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Abstract—Compressive sensing has been used to overcome com-
munication constraints (energy and bandwidth) in low-power sen-
sors. In this work, we present a seizure-detection processor that
directly uses compressively-sensed electroencephalograms (EEGs)
for embedded signal analysis. In addition to addressing communi-
cation, this has two advantages for local computation. First, with
compressive sensing, reconstruction costs are typically severe, pre-
cluding embedded analysis; directly analyzing the compressed sig-
nals circumvents reconstruction costs, enabling embedded anal-
ysis within applications. Second, compared toNyquist-sampled sig-
nals, the use of compressed representations reduces the compu-
tational energy of signal analysis due to the reduced number of
signal samples. We describe an algorithmic formulation as well
as a hardware architecture that enables two strong power-man-
agement knobs, wherein application-level performance can scale
with computational energy. The two knobs are parameterized as
follows: 1) ξ, which quantifies the amount of data compression,
and 2) ν, which determines the approximation error within the
proposed compressed-domain processing algorithm. For ξ and ν
in the range 2-24×, the energy to extract signal features (over 18
channels) is 70.8-1.3 nJ, and the detector’s performance for sensi-
tivity, latency, and specificity is 96-91%, 4.7-5.3 sec., and 0.17-0.30
false-alarms/hr., respectively (compared to a baseline performance
of 96%, 4.6 sec., and 0.15 false-alarms/hr.).

Index Terms—Circuits, compressive sensing, energy efficiency,
machine learning, seizure detection, signal processing.

I. INTRODUCTION

C OMPRESSIVE sensing is a potentially compelling tech-
nique to reduce data in sensing systems. It is based on

the principles of sparsity. It states that if an -sample signal
is sparse in a secondary basis , we can use an
projection matrix , which is required to be incoherent with
to create an -sample signal [1], [2], where repre-
sents the achieved compression factor. For most signals that are
sparse in some basis , a whose elements are set to 1 ran-
domly with a uniform probability satisfies the incoherence prop-
erty with high probability [2]. Such a choice for has the ben-
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efit of enabling low-energy compression, applicable to a broad
range of signals; this has recently been exploited in biomedical
sensors [3], [4].
The typical way in which compressive sensing has been used

in such sensors is illustrated in Fig. 1(a). Embedded signals ac-
quired from distributed sources are compressed with very low
energy to alleviate the communication-bandwidth and -energy
constraints between the sensors and a base station (possibly
through a gateway device). At the base station, the signals can
then be reconstructed for analysis. The limitation of such an
approach is that it does not address the need to perform local
signal analysis, because generally this has required signal re-
construction, which is computationally intensive [5] and thus
impractical to perform on either the sensors or the gateway de-
vice. The need for local analysis is gaining importance in ad-
vanced sensing systems, particularly for medical applications
[6] where local detection can enable closed-loopmonitoring and
therapeutic devices while also identifying the critical signal seg-
ments to enable transmission to centralized human experts for
reconstruction and further analysis. The aim of this work is thus
to enable the system model shown in Fig. 1(b), wherein com-
pressive sensing is exploited for low-energy signal compres-
sion and subsequent reconstruction, but where the compressed
representations can also be used directly to perform signal-pro-
cessing operations, thereby enabling local signal analysis on ei-
ther the sensors or the gateway device. In fact, the approach of
performing analysis directly on compressed representations can
have broad and valuable applications beyond systems where the
aim is simply to move such functions from a base station to the
local nodes. In this paper, we describe how analysis on com-
pressed representations can enable a generalizable approach to
substantially reduce computational energy for signal-processing
operations.
Embedded medical sensors that perform analysis typically

work by extracting signal features based on physiological
biomarkers and then feeding these features to high-perfor-
mance classifiers to detect targeted physiological states [6], [7].
However, since compressive sensing involves multiplication by
the random projection matrix , the biomarkers get obscured
and thus present a challenge for signal analysis.
In [8], we proposed a methodology based on a least-squares

approximation that allows us to directly analyze compres-
sively-sensed signals. In [9], we also presented an architecture
and prototype integrated circuit (IC) that exploits this method-
ology in an EEG-based seizure-detector. We showed in [9]
that the energy of a compressed-domain processor in this
case scales quadratically with the level of data compression.
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Fig. 1. Proposal to directly analyze compressively-sensed data: (a) previous approaches, (b) proposed approach.

Fig. 2. EEG is sparse in the Gabor basis, enabling substantial compression; although accurate reconstruction is possible, it is computationally intensive, motivating
signal analysis directly using the compressed signal.

In [10], we provided an improved approach wherein the
compressed-domain equations can be solved more accurately;
this is achieved by introducing a second random projection for
the output signal, thereby increasing the degrees of freedom
available for solving the equations. We applied the approach
to a second spike-sorting application. The motivation for this
application comes from the fact that in sensing systems, com-
munication bandwidth, not just communication energy, may be
of concern. A passive implant functioning as a spike-acquisition
transponder is a typical example of such a case. This is a case
where communication poses a bandwidth limitation, not an
energy limitation, since the implant transmits with no power.
In this case, the implant is severely energy constrained, and
thus unable to accommodate extensive local processing. On
the other hand, for communication, it can take advantage of
a passive transmitter based on (inductive) backscattering. The
data rate of such a transmitter, however, is limited (due to
practical inductors that can be formed). The objective within
the implant is thus to reduce the data rate to a level that can
be supported by the passive transmitter while consuming
no more energy than that required to achieve this level. We
show in [8] that the new approach substantially improves the
accuracy of the signal-processing system and enables two
knobs for trading algorithmic performance in exchange for
reduced computational complexity. The energy savings are
linear with respect to each of these knobs. In this paper, we
use the prototype IC from [9], extending its use to the new
approach to enable the two resulting power-management knobs
within an energy-scalable EEG-based seizure detector. The
resulting algorithm for compressed-domain analysis increases
the number of signal-transformation coefficients that need to be

stored compared with a traditional Nyquist-domain algorithm.
A key attribute of the IC is thus a scalable SRAM. We describe
the algorithm and present detailed analysis and measurements
from the IC implementation.
Fig. 2 illustrates the concept. EEG is known to be sparse in

the Gabor basis [11]. This enables low-energy compres-
sion using a random projection matrix . The resulting EEG-
signal representation is compressed, but also substantially al-
tered. Nonetheless, a corresponding representation of the de-
sired signal features can be obtained by transforming the fea-
ture-extraction computations based on . This results in a
compressed-domain seizure detector. The resulting transforma-
tion not only overcomes the need for signal reconstruction, but
also leads to computational energy savings due to a reduction in
the number of input samples that need to be processed. The IC
thus provides a previously unexplored approach for reducing the
computational energy of signal analysis within the processor.

II. SYSTEM OVERVIEW

In this section, we describe the proposed approach for trans-
forming signal analysis from the Nyquist-sampled time domain
(henceforth called the Nyquist domain) to the compressed do-
main. We provide simulation results for seizure detection that
compare the performance of the compressed- and Nyquist-do-
main analyses. We also describe the architecture of the com-
pressed-domain processor, highlighting the new knobs for com-
putational power management that it introduces.

A. Algorithmic Formulation

Signal-classification algorithms typically base their de-
cision rules on key features extracted from the signals via
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Fig. 3. Transforming any linear signal-processing function, which can be represented as a matrix , into an equivalent operator in the compressed domain.
This needs a solution for a projection of , which preserves the inner product of vectors.

signal-processing functions; this is particularly true for medical
detectors, where the features often correspond to physiological
biomarkers. These algorithms then use a classifier to perform
modeling and inference over the extracted features. Powerful
classification frameworks exist in the domain of machine
learning that can construct high-order and flexible models
through data-driven training. In many such frameworks, the
classification step utilizes a distance metric (e.g., 2-norm or
inner product) between feature vectors (FVs) [12]. In certain
cases, the distance metric may also be invoked within the
feature extraction step, for instance, to extract spectral energies,
which form generic biomarkers for neural field potentials
(e.g., brain-machine interfaces [6], sleep disorders [13], etc.).
In this paper, we demonstrate our results for the latter case
using a seizure-detection application, where clinical studies
have shown that EEG spectral energy [derived using the inner
product between FVs after linear finite impulse response (FIR)
filtering] can serve as a biomarker that indicates the onset of a
seizure [14].
Connecting the above concepts with the multi-channel

system shown in Fig. 3, in the Nyquist domain [Fig. 3(a)], an
-dimensional signal from each data channel is multiplied

with an matrix operator to achieve arbitrary linear
signal-processing functions in order to derive an FV (e.g.,
could be a Toeplitz matrix to implement convolution). The

inner product between FVs can then be used to derive the
spectral-energy features from each data channel [as shown in
Fig. 3(a), spectral-energy features can be denoted by the inner
product ]. Extending this to an analysis in the compressed
domain [Fig. 3(b)], we now aim to process compressed rep-
resentations of the input signal, namely , where
represents the random-projection matrix used for
compressive sensing. We thus seek to find a matrix transfor-
mation that leads to a representation of a signal which has
been suitably processed as intended, but which is derived by
directly using . In this case, we also show that any other
combination cannot perform better than the combination
obtained from the presented solution (for all choices of ).
In the proposed approach, we aim to derive compressed-

domain FVs that are projections of the originally intended
Nyquist-domain FVs . With this approach, the chosen pro-
jection needs to preserve the inner product between the FVs,
since the inner product is what is used by the classifier (either
implicitly or for spectral-energy feature extraction). In [8] and
[9], we showed that such a projection can be the

Fig. 4. IPE is lower when we use an exact solution for . The low IPE value
remains consistent for different choices of and .

compressive sensing matrix itself (i.e., can be equal to
). However, since is a non-square matrix of dimension-

ality (determined by the compression factor), this
approach allowed us to derive, at best, only a least-squares
solution for . Next, we showed how an auxiliary
matrix can be applied to , where represents the projection
factor, can be used instead of to introduce additional degrees
of freedom that allow us to solve for exactly [10]. Addition-
ally, by scaling to larger values, this approach also permitted
us to obtain approximate solutions to of smaller size. The
resulting solution reduced the number of operations required in
the processor and thus enabled an additional knob to scale the
energy of compressed-domain analysis based on the required
accuracy. Below, we summarize our approach of deriving
using .
Since , the inner product between any two FVs

and in the compressed domain is given by:

(1)

The right hand side will be equal to the inner product
in the Nyquist domain if is equal to the identity
matrix . Thus, to simultaneously solve for and , we have
to solve the following constrained optimization problem:

(2)

1) Exact Solution for (for Highest Accuracy): Assuming
is a square matrix, we can obtain the singular value decom-

position (SVD) of as , where and are or-
thogonal matrices (i.e., ) and is an
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Fig. 5. The seizure detection algorithm involves feature extraction and classification using an SVM. In the compressed domain, the Nyquist-domain BPFs are
transformed to the compressed-domain BPFs (CD-BPFs) .

diagonal matrix formed by the singular values
of . We thus have the following relationship for :

(3)
The distance from the above matrix to the identity will be at
least the rank deficiency of [15]. The lower bound in (2) will
thus be achieved if we set ,

(4)

Note that, in this case, the dimensionality of the compressed-
domain processing matrix is and is control-
lable only through one knob: the amount of data compression
(i.e., ).
2) Approximate Solution for (for Energy Savings): In

order to solve (2) approximately, we invoke the Johnson-Lin-
denstrauss (JL) Lemma [16], which states that when
each row of is drawn from the normal distribution .
Also, the error in the above approximation increases when we
have fewer rows in . Since and are constants in (2),
to derive rows of from , we can draw each row of
from [10]. This provides an approximate

solution for in (2). The approximate solution is applicable
in the following two cases: (1) when has fewer rows than
columns (i.e., when ) or (2) when has more rows
than columns (i.e., when ). As compared to the exact
solution , the former case results in a smaller-sized
and thus potentially lower energy for signal processing. The
latter case, however, results in a , which is bigger in size
than the obtained from the exact solution. Thus, the design
space of results in a higher computational complexity
and reduced accuracy, compared to the exact solution. It is thus
not a very useful design space for low-energy operation. We
block out this regime in all subsequent figures that show the
performance/energy of the approximate solution.
Note that when we use the approximate solution, the dimen-

sionality of is and is controllable through two
independent knobs: (1) the amount of data compression (i.e.,
) and (2) the required accuracy (i.e., ) for solving the com-
pressed-domain system of equations [(2)]. As an aside, we also
note that given and , we can constrain the sparsity of

within the optimization setup [(2)] to derive an approximate so-
lution for . This is an interesting direction for future work.
In deriving and , our aim is to preserve the inner product

between the processed FVs in the compressed domain. To illus-
trate the benefit of the proposed transformations, we evaluate
the inner-product error (IPE) in the compressed domain, which
is defined as . We use a set of 100 EEG
vectors, each comprising samples and represented
by vector . To illustrate the benefit of our approach, we con-
sider three different Nyquist-domain matrices, , representing
various signal processing functions: (1) a 64-order band-pass
filter (BPF), (2) a discrete wavelet transform (DWT), and (3) a
random transfer function obtained by using coefficients for
drawn from . Further, we fix and compute
after processing the compressed representation with a ma-
trix , derived using (1) the exact solution presented above
and (2) an matrix whose entries are derived from

. Fig. 4 shows the results generated fromMATLAB. We
observe that the IPE is substantially lowerwhenwe use an ob-
tained from the proposed transformation. In fact, using the exact
solution, the IPE remains below 6% even for different choices
of . The key question, however, is howmuch IPE is acceptable
for retaining the classifier performance. To provide a quantita-
tive answer, we next study an application for epileptic seizure
detection and provide an analysis based both on the end-to-end
performance and the mutual information of the derived FVs
with respect to the true class labels.

B. Compressed-domain Seizure Detection

We apply the above methodology to a seizure detection
algorithm. Fig. 5(a) shows a block diagram of the baseline
Nyquist-domain detector [14]. A two-second epoch of each
EEG channel is processed using eight BPFs with passbands of
0-3 Hz, 3-6 Hz, , 21-24 Hz. The energy from each filter is
then represented by the inner product of the output samples to
form an FV, which is then used for classification by a support
vector machine (SVM) classifier. The baseline detector is vali-
dated on 558 hours of EEG data in the CHB-MIT database [17].
The Nyquist-domain detector has been demonstrated to achieve
an average latency, sensitivity, and specificity of 4.49 sec.,
96.03%, and 0.1471 false alarms per hour, respectively [14].
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Fig. 6. IPE in (a) the exact solution is below 15% (out to compression factors of 24 ) and (b) begins to degrade in the approximate solution with increasing values
of . The exact solution is also shown in (b) with dark boxes. The cases of , which are not favorable for low-energy operation, are blocked out. shows
the separation between adjacent contours.

Fig. 7. Performance of the compressed-domain seizure detection algorithm using the exact solution (shown over 558 hrs. of EEG data from 21 patients) is main-
tained up to large .

Fig. 8. Detector performance for the approximate solution measured by (a) sensitivity, (b) false alarms/hr., and (c) latency. The performance begins to degrade
gradually due to the JL-approximation at higher values of .

To enable a transformation for the compressed domain, the
th BPF for the th EEG channel can be formulated as matrix
multiplication, namely of an input signal by a matrix to
compute the filtered signal . This formulation can lead to
the compressed-domain system shown in Fig. 5(b), which is
based on compressed-domain band-pass filters (CD-BPFs). In
this system, we derive the corresponding matrix using (1)
an exact solution and (2) an approximate solution, as described
in the previous section.
Fig. 6 shows the IPE in the FVs using the two approaches.

For the results of the approximate solution, is the distance
between adjacent contours with units shown above the figure.
Using the exact solution, the IPE is below 15% even at
24 . Further, Figs. 7 and 8 show the simulated performance of
the two approaches, respectively. Fig. 7 shows that despite a
non-zero IPE value, performance very close to the Nyquist-do-

main seizure detector is retained up to large values of the com-
pression factor . For a given amount of data compression (i.e,
at fixed ), Fig. 8 shows that using an approximate solution,
the performance begins to degrade gradually with increasing
values of . Although a low IPE helps retain performance, the
information content [8], based on the mutual information of
the FVs, provides a more direct relationship to the performance
trend. Fig. 9 shows the mutual information values for the exact
and approximate solutions. The information trends indeed cor-
relate well with the detector performance. Thus, the proposed
transformations allow us to have a small IPE up to substantial
amounts of data compression, thereby preserving the informa-
tion content of the FVs for classification. However, as the IPE
increases at higher compression factors, the information degra-
dation becomes substantial, affecting the end-to-end detector
performance.
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Fig. 9. Mutual information in (a) the exact solution and (b) the approximate solution follows the performance trends shown in Figs. 7 and 8, respectively.

Fig. 10. CD-BPF matrices , derived using and , disrupt the regularity and zeros in . The complexity of the CD-BPFs scales (a) quadratically with
for the exact solution and (b) linearly with and for the approximate solution.

Note that, through the results presented in this section, we
aim to show general trends; showing precise correspondence
between performance, IPE, and information metrics is not our
intention. Based on the analysis presented in this section, we
conclude that and provide us with two knobs to control
the end-to-end performance of the compressed-domain detector.
Next, we study the impact of these two knobs on the size of
the compressed-domain processing matrices and thus on the
processor implementation and energy.

C. Processor Architecture With Power Management

We exploit the scalability of and as knobs for system
power management. An important consequence of the algo-
rithmic construction proposed is that the CD-BPF matrices
(which are of dimensionality for the exact
solution and for the approximate solution)
do not retain the regularity of . Even though are of
dimensionality , as shown in Fig. 10, the rows of are
simply selected to implement convolution, and thus are shifted
versions of the impulse response of the same FIR filter. As a
result, very few unique filter coefficients are required, and many
of the coefficients are zero, as determined by the FIR-filter
order . However, in deriving , the shifted impulse responses
and zero entries are disrupted. As shown in Fig. 10, the number
of multiplications required thus no longer depends on the filter
order, but rather (1) quadratically on the compression factor
for the exact solution and (2) linearly on both and for the

approximate solution. This scaling can potentially reduce the
number of multiplications required.
To exploit this attribute, we propose the energy-scalable

processor architecture whose block diagram is shown in
Fig. 11. The processor consists of two computational stages:
compressed-domain feature extraction followed by SVM clas-
sification. The compressed-domain feature extractor (CD-FE)
includes a CD-BPF and energy-accumulator block. The co-
efficients for the CD-BPF are pulled from a scalable SRAM
bank. Due to the disruption in regularity, the matrices need
a larger number of distinct coefficients to be stored, potentially
increasing the memory requirements. Scalability in the SRAM
bank is thus an important aspect of power management. We
achieve this through the use of multiple subarrays, which
enable fine-grained power-gating as well as reduced bit-line
and word-line access energy. The total bank size in our imple-
mentation is 32 kB, which is partitioned into four subarrays.
An SVM classifier (which comprises an inner-product core
followed by a kernel transform) is also integrated to perform
real-time seizure detection using the derived FVs. Compres-
sively-sensed EEG signals are input directly to the processor
for seizure detection. However, for the case of Nyquist inputs,
a compressive-projection front-end (CPF) is also included to
explicitly multiply inputs by a random projection matrix ;
thus the energy savings derived from a reduced number of
samples can be exploited even if the original input signal is not
compressively sensed.
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Fig. 11. Architecture block diagram of energy-scalable, compressed-domain seizure detector.

Fig. 12. Circuits used in the compressed-domain processor for seizure detection. Figure adapted from [9].

Fig. 13. (a) SRAM access energy (from NanoSim [18] at 0.7 V) is lower for smaller-sized arrays and (b) summary of energy components contributing to total
SRAM energy (the , case is shown for illustration).

III. LOW-ENERGY COMPRESSED-DOMAIN PROCESSOR

In this section, we describe the circuits used in the com-
pressed-domain processor. We also present an analysis of
SRAM energy, which will help us understand the impact of
energy scalability in the processor with respect to and .

A. Circuits

Fig. 12 shows the circuits used in the compressed-domain
processor. The CPF is selectable for front-end signal com-
pression. It uses a 16 b linear feedback shift register (LFSR)
to implement multiplication with a random projection matrix
, as shown. Since the processor operates on an EEG epoch
of 2 seconds, FVs are derived at the rate of 0.5 Hz. At this
low rate, the CD-FE can compute each feature dimension
sequentially and store the intermediate results in a data buffer.
The CD-FE can be configured to compute up to eight spectral
features for each EEG channel over as
many as 18 channels, yielding a maximum FV dimension-
ality of 144. Within the CD-FE, the control pulse initiates
CD-BPF computations. A multiply-accumulate (MAC) unit
(M0) is used to perform the matrix multiplications required for

compressed-domain band-pass filtering using . Each filtered
EEG epoch is then registered by the control pulse . Energy
accumulation over the output vector is then performed by a
second MAC unit (M1). After the feature-extraction process
[which requires MAC operations], each FV
dimension is stored in an intermediate FV buffer based
on the control pulse .

B. SRAM Energy Analysis

In our implementation, we represent filter coefficients using
8 bits of precision. Thus, to support CD-FE computations, the
processor requires a maximum of 32 kB accesses per second
from the memory bank. Fig. 13(a) shows that the SRAM en-
ergy per access is reduced by choosing smaller-sized
subarrays [19]. Since the and knobs scale the memory re-
quired, designing a single 32 kB array would be sub-optimal
for many of the parameter points. Instead, we design four subar-
rays (each of size 8 kB) to balance savings in energy per access
with the overhead of further partitioning. With sub-array par-
titioning, leakage-energy saving can be achieved by indepen-
dently power-gating each sub-array (from off-chip).
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After the CD-FE computations, each FV is processed by the
SVM block within the epoch duration of two seconds. The SVM
can apply linear, polynomial, or radial-basis function (RBF)
kernel transformations (via an embedded CORDIC engine). The
support vectors are derived from offline training of the classifier
and are provided through a dedicated interface. The classifica-
tion result is encoded in the most significant bit (MSB) of the
SVM output (MSB for seizure detected, MSB for no
seizure detected).
The CD-FE energy comprises the logic and SRAM energy

subcomponents. The SRAM consumes a substantial portion of
the total CD-FE energy. Its optimization to exploit scalability
with respect to and is thus a key factor. The detector pro-
cesses an EEG epoch every 2 sec. However, the
optimal operating frequency (and supply voltage ) for the
CD-FE logic is determined by minimizing the overall CD-FE
energy, while ensuring a minimum throughput that allows the
active CD-FE computations to be completed in ( 2)
seconds for each value of and . For the remainder of the epoch
(i.e., ), the logic and SRAMs can be placed
in low-energy idle modes.
Fig. 13(b) summarizes the SRAM operating modes and en-

ergies [19]. The total SRAM energy is the sum of the active-
mode and idle-mode energies for each
subarray (numbering ) that is enabled; under the assump-
tion that the SRAMs cannot by fully power-gated in order to en-
sure data retention, is not zero. During the active mode,
the SRAM operates at the minimum operational supply voltage

of 0.7 V for reads and writes; at this voltage, it op-
erates at 920 kHz; this is sufficient performance for all design
points of the CD-FE, thus allowing the SRAM voltage to
remain at 0.7 V. During the idle mode, the SRAM operates at
its minimum data-retention voltage of 0.42 V.
In the active mode, while set to a supply voltage of

, comprises active-switching
and leakage energies for a period of . In the
idle mode, while set to a supply voltage of ,
comprises only the leakage energy for the duration

. Thus, we can represent the SRAM
energy components as follows:

(5)

(6)

The duration of the active mode in (5) depends on
, and the optimum logic voltage . For smaller (larger)

values of and , there are more (fewer) coefficients in
and (the active CD-FE time) is higher (lower). For
instance, is 0.26 sec. for and , as
shown in Fig. 13(b). It increases to 0.52 sec. at
and reduces to 0.13 sec. at and . Further, the
number of active subarrays is also a function of and
; Fig. 14 shows this dependence. Eqs. (5) and (6) also show
that although remains invariant to changing values of

Fig. 14. scales substantially with and , affecting the SRAM leakage
energy.

Fig. 15. Die photo of IC.

, it is impacted by and (since #accesses changes with
and ). Note that in (6), denotes the active-switching

energy per access, which remains invariant to changing values
of , , and . Similar to , the SRAM leakage energy

also scales substantially with and . Consequently,
the optimal logic voltage , which minimizes the SRAM
and logic CD-FE energy, changes with respect to and . We
study the variation of in the next section.

IV. MEASUREMENT RESULTS

The IC was prototyped in a 0.13 m CMOS process from
IBM. The die photograph and performance summary are shown
in Fig. 15 and Table I, respectively. 18 channels of Nyquist EEG
signals are sampled at a rate of 256 Hz, and eight CD-BPFs
are derived corresponding to eight Nyquist-domain BPFs, each
of order 64 (based on the filter specifications required for
seizure detection [7]). This leads to a total FV dimensionality of
144. Table I shows that the CPF permits EEG compression by a
factor of 2-24 , consuming 85-7.3 pJ of energy. In the CPF,
a 16-bit LFSR generates a sequence of 1 values. Based on
these values, each compressively-sensed signal sample is com-
puted serially as . This process is re-
peated times to provide the compressively-sensed signal .
The total processor energy is in the range 0.3-2.2 J (for

linear SVMs), 12.6-38.5 J [for nonlinear SVMs using a
fourth-order polynomial kernel (poly4)], and 18.1-53.3 J
(for SVMs with an RBF kernel). Since classification results
are produced every two seconds (i.e., FVs are processed at
a rate of 0.5 Hz), the total processor power lies in the range
0.6-107 W for all SVM kernels. Fig. 16 shows a scatter plot
of the first two principal components of the measured FVs from
the IC. The FVs are derived using all data records for patient
#1 in the CHB-MIT dataset. We observe from the figure that
there is a good separation between the seizure and non-seizure
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TABLE I
PERFORMANCE SUMMARY: ENERGY-SCALABLE, COMPRESSED-DOMAIN PROCESSOR IC

Fig. 16. Distribution of FVs derived from the IC using data from Patient # 01 in the CHB-MIT database. Although full feature data dimensionality is used for
classification, projection to two dimensions via PCA is shown to aid visualization. Results are shown for (a) Nyquist-domain processing, (b) exact solution at

, and (c) exact solution at .

FVs in the compressed domain even at 21 . The results
presented next consider the impact of and scaling on the
feature-extractor, classifier, and overall processor energies.

A. Determining the Optimal Voltage for the CD-FE Logic

As described in the previous section, the SRAM leakage
energy changes with both and . Thus, the optimal voltage

for the CD-FE logic changes with both and .
In order to determine , we minimize the total CD-FE
energy comprising the logic and SRAM energies.
Fig. 17 shows the measured subcomponents of the CD-FE

energy with respect to when ranges from 1 to 4
(corresponding to four different values of and ). For all
values of , the active energy of the CD-FE logic
increases and the leakage energy decreases with in-
creasing values of , leading to the minimum-energy point of
0.46 V [20]. However, this is not since we need to also
consider the SRAM energy. The SRAM operates at 0.7 V in the
active mode. We see from Fig. 17 that the SRAM active-mode
switching energy does not change with [consistent
with (6)]. Further, the leakage energies in the active
and idle modes increase as increases. This
is also expected since from (5), depends on .
However, since both and also depend on

, the increase in the leakage energies is not proportional
to the increase in [(5)]. The total CD-FE energy is thus a
nonlinear function of and , which necessitates to be
determined numerically.

Fig. 18 shows the measured CD-FE energy at different
voltage values for the cases considered in Fig. 17. For these
four instances, we see from the figure that for the CD-FE
logic is either 0.48 V or 0.5 V. The corresponding frequencies
are determined to be 380 or 400 kHz, respectively, from the
frequency vs. plot in Fig. 19. With more measurements,
we determine , frequency, and active time
for the CD-FE logic when and vary in the 2-24 range.
The results are shown in Figs. 20(a), (b), and (c), respectively.
For all values of and , varies in the 0.9-0.02 sec.
range and is below the epoch time of 2 sec., which allows
sufficient time for the SVM classifier to
finish computing.

B. Feature-extractor Energy

As mentioned previously, the CD-FE energy comprises the
logic and SRAM energies. In this section, we provide measure-
ment results for these energy subcomponents using both the
exact and approximate solutions for .
CD-FE Logic Energy: Recall from Section II-C that for the

exact solution (i.e., when ), the CD-FE complexity scales
quadratically with ; for the approximate solution, it scales lin-
early with both and . Figs. 21(a) and (b) show the CD-FE en-
ergy for the exact and approximate solutions, respectively. For
each value of and , the energy is reported for , which
minimizes CD-FE’s active-switching plus leakage energies as
well as the SRAM energy; the values are also annotated
in Fig. 21(a).
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Fig. 17. The CD-FE energy subcomponents have nonlinear dependence on and . Primarily, the SRAM leakage energy in the active and idle mode
is substantially impacted by and . The active-mode SRAM switching energy changes with and , but not with .

Fig. 18. For the four cases considered in Fig. 17, the optimal voltage for the
CD-FE logic is either 0.48 V or 0.5 V.

Fig. 19. The operating frequency vs. for the CD-FE logic.

SRAM Energy: Figs. 22(a) and (b) show the SRAM leakage
energies in the idle and active modes and Fig. 22(c) shows the
SRAM switching energy in the active mode, versus and . We
can see from the figures that for smaller values of and , since
the size of is larger, is higher and the SRAM active
energy dominates the idle-mode energy. This is also consistent
with a higher value of at these values of and , which
enables the CD-FE computations to finish sooner. In contrast, at
larger values of and , however, there are fewer coefficients

in and the SRAM spends most of the time in the idle mode.
This behavior is clear from Figs. 23(a) and (b), which show the
total SRAMenergy for the exact and approximate solutions. The
figures show that the total SRAM energy is nearly equal to the
SRAM idle-mode energy at higher values of and . Further,
the figures also show substantial scaling in the total SRAM en-
ergy and in its constituents with respect to and . This scaling
occurs due to the variation in and due to and
[see (5) and (6) and Figs. 14 and 20(c)]. The SRAM energy thus
eventually begins to saturate due to the granularity limit of the
four subarrays; a finer granularity would enhance scaling at the
cost of additional hardware overhead.
Total Feature-extraction Energy: From the above results,

we see that the SRAM energy can significantly dominate
the CD-FE logic energy at all values of and . This be-
havior validates the focus on optimizing the SRAM energy in
Section III-B; for instance, at and , the total
SRAM energy is 2.1 J and the CD-FE logic energy is 70.8 nJ.
The contribution of the energy subcomponents is also apparent
in the total CD-FE energy plots shown for the exact and ap-
proximate solutions shown in Figs. 24(a) and (b), respectively
(results are for 18 EEG channels with eight CD-BPFs). These
plots show that the CD-FE energy profile is similar to the
SRAM energy profile presented in the previous section.
Comparison With Nyquist-domain Processing: Since are

Toeplitz matrices implementing convolution, the filter order de-
termines the number of non-zero coefficients in (see Fig. 10),
which in turn determine the feature-extraction energy in the
Nyquist domain. However, in the compressed domain, due to
the loss of regularity in , the feature-extraction energy does
not depend on the filter order in the same way. Thus, in the
compressed domain, the energy can initially increase due to loss
of regularity in , but then can eventually decrease owing to
scaling in the size of due to both and . Further, at a
given value of and , we can scale the total CD-FE energy
by the ratio of the number of non-zero coefficients in to the
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Fig. 20. As and scale in the 2-24 range, (a) the optimal voltage for the CD-FE logic varies in the 0.5-0.44 V range, (b) the corresponding operating
frequency varies in the 400-300 kHz range, and (c) the CD-FE active time varies in the 0.9-0.02 sec. range.

Fig. 21. The CD-FE logic energy for (a) the exact solution and (b) the approximate solution measured at . The energy scales substantially with and .

Fig. 22. Each of the SRAM energy subcomponents, i.e., (a) idle-mode leakage , (b) active-mode leakage , and (c) active-mode switching
scales with both and . tends to dominate at smaller values of and .

number in to derive an estimate for the Nyquist-domain fea-
ture-extraction energy. Fig. 24 shows that for the exact solution,
at , the total energy of compressed-domain processing
is less than that projected for Nyquist-domain processing (for a
64-order FIR filter).

C. Classifier Energy

One downside of directly processing compressively-sensed
EEG is that the SVM model for classification can become
somewhat more complex at higher values of and . Intu-
itively, this happens due to the additional error introduced
in the FVs when we solve the compressed-domain equations
[(2)], which necessitates complex decision boundaries in the
classifier. Figs. 25(a), (b), and (c) show the classifier energy for
the approximate solution using three kernels: RBF, 4th-order
polynomial (poly4), and linear, respectively. Fig. 26 shows the

SVM energy for the exact solution using the same three kernels.
In each of these cases, the SVM operates at its minimum-energy
point of 0.48 V. From Fig. 25, we can see that the increase
in classifier energy opposes the reduction in CD-FE energy.
We can also see that the SVM energy increase becomes worse
when is significantly higher than , which reflects the extra
error introduced at the algorithmic level due to a degradation
in the JL-approximation.

D. Total Processor Energy

Fig. 27 shows the effect of scaling on the total processor
energy for the exact solution. Figs. 28(a), (b), and (c) show
the effect of and scaling on the total processor energy for
the approximate solution using the RBF, poly4, and linear clas-
sification kernels, respectively. The SVM operates at 0.48 V,
the CD-FE operates at [specified in Fig. 20(a)], and the
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Fig. 23. The total SRAM energy for (a) the exact solution and (b) the approximate solution scales substantially at smaller values of and . At higher values of
and , CD-BPF matrices are smaller, which makes dominate the total SRAM energy.

Fig. 24. The total CD-FE energy (logic + SRAM) for (a) the exact solution and (b) the approximate solution. The SRAM energy tends to dominate and thus
provides scalability with both and .

Fig. 25. The SVM classifier energy measured at the minimum-energy point of 0.48 V for the approximate solution using (a) RBF, (b) poly4, and (c) linear kernel.
At a given values of , the classification energy increases with increasing values of .

Fig. 26. SVM classifier energy for the exact solution.

SRAMs operate at 0.7/0.42 V during the active/idle modes. The
figures show that nonlinear SVM kernels (i.e., RBF and poly4)
consume significant energy, while SVMs with a linear kernel

Fig. 27. Total processor energy for the exact solution.

incur minimal energy, causing the energy-scaling characteris-
tics to be dominated by CD-FE at all values of and . For the
nonlinear cases, the SVM energy actually leads to optimal and
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Fig. 28. Total processor energy for the approximate solution using (a) RBF, (b) poly4, and (c) linear kernel. For nonlinear SVMs, classifier energy dominates due
to the extra modeling complexity in the compressed domain, while for linear kernels, CD-FE energy is higher and permits substantial scalability with and .

values (e.g., for the exact solution, from Fig. 27, an optimal
of approximately 5 minimizes the total processor energy).

E. Summary of Measurement Results

The following is a summary of measurement results from the
IC.

In Section IV-A, we presented the energy measurements
from the CD-FE block (logic and SRAM) at different values of
the logic supply voltage. Since the total CD-FE energy exhibits
a nonlinear relationship with respect to and , we empirically
determined the optimal CD-FE logic voltage, , such that
it minimizes the total CD-FE energy at a given value of and .

In Section IV-B, we presented energy measurements from
the CD-FE block vs. and . The CD-FE SRAM energy
comprises the active- and idle-mode energies. We observed
that at smaller values of and , active-mode SRAM leakage,

, tends to be the dominant component while at higher
values of and , the idle-mode SRAM leakage, ,
is dominant. Further, the CD-FE logic and SRAM energy
measurements showed that for values of , the total
feature-extraction energy in the compressed domain is lower
than that in the Nyquist domain.

In Section IV-C, we presented measurement results
for the SVM classifier. We observed that the classification
energy can dominate the feature-extraction energy when we
use compressed-domain processing with nonlinear SVM
kernels. However, for linear kernels, feature-extraction energy
dominates and compressed-domain processing can provide sub-
stantial energy scalability with respect to and . Further, in
Section IV-D, we also provided energy measurements from the
processor (feature extraction + classification), which showed a
similar trend as the classifier for the linear and nonlinear SVM
kernels.

V. CONCLUSIONS

Sparsity of signals provides an opportunity to efficiently
represent sensor data. Compressive sensing is one technique
that exploits signal sparsity in a secondary basis to achieve
very low-energy compression on the sensing node. The random
projections in compressive sensing, however, affect the sensed
signals, preventing the use of Nyquist-domain algorithms for
signal analysis. Moreover, signal reconstruction is energy-in-
tensive and is not desirable on low-power sensor nodes. We
presented an approach to overcome these limitations in systems

that use compressive sensing. We transform computations from
the Nyquist domain to the compressed domain, enabling us
to perform computations directly on compressively-sensed
data. In particular, we presented the design of a processor that
enables on-node signal analysis to detect epileptic seizures
directly using compressively-sensed EEG. By using an exact
solution for the compressed-domain filtering matrices, we
showed that the performance of the compressed-domain de-
tector is retained up to high compression factors. Additionally,
by using an approximate solution, we derived smaller-sized
compressed-domain filtering matrices, saving us more energy
in the compressed domain. We showed that these methods
provide us with two strong knobs to control the energy of
the compressed-domain seizure-detection processor. Thus, in
addition to communication energy savings, through end-to-end
data reduction in a system, our methodology enables a mode of
power management where the computational energy scales due
to both a reduction in the number of input samples that need
to be processed and due to approximations introduced at the
algorithmic level.
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