empirical Approach

Mark Marron

Microsoft Research
mark.marron@microsoft.com

Abstract. Despite extensive research the construction of a precise and
scalable static heap analysis for object-oriented programs remains an
open problem. This paper argues that much of the difficulty is the result
of empirically unvalidated and inappropriate design decisions. We exam-
ine three of them and determine that in practice: (1) strong updates are
not necessary for obtaining precise results (2) fixed naming schemes for
defining abstract memory locations are fundamentally limiting and are
not required for efficiency, and (3) shape/sharing in the heap is gener-
ally simple and can be described using a simple abstract heap model.
Using these results we construct a new heap analysis and experimentally
demonstrate that it is both precise, capable of supporting program opti-
mizations/tools which require sophisticated information on the structure
of the heap, and scalable, allowing the analysis to be run on real world
programs such as luindex/lusearch from DaCapo.

1 Introduction

Despite extensive research efforts and large numbers of published papers the
construction of a static heap analysis that is both capable of extracting pre-
cise information about the program heap and which is scalable to real-world
programs remains an open problem. This lack of practical high-accuracy heap
analysis tools is a major impediment to research in a range of areas — e.g.,
memory management, parallelization, test generation, etc. — from across the
programming language and software engineering fields. Continued development
of points-to analyses, and the creation of clever application specific extensions,
have mitigated some of these problems. However, there is a fundamental gap
between what can be done when working with variations on classic points-to
information vs. what can be done when precise information about sharing in
containers, shapes of data structures, and ownership properties are available.

This paper revisits several key assumptions about the design and construction
of a shape style analysis in light of recent empirical studies [1, 4, 5, 7, 37]. These
studies suggest that much of the conventional wisdom about how a heap analysis
should be constructed is incorrect when working with modern object-oriented
and garbage-collected languages such as Java or C#.

Based on these insights we construct a hybrid static heap analysis, Jacka-
lope, that combines an expressive abstract heap model with a set of efficiently
computable abstract transfer functions. This analysis starts with the classic stor-
age shape (or points-to) graph from Chase et. al. [9]. The basic storage shape

graph is augmented with additional labels for the shape of the regions that the
nodes represent and injectivity [26] (must not-alias) of the pointers that the
edges represent. The analysis allows the creation of an unbounded number of
abstract locations and uses a normal form, instead of a fixed naming scheme
for abstract heap locations, to ensure termination. The simple flow-sensitive and
subset-based transfer functions are based on set-operations and weak updates.

Our experimental evaluation shows that, despite the use of weak updates,
the analysis is still able to produce accurate analysis results for the heap prop-
erties of interest. The static analysis identifies that in most programs over 80%
of regions do not have any internal shape (are atomic) and that 85% or more of
the pointer sets identified between regions do not contain any aliased pointers
(are injective). These results are near the limits possible with the domain when
compared to the runtime analysis results in [4]. The analysis is able to compute
these results for large and complex programs, 60K bytecodes and 2000+ meth-
ods, using less than 190 seconds and 180MB of memory. We demonstrate how
these results translates into both improved results in existing client applications
and to show how they can be used to enable previously impractical applications
we present three sample clients that utilize the results of the Jackalope analysis
— thread-level parallelization [12, 26], static memory reclamation [18], and auto-
mated unit-test generation.

In summary this paper makes the following contributions:

— This paper revisits three fundamental issues in the design of a heap anal-
ysis — strong updates, abstract memory location definitions, and which
shape/sharing properties are modeled — and shows that, for object-oriented
programs in managed languages, common choices for these design decisions
are inappropriate.

— In light of the first contribution, this paper presents alternative design deci-
sions and uses them to construct a new heap analysis. This analysis provides
precise heap structure information which cannot be obtained via existing
points-to analyses. The analysis is also able to analyze large/complex pro-
grams which are beyond the scope of existing shape analyses.

— We evaluate the precision and scalability of the analysis on well known bench-
marks. The evaluation shows that the analysis is able to efficiently extract
precise sharing and shape information at a near optimal level, compared to
the expected ground truth values, and that the results enable the example
optimizations to be applied.

2 Revising Analysis Design Assumptions

We begin by re-examining conventional wisdom around three fundamental deci-
sions in the design of a heap analysis: the use of strong updates, the definition
of abstract locations, and the shape/sharing information that is tracked. Based
on this re-examination we identify alternative hypotheses to inform the design
and construction of a heap analysis.

2.1 Strong Updates

A major issue in a heap analysis is support for strong updates [3, 13, 22, 31, 32].
where the analysis can discard the previous contents of the store destination
(as opposed to a weak update which conservatively merges the old and new
content values). It is frequently assumed that aggressively performing strong
updates is critical to precision. Seminal papers, such as Sagiv et. al. [32] and
Ghiya and Hendren [16], demonstrate the need for strong updates when an-
alyzing programs which destructively transfer ownership. Performing a strong
update requires uniquely identifying the memory location that is being mod-
ified by the write. This can be handled in a number of ways [6, 13, 32] but
fundamentally involves casewise reasoning over the possible alias configurations
of the program. The combination of casewise reasoning, possible presence of re-
cursive data structures, and existence of aliasing, lead to rapid increases of the
complexity and computational cost of the analysis.

Assumption 1 (Strong Updates) Strong updates are needed in order to pre-
cisely analyze heap shape and sharing properties.

While this assumption may hold for the type C/C++ programs examined in
some of the foundational work on heap analysis it is not clear if it generalizes
to programs written in other languages. For example when analyzing a purely
functional program performing only weak updates is as precise as aggressively
performing strong updates. Thus, a key question is: Under what circumstances
are strong updates critical to achieving high precision and how large is the impact
of using weak-updates?

To understand the importance of strong updates when analyzing object-
oriented programs written in memory managed languages we look to the litera-
ture to better understand how these programs construct and modify structures
on the heap. Results in [5, 7, 37] show that object-oriented programs exhibit
extensive mostly-functional behaviors: the use of final (or quiescing) fields, sta-
tionary fields, copy construction, and when fields are updated the target is often
a newer or freshly allocated object.

For fields which are only assigned to a single time strong updates provides
no improvement over weak updates. In the case of a field which is updated to a
newly allocated object strong updates provide some benefit by eliminating the
old alias but, as shown in the experimental results in this paper, the impact is
small. Finally, the case of destructive reorganization of a data structures, the
case where strong updates have a large impact, are infrequent in the object-
oriented programs we are interested in. Thus, we revise the assumption for the
need for strong updates to:

Revised Assumption 1 (Strong Updates) Strong updates are not critical
to obtaining precise shape and sharing information when analyzing object-oriented
code in managed languages.

2.2 Allocation and Heap Abstraction

There is a large divergence in how object allocation is treated and how the
heap is abstracted in the standard forms of points-to analysis [2, 29, 35] and
standard forms of shape analysis [31, 33]. The general approach taken by points-
to analyses creates a fixed number of abstract memory locations based primarily
on syntactic features of the program, such as allocation sites, and uses them
to abstract the heap. Conversely, shape style analyses generally create a fresh
abstract location every time the analysis visits an allocation site and uses an
notion of equivalence between abstract locations to constrain the heap model.

Assumption 2 (Allocation/Abstraction) A heap analysis can either use a
fized set of abstract locations for scalability (at the cost of precision) or a dynamic
allocation and abstraction approach for precision (at the cost of scalability).

Techniques such as object-sensitivity [29, 34] or recency [3, 9] improve on the
precision of simple allocation site based naming schemes but do not solve the
fundamental problem of apriori picking a fixed set of abstract locations. This
either results in the creation of too few locations to capture important features
about how pointers are aliased or too many locations which needlessly increases
the computational costs. The alternative of creating a fresh abstract location
every time an allocation statement is visited [31, 33] trivially ensures that the
heap can be partitioned as finely as needed. However, creating fresh abstract
locations at every visit to an allocation can lead to non-termination and poor
scalability unless there is a mechanism to merge the locations during the analysis.
Thus, the critical question is: Does there exist a normal form [6, 9, 27, 33] that
provides a fine grained partitioning of the heap when needed for precision but
which will effectively merge unneeded abstract locations scalability?

Recent studies of the heap structures in object-oriented programs [4, 27] pro-
vide a set of empirically validated concepts to use as a basis for a suitable normal
form. This work hypothesizes that developers think of objects in terms of the
roles they play in the programs. Further, the formulations in [4, 27] hypothesize
that the role of an object can be inferred from where pointers to the object are
stored, i.e. objects that play the same roles are stored in the same containers or
structures while objects that play different roles are segregated. Thus we revise
the assumption of how to handle abstract heap locations to:

Revised Assumption 2 (Allocation and Abstraction) There exists a nor-
mal form definition such that a heap analysis can use a dynamic allocation and
abstraction approach while being both precise and scalable.

2.3 Shape and Sharing Representation

The sample optimization clients in Section 6 show that the limited sharing
information provided by basic points-to analyses [2, 29, 35] is insufficient for
many applications. Conversely, work on shape analysis has developed sophisti-
cated logics, which can track complex shape [6, 24, 31, 32] and sharing rela-
tions [14, 17, 26, 28, 31, 32].

Assumption 3 (Shape and Sharing Representation) A heap analysis needs
sophisticated logics to precisely analyze complex recursive data structures and
pointers which alias in subtle ways.

This assumption is clearly correct when considering some classes of programs
(particularly low-level code). However, recent studies [1, 4] of object-oriented
programs in managed languages show that (1) they use recursive data structures
sparingly, (2) that standard library containers are used extensively, and (3) that
objects are almost always shared in small number of simple (and idiomatic)
ways. Thus, we ask: are there simple heap representations that precisely describe
the commonly appearing shape/sharing properties and which can be efficiently
operated on during the heap analysis?

The results in [4] show that, after grouping objects by their roles in the pro-
gram, only a small minority (less than 5% on average) are part of any recursive
data structure. The results in [1] confirm this and show that in practice program-
mers make heavy use of the builtin container libraries. The results in [4] also
show that the percentage of objects which were identified as having the same
role and contained pointers which were aliased was very small (less than 7% of
edges represent aliasing pointers to mutable objects).

These studies imply that the benefit from the use of more than a trivial binary
recursive/non-recursive model of shape properties is likely to be very small.
Further, that when analyzing object-oriented programs, that it is sufficient to
extend the basic storage shape graph [9] (or points-to graph) with a simple binary
injective /may-pairwise-alias [4, 26, 27] property to describe sharing. However,
given the extensive use of arrays and standard library containers it is critical
that the operations on them are handled carefully [14, 28]. Thus we revise the
assumption on the sophistication of the sharing and shape description logics to:

Revised Assumption 3 (Shape and Sharing Representation) Data struc-
tures are mostly non-recursive and the majority of the sharing is simple. Thus,
simple logics for shape and sharing properties are sufficiently expressive.

3 Abstract Heap Domain

This section formalizes concrete program heaps and the relevant properties that
are tracked by the Jackalope heap analysis. These definitions are designed to
support the expression of a range of generally useful properties (e.g., shape,
sharing, reachability) which are useful for a wide range of client optimization
and error detection applications (such as examined in Section 6).

3.1 Concrete Heaps

The state of a concrete program is modeled using an environment Env mapping
from variables to addresses, a store ¢ mapping from addresses to objects, and
a set of objects Objs. We refer to an instance of an environment, a store, and a

set of objects as a concrete heap. Given a program that defines a set of concrete
types (Types) and a set of fields including array indices in N (Labels) a concrete
heap is a tuple (Env, o, Objs) where:

Env : Vars — Addr
o : Addr — Objects U {null}
Objs : {o|o € Objects}
Objects = ObjID x Types x (Labels — Addr)
ObjlD =N Addr=NU {1}

Each object o in the set Objs is a tuple consisting of a unique identifier for the
object, the type of the object, and a map from field labels to concrete addresses
for the fields defined in the object. The set Addr contains a | element which out
of bound array index labels are mapped to. We assume that the objects in Objs
and the variables in the environment Env, as well as the values stored in them,
are well typed according to the store (o) and the sets Types and Labels.

In the following definitions we use the notation Ty(o) to refer to the type of
a given object. The usual notation 0.l to refers to the value of the field (or array
index) ! in the object. We define a helper function Flds : Types — P(Labels) to
get the set of all fields (or array indices) that are defined for a given type. Finally,
for a non-null pointer p associated with object o and label I, where o (0.l) # null
in the concrete heap (Env, o, Objs), we use the notation: p = (0,1, o(0.0)).

In the context of a specific concrete heap, (Env, g, Objs), a region of memory
is a subset of concrete heap objects C' C Objs. It is useful to define the set
P(C4,C5,0) of all non-null pointers crossing from region C; to region Cs as:

P(C1,Cs,0) = {(0s,1,0(05.1)) | 05 € C1 ANo(0s.1) € Ca}

Injectivity. Given regions C1, C in the heap (Env, o, Objs) and the set of non-
null pointers with the label [from C; to Cs, a frequent and important question
is: do any of the pointers in this set alias? To answer this question we define the
property of injectivity.

Definition 1 (Injective). A set of non-null pointers P, with label I from Cy to
Cy is injective, inj(C1, Co,l,0), if: ¥(0s, 1, 0¢), (0},1,0}) € Py.os # 0, = o # 0.

As a special case we consider non-null pointer sets stored in arrays in Cj.
We define the property of array injectivity which includes the assertion that any
pair of pointers stored in two different locations in the same array do not alias.

Definition 2 (Array Injective). A set of non-null pointers Py from arrays in
C1 which point-to objects in Cy is array injective, injy (C1,Co,0), if: ¥ (0s,1,0¢),
(0l,1',04) € Py.(0s # 0, Vi#i") = oy # 0.

These definitions capture the general case of an injective relation being de-
fined from a set of objects and fields to a set of target objects. They also capture

the special, but important case of arrays where each index in an array contains a
pointer to a distinct object. The notion of injectivity asserts a complete absence
of aliasing which is the strongest possible assertion wrt. aliasing on the set.

Lemma 1 (Injectivity is Transitive). Given 3 regions Cy, Co, and Cs with
the injective pointer sets P, (C1,Ca,0) and Py (Co,C3,0). If 04,0, € C1 and
0q 7 0p then the injectivity of the first pointer set implies that 04.1 # 0p.1 in Cs.
Similarly the injectivity of the second pointer set implies that 04.1." # 0y.1.1" in
Cs. Thus, the pointer path, P,(Cy,C,0) o Py(Cs,Cs,0), is injective.

The transitive property of injectivity (and array injectivity) allows us to use
local injective information to reason about disjointness on full heap access paths.

Shape. We characterize the shape of regions of memory using two simple cate-
gories: sets of objects without any internal connectivity and sets of objects with
some unknown internal connectivity.

— The predicate none(C, o) holds if P(C,C, o) = 0.

— The predicate any(C,) holds if P(C,C, o) # 0.

3.2 Abstract Heap

An abstract heap graph is a tuple: (E/n\\/7 o, O/lis) where:

Env : Vars — Addr
& : Addr — Inj x P(Nodes)
Objs : {n|n € Nodes}
Nodes = NodelD x P(Types) x Sh x (Labels — Addr)
Sh = {none,any} Inj = {true, false} NodelD =N Addr = N U {1}

The abstract store (0) maps from abstract addresses to tuples consisting of the
injectivity associated with the abstract address and a set of target nodes. Each
node n in the set 655 is a tuple consisting of a unique identifier for the node, a
set of types, a shape tag, and a map from abstract labels to abstract addresses.
The use of an infinite set of node identity tags, NodelD, allows for an unbounded
number of nodes associated with a given type/allocation context allowing the
local analysis to precisely represent freshly allocated objects for as long as they
appear to be of special interest in the program (as defined via the normal form
in Section 4 and used in the transfer functions in Section 5). The abstract labels

(Ifabe\ls) are the field labels and the special label []. The special label [] abstracts
the indices of all array elements (i.e., array smashing). Otherwise an abstract
label lArepresents the named member field.

As with the objects we introduce the notation T/yp\e(n) to refer to the type
set associated with a node. The notation S/heHa(n) is used to refer to the shape

exp

i
(Add)) (
‘ exp env
o G) Com) l l

anyll r)< . $1{Add, Mult, Sub} $4 Var))

_S@ i |
(‘ w) ‘Var‘) (‘cm) $3 {Const} $2 {Var)

(a) A Concrete Heap. (b) Corresponding Abstract Heap.

Fig. 1. Concrete and Abstract Heap

property, and the usual n.I notation to refer to the abstract value associated with
the label I. Since the abstract store (¢) now maps to tuples of injectivity and node

target information we use the notation Inj(c(@)) to refer to the injectivity and
'ﬁg\ts(ﬁ(a)) to refer to the set of possible abstract node targets associated with
the abstract address. We define the helper function Flds : P(Types) — P(Ijbe\ls)
to refer to the set of all abstract labels that are defined for the types in a given
set (including [] if the set contains an array type).

3.3 Example Heap

Figure 1(a) shows a snapshot of the concrete heap from a simple program that
manipulates expression trees. An expression tree consists of binary nodes for
Add, Sub, and Mult expressions, and leaf nodes for Constants and Variables.
The local variable exp (rectangular box) points to an expression tree consisting
of 4 interior binary expression objects, 2 Var, and 2 Const objects. The local
variable env points to an array representing an environment of Var objects that
are shared with the expression tree.

Figure 1(b) shows the corresponding normal form (see Section 4) abstract
heap for this concrete heap. To ease discussion we label each node in a graph
with a unique node id ($id). The abstraction summarizes the concrete objects
into three regions. The regions are represented by the nodes in the abstract heap
graph: (1) a node representing all interior recursive objects in the expression tree
(Add, Mult, Sub), (2) a node representing the two Var objects, and (3) a node
representing the two Const objects. The edges represent possible sets of non-null
cross region pointers associated with the given abstract labels.

Details about the order and branching structure of expression tree nodes are
absent (shown via the self-edge with the any label). However, the abstract graph
maintains other useful sharing properties of the expression tree, namely that no
Const object is referenced from multiple expression objects. On the other hand,
several expression objects might point to the same Var object. The abstract
graph shows this possible non-injectivity using wide orange colored edges (if
color is available), whereas normal edges indicate injective pointers. Similarly

the edge from node 4 (the env array) to the set of Var objects represented by
node 2 is injective, not shaded and wide. This implies that there is no aliasing
between the pointers stored in the array, i.e. every index in the array contains a
pointer to a unique object (which is critical to understanding the semantics of
any loops that operate on the contents of this array).

4 Normal Form

The abstract heap domain is infinite which allows substantial flexibility when
defining the transfer functions and more precise results when analyzing straight
line blocks of code. However, this is problematic when defining merge/equality
operations and can result in the final analysis having an unacceptably large
computational cost. Thus, we define an efficiently computable normal form to
ensure that the set of normal form abstract heaps for any given program is finite
and that the abstract heaps in this set can easily be merged and compared.

To guide the construction of the normal form definition we utilize the hy-
pothesis that developers think of objects in terms of the roles they play in the
programs. Our approach for identifying roles of objects builds on the concepts
in [4] and is based on the has-a pointer to relation plus the standard notions
of recursive data-structure identification [6, 11, 20, 24, 27, 30, 31], predeces-
sors [6, 9, 11, 27, 33], and grouping the contents of containers [9, 14, 17, 27, 28].

Definition 3 (Normal Form). An abstract heap is in normal form iff:
1. All nodes are reachable from a variable or static field.

2. All recursive structures are summarized (Definition 4).

3. All equivalent successors are summarized (Definition 6).

4. All variable equivalent targets are summarized (Definition 7).

The normal form definition has three key properties: (1) the abstract normal
form heap graphs have a bounded depth, (2) each node has a bounded out degree,
and (3) for each node the possible targets of the abstract addresses associated
with it are unique wrt. the label and the types in the target nodes. The first
two properties ensure that the number of abstract heaps in the normal form set
are finite, while the third enables efficient merge and compare operations on the
bounded labeled graphs.

4.1 Equivalence Partitions

The properties (recursive structures, equivalent successors, and equivalent tar-
gets) are defined in terms of congruence between abstract nodes. Thus, the
transformation of an abstract heap into the corresponding normal form is funda-
mentally a congruence closure computation over the nodes in the abstract heap
followed by merging the resulting equivalence sets. We build a map from the
abstract nodes to equivalence sets (partitions) IT : 6[)75 — {m1,..., 7} where
™ € ’P(O/st) and {m,..., 7} are a pairwise disjoint cover of O/tqs. Initially IT
consists of singleton sets i.e., Vn € Objs. IT(n) = {n}.

The first part of the normal form computation identifies nodes that may be
part of unbounded depth structures. This is accomplished by examining the type
system for the program and identifying all the types that are part of the same
recursive type definitions. We say types 71 and 7o are recursive (11 ~ 72) if they
are part of the same recursive type definition.

Definition 4 (Recursive Structure). Given partitions w1 and w2 we define

nien, TyPE(1), T2 €
Unyem, TYPE(R2) .71 ~ 7o A In € m1, | € Flds(Type(n)) . Trgts(a(n.1)) N g # 0.

the recursive structure congruence relation as: 3m € |

The other part of the normal form computation is to identify any partitions
that have equivalent successors and variables that have equivalent targets. Both
of these operations depend on the notion of a successor partition which is based
on the underlying structure of the abstract heap graph in a standard way:

71 successor of ma, 1 < Ing € m .'I{rg\ts(a(ng.lA)) Nm #0

Definition 5 (Partition Compatibility). We define the partition compati-
bility relation as: Compatible(r, m2) < U, cr, TyPe(n') N U, e , Type(n') # 0.

Definition 6 (Equivalent Successors). Given m, mo which are successors

of m on labels 2\1, 2\2 we define the equivalent successors relation as: 2\1 = Tg A
Compatible(my, m2).

Definition 7 (Equivalent on Targets). Given a variable v and two partitions
w1, T where v refers to a node in w1 and a node in mo we define the equivalent
targets relation as: w1, e only have var predecessors A Compatible(ry, ms).

Using these relations we can efficiently compute the congruence closure over
an abstract heap producing the partitions for the normal form abstract heap
(Definition 4). This computation is done via a standard worklist algorithm that
merges partitions that contain equivalent nodes.

4.2 Computing Summary Nodes

After partitioning the nodes in the graph with the congruence closure computa-
tion we merge the nodes in each partition into a summary node. We also need
to update target and injectivity information for the abstract store. Given set of
nodes, 7, that we want to replace with a new summary node, ng, we compute
the following abstract properties for the summary node and store oy:

ns = (fresh NodelD, Usype (1), Ushape(1), {1 = @] | 1 € FIds(Ugype(rr)), @ is fresh})
05 = MergeStore(&s,lA, m,ns) for each le F/Id\s(l_ltype(w))
Utype () = U Type(n)

nem

10

Shape. The Shape information depends on the shapes of the individual nodes
that are being grouped and the connectivity properties between them. We per-
form a traversal of the subgraph of the partition to see if there are any internal
edges in the partition. Then based on the discovery of any internal edges in this
subgraph we compute the shape as Uspape(m) = struct(m)U| |, .. S/ha\pe(n) where:
struct(m) is: none if no internal edges exist and any otherwise.

Ingectivity and Abstract Targets. Given a mapping from the partitions to the
new summary nodes, @ : Img(Il) — {ns,,...,ns, }, then for each label, I, and
abstract address, a;, that may appear in a summary node, n,, we set the values

in the abstract store as:
MergeStore(G,, 1, , Ng) = 0s + [Ns L (ing, trgts)] where
trgts = {S(I () | 0’ € U, e, Trgts(@(n.]))}
inj=Vn € . nj(3(n0)) AV’ € 7\ {n}. Trgts(5(n.1)) N Trgts(3(n’.1)) = 0

Injectivity is the logical conjunction of the injectivity of all the source label
locations, and that the respective targets sets are disjoint. In the case where
the target sets do overlap, i.e., two distinct nodes have abstract labels/addresses
that contain the same node, the resulting address may not only be associated
with injective pointers. Thus, the injectivity value is conservatively set to false
(i.e., not injective). The target set is simply the remapping of the old nodes in
the target sets to the appropriate newly created summary nodes.

4.3 Normal Form on Example Heap

We can see how this normal form
works by using it to transform the
concrete heap in Figure 1(a) into its

normal form abstract representation. exp
This is done by creating an abstract l
heap graph that is isomorphic to the —
concrete heap (i.e., create a node for ‘

each concrete object and set the ap- / i
propriate targets in the abstract store - $1Mult) $7 (Const)
for each concrete pointer). The result- I

ing isomorphic abstract heap is shown l l \

in Figure 2. The normal form par- 58 (varl) $5 (Sub). 52 {Add)

tition identifies the nodes with the u< }r></) / l
Add, Sub, and Mult types as being

in the same partition (they are part A ALY s
of the same recursive structure). The
presence of this partition will then
cause all of the nodes with Const type

(nodes 4, 7) to be identified as equiv-
alent successors of the tree partition.

Fig. 2. Isomorphic Abstract Heap.

11

Finally, either due to the tree partition or the fact that all the nodes with Var
type (nodes 3, 6) have references to them from node 8 (the Var[]) will cause all
the partitions associated with Var types being identified as equivalent successors.
The final partitioning after the congruence closure is:

71 = {no,n1,n2,n5}, T2 = {n3, N6}, T3 = {n4,n7}, 14 = {ng}

The Shape for the partitions containing the Var, Const and Var[] nodes are
trivial to compute as there are no internal references between the nodes in these
partitions. The shape computation for the partition () containing the nodes
in the expression structure requires a traversal of the four nodes, and as there
are internal edges the layout is any.

For the abstract address associated with the expression tree partition ()
and the label 1 there are two nodes (ny and ns) that refer to the same node (ng3)
in partition my. Thus this abstract storage location is set as not injective (false).
However, for the label r from partition 7 the target sets are disjoint and thus
the injectivity in the abstract store is set as injective (true). Similarly, the store
location for the label [1 out of the partition w4 representing the targets of the
pointers stored in the env array is set as injective. This results in the normal
form abstract heap shown in Figure 1(b).

5 Abstract Transfer Functions

The transfer functions for the statements that are the most interesting from
the standpoint of memory analysis are shown in Table 1. To focus on the cen-
tral ideas we ignore null-pointer dereferences, array out-of-bounds errors, etc.
The interprocedural analysis is context-sensitive (wrt. equality of abstract heap
states) on calls to acyclic portions of the call graph. We refer to [25] for a full
discussion of the how project/extend operations and method calls are handled.

Allocate. The allocation operation creates a fresh node (abstract memory loca-
tion) at every visit to an allocation statement. The creation of a fresh node for
each visit to an allocation site is critical to allowing the analysis to later model
stores into/of this object and the impact on injectivity and shape precisely. Of
course the creation of a new node at each visit to an allocation site creates a
potential problem with the termination of the analysis as the abstract heap state
may grow without bound. However, by applying the normal form operation from
Section 4 at each control flow join point and at each call site we can be sure of
the termination of the analysis (as the set of normal form graphs is finite).

Load. The load operation is a direct translation of the concrete semantics where
the target set that is stored into the variable is the union of the target sets of
the appropriate node sets. However, as variable locations always contain a single
pointer we can strongly update the target set and set the injective value to true.

12

v =new type: (Env,,Objs) ~ (Env, 5, 6@5,) where
n = (fresh NodelD, type, none, {l — @: | | € Flds({type}),a: is fresh})
&' =5+ [Env(v) = (true, {n})] + {[n.] — (true,®)] | T € Flds({type})}
6@5, = Objs W {n}

v=1v"1: (Env,&,O0bjs) ~ (Env, 5", Objs) where

Vprgts = Trgts(3 (Env(v')))
=5+ [E/rK/(v) — (true, U T/rg?S(a(nA)))}

’
nevtrgm

vl=v": (Env,&,O0bjs) ~ (Env, 5", Objs) where
Virgts = Trgts(G(Env(v))) Virgss = Trgts(3(Env(v)))
VN € Virges . if 1 € v;mts then S/ha\pe(n) < any

G =5+ [nlA.—> (ing, 'ﬁg\ts(&\(nA)) U ’Uérgts)}

inj = nj(G(n.)) A Trgts(F(n.1)) N fyyse = 0
Table 1. Abstract Semantics

Store. The store operation plays a central role in the analysis as it is where
special care needs to be taken to update the injectivity and shape information.
It first gathers all the possible objects that may be stored into (vtrgts) and all the
possible objects that we may be storing references to (v},,)- In the update step
we compute new values for the possible shape, the new target node set, and the
new injectivity value. The shape information is handled by checking if the node
we are storing into is in the set of possible targets. If it is then conservatively
set the shape to the top value (any) otherwise the shape is unchanged.

The update to the abstract store involves taking the union of the old target
set and the new target set (weakly updating the target set) and computing a
new injectivity value. There are two cases we need to check to determine the new
injectivity value. The first is if the old injectivity value was false, in which case
we leave it as false. The second is if the new target set and the old target set
overlap, in which case we cannot guarantee that the address is only associated
with injective pointers. Again in this case we conservatively set the result as not
injective. If neither of these cases occur then we mark the abstract address as
containing injective pointers (i.e., the injective value is true).

6 Implementation and Evaluation

The domain, operations, and data flow analysis algorithm are implemented in
C+#. Our test machine is an Intel Core2 class processor at 2.5 GHz with 2 GB

13

of RAM available. Our benchmark set consists of the power and bh programs
from Jolden, the db and raytracer programs from SPEC JVM98, and the luindex
and lusearch programs from the DaCapo suite [7]. Additionally, we use the run-
time heap abstraction code, runabs, from [27]. The code for the benchmarks and
Jackalope analysis tool are available online.’

6.1 Analysis Precision and Computational Cost

In evaluating the precision of the analysis we want to (1) minimize any biases
present in the evaluation metric and (2) ensure that there is a ground truth to
compare the results of the static analysis against. To do this we selected four
properties described in previous work [4, 23, 26] which describe fundamental
shape and sharing properties of a program heap.
— The prevalence of non-recursive data structures (Atomic) via the percentage
of nodes that are not any or part of a strongly-connected component.
— The prevalence of objects that are not shared by other objects in different
abstract heap locations (Unique-In) via the percentage of unique in-edges.
— The prevalence of objects that are not shared by objects in the same abstract
heap location (Injective) via the percentage of edges which are injective.
— The prevalence of pointers which are not aliased in the local scope (Local-
Owner) via the percentage of edges which are both unique-in and injective.

By measuring properties directly, instead of by indirectly through the results
of a client application, we avoid biases introduced by the sensitivity or and
idiosyncrasies of the selected clients. The reported values are computed using
the abstract heap graphs at the entry of each method and aggregating (Max or
Average) over all methods in the program.

The first two columns in Table 2 provide insight into the size of the largest
abstract heaps in terms of the maximum number of Nodes/Edges seen in any
abstract heap graph. The next four columns show the percentages of nodes/edges
in the heap graphs that are Atomic, Unique-In, Injective, and Local-Owners
respectively. The definitions used for shape and injectivity are two valued with a
strong bias. In both definitions one value, none or injective, is maximally precise
(i.e., there is no logically stronger shape or aliasing statement that can be made).
Conversely, the other values, any or non-injective, are fully general. The analysis
reports over 75% (and often over 90%) of heap regions as atomic. Similarly, the
analysis reports a unique-in edge rate of over 60% in all benchmarks except
raytracer and over 78% of edges as injective.

Overall, the raw rates for these values are, for most of the metrics/programs,
quite high. Thus, we know that the analysis is capable of precisely resolving the
shape and sharing of substantial parts of the program heap despite the substan-
tial simplifications made in the analysis. However, it is not clear if the remaining
nodes/edges truly do not satisfy the given property for some concrete execution
of the program or if it is a result of imprecision in the analysis, for example due

! Source code and benchmarks are available at: http://jackalope.codeplex.com/

14

http://jackalope.codeplex.com/

Benchmark||Max Nodes|Max Edges||Atomic%|Unique-In% |Injective%|Local-Owner%
power 13 12 75% 70% 83% 70%
bh 20 21 94% 83% 93% 32%
db 15 12 100% 81% 85% 73%
raytracer 50 70 83% 43% 84% 39%
luindex 136 177 99% 67% 86% 66%
lusearch 258 410 97% 64% 82% 62%
runabs 50 65 94% 60% 8% 50%

Table 2. The first two columns show the max nodes/edges seen in any abstract graph.
The other columns show the percent of nodes which are Atomic, the percent of edges
which represent Injective pointers, which are Unique-In edges to the target node, and
the percentage of edges which represent Local-Owner pointers.

to weak-updates. To understand how close to optimal the results produced by
the static analysis are we want to select a ground truth for comparison which
represents an absolute limit on these rates. We can obtain an estimate of the
absolute via the runtime profiling results [27]. As the static analysis cannot re-
port rates larger than the runtime profiling results (otherwise it is unsound!) we
can use the runtime results to estimate how much room there is for precision
improvements in the the static analysis. According to the results the values for
luindex are: 71% as unique-in, 92% as injective, and 69% of edges as local-owners.
These values show that the expected room for further improvement is small and
that the results produced by the analysis are near the limits of what is possible.

Table 3 shows the number of bytecode instructions, classes, and methods
for each program after being translated into our internal representation. These
numbers differ from previous work (e.g. [7]) due to porting of the benchmarks
to C# and the processing done by the analysis when loading the .Net bytecode.
This processing removes code which will never be executed (via a type based
call-graph) and replaces several of the types/methods in the standard libraries
with simplified versions or specialized domain operations [14, 28].

The Analysis Cost columns in Table 3 show the aggregate performance of the
analysis on the benchmark set. These results show that the analysis described
in this work is quite scalable and capable of analyzing complex programs. In the
case of luindex the analysis requires only 10.7 seconds and up to 188.1 seconds for
lusearch. The large jump in runtime, despite similar program sizes, is connected
to the increased number of fixpoint iterations in lusearch and the increase larger
number of methods in recursive call cycles. Table 3 also shows that the analysis
requires at most 180 MB for any program.

6.2 Impact with Client Applications

The Barnes-Hut n-body algorithm operates on a set of Body objects representing
planets, stars, etc. The Body objects use MathVector objects to represent the
position, velocity and acceleration. During a force update computation a space
decomposition tree is built based on the objects in the bodies array. Next the

15

Benchmark Statistics Fixpoint Analysis Cost
Name |Insts (K)|Classes|Methods||Loop|Method|SCC||Time (sec)|Mem (MB)
power 9.9K 48 407 3 4 4 0.4s 15MB
bh 10.3K 50 442 4 6 4 0.7s 18MB
db 12.8K 57 529 4 1 0 0.8s 16MB
raytracer| 16.2K 71 582 6 9 3 14.2s 25MB
luindex 52.5K 249 2259 6 10 4 10.7s 53MB
lusearch | 60.0K 275 2479 6 17 17 188.1s 180MB
runabs 55.8K | 261 2491 5 14 5 9.6s 64MB

Table 3. Program sizes in instructions (Insts), Classes, and Methods. Max fixpoint
iterations for Loops and Methods. SCC' is the number of methods in recursive cycles
in the call-graph. Aggregate analysis costs, Time in seconds and Memory in MB.

program computes the new acceleration of each Body based on the force interac-
tions with the other bodies. Then the vp method (below) is used to update the
position and velocity fields of each Body object based on the new acceleration.

class Body : Node {MathVector pos, vel, acc, tacc; ...}
class MathVector {double[] data; ...}
public static void vp(Body[] bv, float dt) {
for (int i = 0; i < bv.Count; 4++i) {
bv[i].pos = ComputeNewPos(bv[i].pos, bv[i].vel, dt);
bv[i].vel = ComputeNewVel(bv[i].vel, bv[i].acc, dt);
bv[i].acc = bv[i].tacc.CloneMV ();

}
}

The abstract heap that is constructed by the analysis for the program state
at the entry of the vp method is shown in Figure 3. Of particular interest is that
(1) all the edges in the graph end at different nodes and (2) all of the edges
in the figure, including the edge labeled /] which represents the pointers in the
Body [1, are narrow and uncolored (injective). These two features of the abstract
heap imply that (1) there is no aliasing between pointers abstracted by different
edges, i.e., stored in different fields and (2) there is no aliasing between pointers
abstracted by the same edge, i.e., all pointer sets are injective (array injective).

Thread Level Parallelism The first client we examine is automatic thread-
level parallelization of basic for loops. The first part of the condition definition
ensures that the array contents do not alias. The third condition ensures that
all modified locations are at the current loop iteration index (and do not intro-
duce new aliases). The final condition ensures that reads are from un-modified
locations or locations written in the current loop iteration.

Optimization 1 (Basic Array Loop Parallelization) A loop which is iter-
ating over an array A, using monotone index variable i, can be parallelized if:
— Vj # i then A[j] and A[i] do not alias (Alj] # Ali]).
— Writes are of the form A[<i].f = y where subheaps for y and A are disjoint.
— Reads are from fields which are never modified or are of the formz = A[<]. f.

16

bv

l

$9 {Body[]}
f
$8 {Body}
e e
$1 {MathVector} $3 {MathVector} $5 {MathVector} $7 {MathVector}
datal datal datal datal
$0 {double[]} $2 {double[]} $4 {double[]} $6 {double[]}

Fig. 3. Abstract Heap at Entry of vp Method.

The relevant heap properties needed to perform parallelization can be checked
directly using the heap information provided by the Jackalope analysis. To see
that for all ¢ # j the Body objects that are modified in the access paths, bu[i]
and bu[j], are not equal we look at the injectivity of the edge representing the
array contents. The edge representing the pointers stored in the array, labeled
with [/, is array injective. By the definition of array injectivity, Definition 2,
i # j implies bo[i] # bu[j]. Further, the implementations of ComputeNewPos and
ComputeNewVel return fresh MathVectors. Since the analysis creates new ab-
stract locations for each visit to a new operation and only merges them later,
the analysis trivially discovers that on all the assignments the right-hand side
values are freshly escaping allocations in the current loop iteration. Based on
these results we know the vp loop can be safely thread parallelized. After par-
allelizing the vp loop, and a parallel loop in the stepSystem method, with the
C# Task Parallel Library we obtain a 2x speedup on our 4-core processor.

Static Memory Collection. The second optimization we examine is compiler
directed static memory reclamation. Guyer et. al. [18] describe a technique for
statically inserting frees based on the results of a specialized points-to analysis.
A simplified version of the optimization is based on the intuition that if the
memory location being overwritten contains the only reference to the target
object (the target object has a reference count of one) then it can be reclaimed.

Optimization 2 (Basic Reclamation at Store) Object o pointed to by x.f
(A[7]) can be explicitly reclaimed at the statement z.f = y (A[i] = y) if, on
all executions of the statement, the pointer stored in x.f (A[i]) prior to the
assignment is the unique reference to o.

Using the combination of in-degree and injectivity information provided by
the Jackalope analysis we can identify the stores in the vp loop as safe for

17

explicit static reclamation. Since the in-degree to the target nodes of each left-
hand side (bv[i] .pos) is 1 and the single incoming edge is injective (no pointers
abstracted by the edge alias) we know that each object abstracted by the target
node is referred to a single pointer (i.e., the one abstracted by the bv[i].pos
edge). Thus, we know the store satisfies the requirement for adding explicit
reclamation. By recursively walking the abstract heap graph structure, looking
at nodes representing sets of uniquely owned objects, we can also infer that
the associated double[] arrays can be freed as well (i.e., bv[i] .pos.data).
These results enable the explicit reclamation of objects at all three assignment
statements in the loop and enable an additional 8% of all allocated memory to
be collected statically when compared to [18].

Unit-Test Generation. The last client application we examine is the auto-
matic generation of unit-tests using the results of the Jackalope analysis. Tools
such as Pex [36] or Korat [8] can be effectively used to automatically generate
test inputs for methods with well constrained inputs such as scalar parameters or
precisely specified heap structures. However, when run on methods with larger
heap structures that lack precise specifications (as is the case in most programs)
they often return large numbers of false positives and have low coverage of the
code in the method under test. Running Pex on the vp method (via Pex Ex-
plore) results in 4 false-positives (null pointer exceptions), 1 passing test, and
only achieves 33% block coverage in the code under test.

However, the information needed to generate high-coverage and low false-
positive test cases can be extracted almost directly from the abstraction/con-
cretization relations in Section 3. Each node corresponds to a existentially quan-
tified set of objects and each edge to an existentially quantified set of pointers.
The additional injective and none abstract properties correspond to assertions
on these sets. The constraint system is output in the form of an executable con-
structor which Pex can explore and fill in the scalar fields in the objects that
are constructed. When Pex is run on this combined setup and test code for the
vp method the results are 0 failing test cases (which implies 0 false positives), 3
passing test cases, and 100% block coverage of the code under test.

7 Related Work

Much of the related literature on shape and points-to analysis was reviewed
in Section 2. Thus, we focus on work that has explored other alternative heap
analysis designs. Work on memory analysis by Latter et. al. [21] is based on a
modular approach which first builds local shape graphs for each method via a
local flow-insensitive points to analysis, and then merges (and clones as needed)
these local graphs via a context-sensitive interprocedural analysis to produce the
final result. Work in [15, 19] mixes shape and points-to analysis by first parti-
tioning the heap into regions via a flow-insensitive points-to analysis followed
by performing shape analysis based on these partitions. The work of Ghiya and
Hendren [16] uses points-to and basic reachability predicates to compute shape

18

information. The work by Ma and Foster [23] uses a predicate resolution algo-
rithm to, on-demand, compute more complex sharing properties than can be
provided by the base points to analysis. Similarly the work in [10] adds a form
of reference counting to a heap analysis to track unique reference information.

8 Conclusion

This paper presented the empirically motivated design and construction of a heap
analysis. A key insight was the need to revisit three critical decisions in the anal-
ysis design in the context of object-oriented program written in memory man-
aged languages. Based on this study we constructed the Jackalope heap analysis
under the hypotheses that: (1) strong updates are not required for precise analy-
sis results, (2) fixed naming schemes, such as allocation or object-sensitivity, are
fundamentally limiting, and (3) the vast majority of the shape/sharing which ap-
pears in practice is simple. Experimental evaluation of the resulting heap analysis
showed that in practice it was precise, near the limit of what is possible even with
a hypothetical perfect analysis, for a range of fundamental ownership and alias-
ing metrics. The ability to successfully apply the example client optimizations
demonstrate the utility of the analysis results. Scalability was demonstrated via
the analysis of several large and complex programs, 60K+ bytecodes and 2000+
methods, using less than 190 seconds and 180MB of memory.

References

[1] S. Albiz and P. Lam. Implementation and use of data structures in Java programs.
http://patricklam.ca/dsfinder/, 2010.

[2] L. Anderson. Program analysis and specialization for the ¢ programming language.
Tech. report, PhD. Thesis, DIKU, report 94/19, 1994.

[3] G. Balakrishnan and T. Reps. Recency-abstraction for heap-allocated storage. In
SAS, 2006.

[4] E. Barr, C. Bird, and M. Marron. Collecting a heap of shapes. In ISSTA, 2013.

[5] W. Benton and C. Fischer. Mostly-functional behavior in Java programs. In
VMCAI 2009.

[6] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and H. Yang.
Shape analysis for composite data structures. In CAV, 2007.

[7] S. Blackburn, R. Garner, C. Hoffman, A. Khan, K. McKinley, R. Bentzur, A. Di-
wan, D. Feinberg, D. Frampton, S. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. Moss, A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java benchmarking development and
analysis (2006-mr2). In OOPSLA, 2006.

[8] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing based on
Java predicates. In ISSTA, 2002.

[9] D. Chase, M. Wegman, and K. Zadeck. Analysis of pointers and structures. In
PLDI; 1990.

[10] S. Cherem and R. Rugina. Compile-time deallocation of individual objects. In
ISMM, 2006.
[11] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In

PLDI, 1994.

19

http://patricklam.ca/dsfinder/

12]
[13)
[14]
[15]
[16]
17)
18]
[19]
[20]
21]
[22]
23]
[24]
[25]
[26]
[27)
28]
[29]
[30]
31)
[32)
33
[34]

[35]
[36]

[37]

D. Dig, M. Tarce, C. Radoi, M. Minea, and R. Johnson. Relooper: Refactoring
for loop parallelism in Java. In OOPSLA, 2009.

I. Dillig, T. Dillig, and A. Aiken. Symbolic heap abstraction with demand-driven
axiomatization of memory invariants. In OOPSLA, 2010.

I. Dillig, T. Dillig, and A. Aiken. Precise reasoning for programs using containers.
In POPL, 2011.

I. Dillig, T. Dillig, A. Aiken, and M. Sagiv. Precise and compact modular proce-
dure summaries for heap manipulating programs. In PLDI, 2011.

R. Ghiya and L. Hendren. Is it a tree, a dag, or a cyclic graph? A shape analysis
for heap-directed pointers in C. In POPL, 1996.

S. Gulwani and A. Tiwari. An abstract domain for analyzing heap-manipulating
low-level software. In CAV, 2007.

S. Guyer, K. McKinley, and D. Frampton. Free-Me: A static analysis for automatic
individual object reclamation. In PLDI, 2006.

B. Hackett and R. Rugina. Region-based shape analysis with tracked locations.
In POPL, 2005.

M. Jump and K. McKinley. Dynamic shape analysis via degree metrics. In ISMM,
2009.

C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive points-to analysis
with heap cloning practical for the real world. In PLDI, 2007.

O. Lhotédk and K.-C. Chung. Points-to analysis with efficient strong updates. In
POPL, 2011.

K.-K. Ma and J. Foster. Inferring aliasing and encapsulation properties for Java.
In OOPSLA, 2007.

R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate abstraction and
canonical abstraction for singly-linked lists. In VMCAI, 2005.

M. Marron, O. Lhotdk, and A. Banerjee. Programming paradigm driven heap
analysis. In CC, 2012.

M. Marron, M. Méndez-Lojo, M. Hermenegildo, D. Stefanovic, and D. Kapur.
Sharing analysis of arrays, collections, and recursive structures. In PASTE, 2008.
M. Marron, C. Sanchez, Z. Su, and M. Fahndrich. Abstracting runtime heaps for
program understanding. IEEE TSE, 2013.

M. Marron, D. Stefanovic, M. Hermenegildo, and D. Kapur. Heap analysis in the
presence of collection libraries. In PASTE, 2007.

A. Milanova, A. Rountev, and B. Ryder. Parameterized object sensitivity for
points-to analysis for Java. ACM TOSEM, 2005.

N. Mitchell, E. Schonberg, and G. Sevitsky. Making sense of large heaps. In
ECOOP, 2009.

J. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS, 2002.

S. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. In POPL, 1996.

S. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
In POPL, 1999.

Y. Smaragdakis, M. Bravenboer, and O. Lhotdk. Pick your contexts well: Under-
standing object-sensitivity. In POPL, 2011.

B. Steensgaard. Points-to analysis in almost linear time. In POPL, 1996.

N. Tillmann and J. de Halleux. Pex-White box test generation for NET. In TaP,
2008.

C. Unkel and M. Lam. Automatic inference of stationary fields: A generalization
of Java’s final fields. In POPL, 2008.

20

