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Abstract

We consider the problem of minimizing the sum of two convex functions: one is
the average of a large number of smooth component functions, and the other is a
general convex function that admits a simple proximal mapping. We assume the whole
objective function is strongly convex. Such problems often arise in machine learning,
known as regularized empirical risk minimization. We propose and analyze a new
proximal stochastic gradient method, which uses a multi-stage scheme to progressively
reduce the variance of the stochastic gradient. While each iteration of this algorithm
has similar cost as the classical stochastic gradient method (or incremental gradient
method), we show that the expected objective value converges to the optimum at a
geometric rate. The overall complexity of this method is much lower than both the
proximal full gradient method and the standard proximal stochastic gradient method.

1 Introduction

We consider the problem of minimizing the sum of two convex functions:

minimize
x∈Rd

{P (x)
def
= F (x) +R(x)}, (1)

where F (x) is the average of many smooth component functions fi(x), i.e.,

F (x) =
1

n

n
∑

i=1

fi(x), (2)

and R(x) is relative simple but can be non-differentiable. We are especially interested in
the case where the number of components n is very large, and it can be advantageous
to use incremental methods (such as stochastic gradient method) that operate on a single
component fi at each iteration, rather than on the entire cost function.
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Problems of this form often arise in machine learning and statistics, known as regularized
empirical risk minimization; see, e.g., [HTF09]. In such problems, we are given a collection
of training examples (a1, b1), . . . , (an, bn), where each ai ∈ R

d is a feature vector and bi ∈ R is
the desired response. For least-squares regression, the component loss functions are fi(x) =
(1/2)(aTi x − bi)

2, and popular choices of the regularization term include R(x) = λ1‖x‖1
(the Lasso), R(x) = (λ2/2)‖x‖

2
2 (ridge regression), or R(x) = λ1‖x‖1 + (λ2/2)‖x‖

2
2 (elastic

net), where λ1 and λ2 are nonnegative regularization parameters. For binary classification
problems, each bi ∈ {+1,−1} is the desired class label, and a popular loss function is
the logistic loss fi(x) = log(1 + exp(−bia

T
i x)), which can be combined with any of the

regularization terms mentioned above.
The function R(x) can also be used to model convex constraints. Given a closed convex

set C ⊆ R
d, the constrained problem

minimize
x∈C

1

n

n
∑

i=1

fi(x)

can be formulated as (1) by setting R(x) to be the indicator function of C, i.e., R(x) = 0
if x ∈ C and R(x) = ∞ otherwise. Mixtures of the “soft” regularizations (such as ℓ1 or ℓ2
penalties) and “hard” constraints are also possible.

The results presented in this paper are based on the following assumptions.

Assumption 1. The function R(x) is lower semi-continuous and convex, and its effective

domain, dom(R) := {x ∈ R
d |R(x) < +∞}, is closed. Each fi(x), for i = 1, . . . , n, is differ-

entiable on an open set that contains dom(R), and their gradients are Lipschitz continuous.

That is, there exist Li > 0 such that for all x, y ∈ dom(R),

‖∇fi(x)−∇fi(y)‖ ≤ Li‖x− y‖. (3)

Assumption 1 implies that the gradient of the average function F (x) is also Lipschitz
continuous, i.e., there is an L > 0 such that for all x, y ∈ dom(R),

‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖.

Moreover, we have L ≤ (1/n)
∑n

i=1 Li.

Assumption 2. The overall cost function P (x) is strongly convex, i.e., there exist µ > 0
such that for all x ∈ dom(R) and y ∈ R

d,

P (y) ≥ P (x) + ξT (y − x) +
µ

2
‖y − x‖2, ∀ ξ ∈ ∂P (x). (4)

The convexity parameter of a function is the largest µ such that the above condition holds.
The strong convexity of P (x) may come from either F (x) or R(x) or both. More precisely,
let F (x) and R(x) have convexity parameters µF and µR respectively, then µ ≥ µF + µR.
We note that it is possible to have µ > L although we must have µF ≤ L.
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1.1 Proximal gradient and stochastic gradient methods

A standard method for solving problem (1) is the proximal gradient method. Given an initial
point x0 ∈ R

d, the proximal gradient method uses the following update rule for k = 1, 2, . . .

xk = argmin
x∈Rd

{

∇F (xk−1)
Tx+

1

2ηk
‖x− xk−1‖

2 +R(x)

}

,

where ηk is the step size at the k-th iteration. Throughout this paper, we use ‖ · ‖ to denote
the usual Euclidean norm, i.e., ‖ · ‖2, unless otherwise specified. With the definition of
proximal mapping

proxR(y) = argmin
x∈Rd

{

1

2
‖x− y‖2 +R(x)

}

,

the proximal gradient method can be written more compactly as

xk = proxηkR
(

xk−1 − ηk∇F (xk−1)
)

. (5)

This method can be viewed as a special case of splitting algorithms [LM79, CR97, Tse00],
and its accelerated variants have been proposed and analyzed in [BT09, Nes13].

When the number of components n is very large, each iteration of (5) can be very
expensive since it requires computing the gradients for all the n component functions fi, and
also their average. For this reason, we refer to (5) as the proximal full gradient (Prox-FG)
method. An effective alternative is the proximal stochastic gradient (Prox-SG) method: at
each iteration k = 1, 2, . . ., we draw ik randomly from {1, . . . , n} and take the update

xk = proxηkR
(

xk−1 − ηk∇fik(xk−1)
)

. (6)

Clearly we have E∇fik(xk−1) = ∇F (xk−1). The advantage of the Prox-SG method is that
at each iteration, it only evaluates gradient of a single component function, thus the com-
putational cost per iteration is only 1/n that of the Prox-FG method. However, due to the
variance introduced by random sampling, the Prox-SG method converges much more slowly
than the Prox-FG method. To have a fair comparison of their overall computational cost,
we need to combine their cost per iteration and iteration complexity.

Let x⋆ = argminx P (x). Under the Assumptions 1 and 2, the Prox-FG method with a
constant step size ηk = 1/L generates iterates that satisfy

P (xk)− P (x⋆) ≤ O

((

L− µF

L+ µR

)k)

. (7)

(See Appendix B for a proof of this result.) The most interesting case for large-scale ap-
plications is when µ ≪ L, and the ratio L/µ is often called the condition number of the
problem (1). In this case, the Prox-FG method needs O ((L/µ) log(1/ǫ)) iterations to ensure
P (xk)−P (x⋆) ≤ ǫ. Thus the overall complexity of Prox-FG, in terms of the total number of
component gradients evaluated to find an ǫ-accurate solution, is O (n(L/µ) log(1/ǫ)). The ac-
celerated Prox-FG methods in [BT09, Nes13] reduce the complexity to O

(

n
√

L/µ log(1/ǫ)
)

.
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On the other hand, with a diminishing step size ηk = 1/(µk), the Prox-SG method
converges at a sublinear rate ([DS09, LLZ09]):

EP (xk)− P (x⋆) ≤ O (1/µk) . (8)

Consequently, the total number of component gradient evaluations required by the Prox-SG
method to find an ǫ-accurate solution (in expectation) is O(1/µǫ). This complexity scales
poorly in ǫ compared with log(1/ǫ), but it is independent of n. Therefore, when n is very
large, the Prox-SG method can be more efficient, especially to obtain low-precision solutions.

There is also a vast literature on incremental gradient methods for minimizing the sum of a
large number of component functions. The Prox-SG method can be viewed as a variant of the
randomized incremental proximal algorithms proposed in [Ber11]. Asymptotic convergence
of such methods typically requires diminishing step sizes and only have sublinear convergence
rates. A comprehensive survey on this topic can be found in [Ber10].

1.2 Recent progresses and our contributions

Both the Prox-FG and Prox-SG methods do not fully exploit the problem structure defined
by (1) and (2). In particular, Prox-FG ignores the fact that the smooth part F (x) is the
average of n component functions. On the other hand, Prox-SG can be applied for more
general stochastic optimization problems, and it does not exploit the fact that the objective
function in (1) is actually a deterministic function. Such inefficiencies in exploiting problem
structure leave much room for further improvements.

Several recent work considered various special cases of (1) and (2), and developed algo-
rithms that enjoy the complexity (total number of component gradient evaluations)

O
(

(n+ Lmax/µ) log(1/ǫ)
)

, (9)

where Lmax = max{L1, . . . , Ln}. If Lmax is not significantly larger than L, this complexity
is far superior than that of both the Prox-FG and Prox-SG methods. In particular, Shalev-
Shwartz and Zhang [SSZ13, SSZ12] considered the case where the component functions
have the form fi(x) = φi(a

T
i x) and the Fenchel conjugate functions of φi and R can be

computed efficiently. With the additional assumption that R(x) itself is µ-strongly convex,
they showed that a proximal stochastic dual coordinate ascent (Prox-SDCA) method achieves
the complexity in (9).

Le Roux et al. [RSB12] considered the case where R(x) ≡ 0, and proposed a stochastic

average gradient (SAG) method which has complexity O
(

max{n, Lmax/µ} log(1/ǫ)
)

. Appar-
ently this is on the same order as (9). The SAG method is a randomized variant of the
incremental aggregated gradient method of Blatt et al. [BHG07], and needs to store the most
recent gradient for each component function fi, which is O(nd). While this storage require-
ment can be prohibitive for large-scale problems, it can be reduced to O(n) for problems
with more favorable structure, such as linear prediction problems in machine learning.

More recently, Johnson and Zhang [JZ13] developed another algorithm for the case
R(x) ≡ 0, called stochastic variance-reduced gradient (SVRG). The SVRG method em-
ploys a multi-stage scheme to progressively reduce the variance of the stochastic gradient,
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and achieves the same low complexity in (9). Moreover, it avoids storage of past gradients
for the component functions, and its convergence analysis is considerably simpler than that
of SAG. A very similar algorithm was proposed by Zhang et al. [ZMJ13], but with a worse
convergence rate analysis. Another recent effort to extend the SVRG method is [KR13].

In this paper, we extend the variance reduction technique of SVRG to develop a proximal
SVRG (Prox-SVRG) method for solving the more general class of problems defined in (1)
and (2). We show that with uniform sampling of the component functions, the Prox-SVRG
method achieves the same complexity in (9). Moreover, our method incorporates a weighted
sampling strategy. When the sampling probabilities for fi are proportional to their Lipschitz
constants Li, the Prox-SVRG method has complexity

O
(

(n+ Lavg/µ) log(1/ǫ)
)

, (10)

where Lavg = (1/n)
∑n

i=1 Li. This bound improves upon the one in (9), especially for appli-
cations where the component functions vary substantially in smoothness.

2 The Prox-SVRG method

Recall that in the Prox-SG method (6), with uniform sampling of ik, we have unbiased
estimate of the full gradient at each iteration. In order to ensure asymptotic convergence,
the step size ηk has to decay to zero to mitigate the effect of variance introduced by random
sampling, which leads to slow convergence. However, if we can gradually reduce the variance
in estimating the full gradient, then it is possible to use much larger (even constant) step sizes
and obtain much faster convergence rate. Several recent work (e.g., [FS12, BCNW12, FG13])
have explored this idea by using mini-batches with exponentially growing sizes, but their
overall computational cost is still on the same order as full gradient methods.

Instead of increasing the batch size gradually, we use the variance reduction technique of
SVRG [JZ13], which computes the full batch periodically. More specifically, we maintain an
estimate x̃ of the optimal point x⋆, which is updated periodically, say after every m Prox-SG
iterations. Whenever x̃ is updated, we also computes the full gradient

∇F (x̃) =
1

n

n
∑

i=1

∇fi(x̃),

and use it to modify the nextm stochastic gradient directions. Suppose the nextm iterations
are initialized with x0 = x̃ and indexed by k = 1, . . . ,m. For each k ≥ 1, we first randomly
pick ik ∈ {1, . . . , n} and compute

vk = ∇fik(xk−1)−∇fik(x̃) +∇F (x̃),

then we replace ∇fik(xk−1) in the Prox-SG method (6) with vk, i.e.,

xk = proxηkR
(

xk−1 − ηkvk
)

. (11)

5



Algorithm: Prox-SVRG(x̃0, η,m)

iterate: for s = 1, 2, . . .

x̃ = x̃s−1

ṽ = ∇F (x̃)

x0 = x̃

probability Q = {q1, . . . , qn} on {1, . . . , n}

iterate: for k = 1, 2, . . . ,m

pick ik ∈ {1, . . . , n} randomly according to Q

vk = (∇fik(xk−1)−∇fik(x̃))/(qikn) + ṽ

xk = proxηR(xk−1 − ηvk)

end

set x̃s =
1
m

∑m

k=1 xk

end

Figure 1: The Prox-SVRG method.

Conditioned on xk−1, we can take expectation with respect to ik and obtain

Evk = E∇fik(xk−1)− E∇fik(x̃) +∇F (x̃)

= ∇F (xk−1)−∇F (x̃) +∇F (x̃)

= ∇F (xk−1).

Hence, just like ∇fik(xk−1), the modified direction vk is also a stochastic gradient of F
at xk−1. However, the variance E‖vk−∇F (xk−1)‖

2 can be much smaller than E‖∇fik(xk−1)−
∇F (xk−1)‖

2. In fact we will show in Section 3.1 that the following inequality holds:

E‖vk −∇F (xk−1)‖
2 ≤ 4Lmax

[

P (xk−1)− P (x⋆) + P (x̃)− P (x⋆)
]

. (12)

Therefore, when both xk−1 and x̃ converge to x⋆, the variance of vk also converges to zero.
As a result, we can use a constant step size and obtain much faster convergence.

Figure 1 gives the full description of the Prox-SVRG method with a constant step size η.
It allows random sampling from a general distribution {q1, . . . , qn}, thus is more flexible than
the uniform sampling scheme described above. It is not hard to verify that the modified
stochastic gradient,

vk = (∇fik(xk−1)−∇fik(x̃))/(qikn) +∇F (x̃), (13)

still satisfies Evk = ∇F (xk−1). In addition, its variance can be bounded similarly as in (12)
(see Corollary 3 in Section 3.1).
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The Prox-SVRG method uses a multi-stage scheme to progressively reduce the variance
of the modified stochastic gradient vk as both x̃ and xk−1 converges to x⋆. Each stage s
requires n+ 2m component gradient evaluations: n for the full gradient at the beginning of
each stage, and two for each of the m proximal stochastic gradient steps. For some problems
such as linear prediction in machine learning, the cost per stage can be further reduced to
only n + m gradient evaluations. In practical implementations, we can also set x̃s to be
the last iterate xm, instead of (1/m)

∑m

k=1 xk, of the previous stage. This simplifies the
computation and we did not observe much difference in the convergence speed.

3 Convergence analysis

Theorem 1. Suppose Assumptions 1 and 2 hold, and let x⋆ = argminx P (x) and LQ =
maxi Li/(qin). In addition, assume that 0 < η < 1/(4LQ) and m is sufficiently large so that

ρ =
1

µη(1− 4LQη)m
+

4LQη(m+ 1)

(1− 4LQη)m
< 1. (14)

Then the Prox-SVRG method in Figure 1 has geometric convergence in expectation:

EP (x̃s)− P (x⋆) ≤ ρs[P (x̃0)− P (x⋆)].

We have the following remarks regarding the above result:

• The ratio LQ/µ can be viewed as a “weighted” condition number of P (x). Theorem 1
implies that setting m to be on the same order as LQ/µ is sufficient to have geometric
convergence. To see this, let η = θ/LQ with 0 < θ < 1/4. When m ≫ 1, we have

ρ ≈
LQ/µ

θ(1− 4θ)m
+

4θ

1− 4θ
.

As a result, choosing θ = 0.1 and m = 100(LQ/µ) results in ρ ≈ 5/6.

• In order to satisfy EP (x̃s)− P (x⋆) ≤ ǫ, the number of stages s needs to satisfy

s ≥ log ρ−1 log
P (x̃0)− P (x⋆)

ǫ
.

Since each stage requires n + 2m component gradient evaluations, and it is sufficient
to set m = Θ(LQ/µ), the overall complexity is

O
(

(n+ LQ/µ) log(1/ǫ)
)

.

• For uniform sampling, qi = 1/n for all i = 1, . . . , n, so we have LQ = maxi Li and the
above complexity bound becomes (9).

The smallest possible value for LQ is LQ = (1/n)
∑n

i=1 Li, achieved at qi = Li/
∑n

j=1 Lj,
i.e., when the sampling probabilities for the component functions are proportional to
their Lipschitz constants. In this case, the above complexity bound becomes (10).
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Since P (x̃s)− P (x⋆) ≥ 0, Markov’s inequality and Theorem 1 imply that for any ǫ > 0,

Prob
(

P (x̃s)− P (x⋆) ≥ ǫ
)

≤
E[P (x̃s)− P (x⋆)]

ǫ
≤

ρs[P (x̃0)− P (x⋆)]

ǫ
.

Thus we have the following high-probability bound.

Corollary 1. Suppose the assumptions in Theorem 1 hold. Then for any ǫ > 0 and δ ∈ (0, 1),
we have

Prob
(

P (x̃s)− P (x⋆) ≤ ǫ
)

≥ 1− δ

provided that the number of stages s satisfies

s ≥ log

(

[P (x̃0)− P (x⋆)]

δǫ

)/

log

(

1

ρ

)

.

If P (x) is convex but not strongly convex, then for any ǫ > 0, we can define

Pǫ(x) = F (x) +Rǫ(x), Rǫ(x) =
ǫ

2
‖x‖2 +R(x).

It follows that Pǫ(x) is ǫ-strongly convex. We can apply the Prox-SVRG method in Figure 1
to Pǫ(x), which replaces the update formula for xk by the following update rule:

xk = proxηRǫ
(xk−1 − ηvk) = argmin

x∈Rd

{

1

2

∥

∥

∥

∥

x−
1

1 + ηǫ
(xk−1 − ηvk)

∥

∥

∥

∥

2

+
η

1 + ηǫ
R(x)

}

.

Theorem 1 implies the following result.

Corollary 2. Suppose Assumption 1 holds and let LQ = maxi Li/(qin). In addition, assume

that 0 < η < 1/(4LQ) and m is sufficiently large so that

ρ =
1

ǫη(1− 4LQη)m
+

4LQη(m+ 1)

(1− 4LQη)m
< 1.

Then the Prox-SVRG method in Figure 1, applied to Pǫ(x), achieves

EP (x̃s) ≤ min
x

[P (x) + (ǫ/2)‖x‖2] + ρs[P (x̃0) + (ǫ/2)‖x̃0‖
2].

If P (x) has a minimum and it is achieved by some x⋆ ∈ dom(R), then Corollary 2 implies

EP (x̃s)− P (x⋆) ≤ (ǫ/2)‖x⋆‖
2 + ρs[P (x̃0) + (ǫ/2)‖x̃0‖

2].

This result means that if we take m = O(LQ/ǫ) and s ≥ log(1/ǫ)/ log(1/ρ), then

EP (x̃s)− P (x⋆) ≤ ǫ [P (x̃0) + (1/2)‖x⋆‖
2 + (ǫ/2)‖x̃0‖

2]

The overall complexity (in terms of the number of component gradient evaluations) is

O
(

(n+ LQ/ǫ) log(1/ǫ)
)

.

Similar results for the case of R(x) ≡ 0 have been obtained in [RSB12, MZJ13, KR13]. We
can also derive a high-probability bound based on Corollary 1, but omit the details here.
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3.1 Bounding the variance

Our bound on the variance of the modified stochastic gradient vk is a corollary of the following
lemma.

Lemma 1. Consider P (x) as defined in (1) and (2). Suppose Assumption 1 holds, and let

x⋆ = argminx P (x) and LQ = maxi Li/(qin). Then

1

n

n
∑

i=1

1

nqi
‖∇fi(x)−∇fi(x⋆)‖

2 ≤ 2LQ [P (x)− P (x⋆)] .

Proof. Given any i ∈ {1, . . . , n}, consider the function

φi(x) = fi(x)− fi(x⋆)−∇fi(x⋆)
T (x− x⋆).

It is straightforward to check that ∇φi(x⋆) = 0, hence minx φi(x) = φi(x⋆) = 0. Since ∇φi(x)
is Lipschitz continuous with constant Li, we have (see, e.g., [Nes04, Theorem 2.1.5])

1

2Li

‖∇φi(x)‖
2 ≤ φi(x)−min

y
φi(y) = φi(x)− φi(x⋆) = φi(x).

This implies

‖∇fi(x)−∇fi(x⋆)‖
2 ≤ 2Li

[

fi(x)− fi(x⋆)−∇fi(x⋆)
T (x− x⋆)

]

.

By dividing the above inequality by 1/(n2qi), and summing over i = 1, . . . , n, we obtain

1

n

n
∑

i=1

1

nqi
‖∇fi(x)−∇fi(x⋆)‖

2 ≤ 2LQ [F (x)− F (x⋆)−∇F (x⋆)(x− x⋆)] .

By the optimality of x⋆, i.e.,

x⋆ = argmin
x

P (x) = argmin
x

{F (x) +R(x)} ,

there exist ξ⋆ ∈ ∂R(x⋆) such that ∇F (x⋆) + ξ⋆ = 0. Therefore

F (x)− F (x⋆)−∇F (x⋆)(x− x⋆) = F (x)− F (x⋆) + ξ⋆(x− x⋆)

≤ F (x)− F (x⋆) +R(x)−R(x⋆)

= P (x)− P (x⋆),

where in the last inequality, we used convexity of R(x). This proves the desired result.

Corollary 3. Consider vk defined in (13). Conditioned on xk−1, we have Evk = ∇F (xk−1)
and

E‖vk −∇F (xk−1)‖
2 ≤ 4LQ

[

P (xk−1)− P (x⋆) + P (x̃)− P (x⋆)
]

.
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Proof. Conditioned on xk−1, we take expectation with respect to ik to obtain

E

[

1

nqik
∇fik(xk−1)

]

=
n

∑

i=1

qi
nqi

∇fi(xk−1) =
n

∑

i=1

1

n
∇fi(xk−1) = ∇F (xk−1).

Similarly we have E [(1/(nqik))∇fik(x̃)] = ∇F (x̃), and therefore

Evk = E

[

1

nqik

(

∇fik(xk−1)−∇fik(x̃)
)

+∇F (x̃)

]

= ∇F (xk−1).

To bound the variance, we have

E‖vk −∇F (xk−1)‖
2 = E

∥

∥

∥

∥

1

nqik

(

∇fik(xk−1)−∇fik(x̃)
)

+∇F (x̃)−∇F (xk−1)

∥

∥

∥

∥

2

= E
1

(nqik)
2
‖∇fik(xk−1)−∇fik(x̃)‖

2 − ‖∇F (xk−1)−∇F (x̃)‖2

≤ E
1

(nqik)
2
‖∇fik(xk−1)−∇fik(x̃)‖

2

≤ E
2

(nqik)
2
‖∇fik(xk−1)−∇fik(x⋆)‖

2 + E
2

(nqik)
2
‖∇fik(x̃)−∇fik(x⋆)‖

2

=
2

n

n
∑

i=1

1

nqi
‖∇fi(xk−1)−∇fi(x⋆)‖

2 +
2

n

n
∑

i=1

1

nqi
‖∇fi(x̃)−∇fi(x⋆)‖

2

≤ 4LQ

[

P (xk−1)− P (x⋆) + P (x̃)− P (x⋆)
]

.

In the second equality above, we used the fact that for any random vector ζ ∈ R
d, it holds

that E‖ζ−Eζ‖2 = E‖ζ‖2−‖Eζ‖2. In the second inequality, we used ‖a+b‖2 ≤ 2‖a‖2+2‖b‖2.
In the last inequality, we applied Lemma 1 twice.

3.2 Proof of Theorem 1

For convenience, we define the stochastic gradient mapping

gk =
1

η
(xk−1 − xk) =

1

η

(

xk−1 − proxηR(xk−1 − ηvk)
)

,

so that the proximal gradient step (11) can be written as

xk = xk−1 − ηgk. (15)

We need the following lemmas in the convergence analysis. The first one is on the non-

expansiveness of proximal mapping, which is well known (see, e.g., [Roc70, Section 31]).

Lemma 2. Let R be a closed convex function on R
d and x, y ∈ dom(R). Then

∥

∥proxR(x)− proxR(y)
∥

∥ ≤ ‖x− y‖.
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The next lemma provides a lower bound of the function P (x) using stochastic gradient
mapping. It is a slight generalization of [HKP09, Lemma 3], and we give the proof in
Appendix A for completeness.

Lemma 3. Let P (x) = F (x)+R(x), where ∇F (x) is Lipschitz continuous with parameter L,
and F (x) and R(x) has strong convexity parameters µF and µR respectively. For any x ∈
dom(R) and arbitrary v ∈ R

d, define

x+ = proxηR(x− ηv)

g =
1

η
(x− x+)

∆ = v −∇F (x),

where η is a step size satisfying 0 < η ≤ 1/L. Then we have for any y ∈ R
d,

P (y) ≥ P (x+) + gT (y − x) +
η

2
‖g‖2 +

µF

2
‖y − x‖2 +

µR

2
‖y − x+‖2 +∆T (x+ − y).

Now we proceed to prove Theorem 1. We start by analyzing how the distance between
xk and x⋆ changes in each iteration. Using the update rule (15), we have

‖xk − x⋆‖
2 = ‖xk−1 − ηgk − x⋆‖

2

= ‖xk−1 − x⋆‖
2 − 2ηgTk (xk−1 − x⋆) + η2‖gk‖

2.

Applying Lemma 3 with x = xk−1, v = vk, x
+ = xk, g = gk and y = x⋆, we have

−gTk (xk−1−x⋆)+
η

2
‖gk‖

2 ≤ P (x⋆)−P (xk)−
µF

2
‖xk−1−x⋆‖

2−
µR

2
‖xk −x⋆‖

2−∆T
k (xk −x⋆),

where ∆k = vk −∇F (xk−1). Note that the assumption in Theorem 1 implies η < 1/(4LQ) <
1/L because LQ ≥ (1/n)

∑n

i=1 Li ≥ L. Therefore,

‖xk − x⋆‖
2 ≤ ‖xk−1 − x⋆‖

2 − ηµF‖xk−1 − x⋆‖
2 − ηµR‖xk − x⋆‖

2

−2η[P (xk)− P (x⋆)]− 2η∆T
k (xk − x⋆)

≤ ‖xk−1 − x⋆‖
2 − 2η[P (xk)− P (x⋆)]− 2η∆T

k (xk − x⋆) (16)

Next we upper bound the quantity −2η∆T
k (xk − x⋆). Although not used in the Prox-

SVRG algorithm, we can still define the proximal full gradient update as

x̄k = proxηR(xk−1 − η∇F (xk−1)),

which is independent of the random variable ik. Then,

−2η∆T
k (xk − x⋆) = −2η∆T

k (xk − x̄k)− 2η∆T
k (x̄k − x⋆)

≤ 2η‖∆k‖‖xk − x̄k‖ − 2η∆T
k (x̄k − x⋆)

≤ 2η‖∆k‖
∥

∥(xk−1 − ηvk)−
(

xk−1 − η∇F (xk−1)
)∥

∥− 2η∆T
k (x̄k − x⋆)

= 2η2‖∆k‖
2 − 2η∆T

k (x̄k − x⋆),

11



where in the first inequality we used the Cauchy-Schwarz inequality, and in the second
inequality we used Lemma 2. Combining with (16), we get

‖xk − x⋆‖
2 ≤ ‖xk−1 − x⋆‖

2 − 2η[P (xk)− P (x⋆)] + 2η2‖∆k‖
2 − 2η∆T

k (x̄k − x⋆).

Now we take expectation on both sides of the above inequality with respect to ik to obtain

E‖xk − x⋆‖
2 ≤ ‖xk−1 − x⋆‖

2 − 2η[EP (xk)− P (x⋆)] + 2η2 E‖∆k‖
2 − 2η E[∆T

k (x̄k − x⋆)].

We note that both x̄k and x⋆ are independent of the random variable ik and E∆k = 0, so

E[∆T
k (x̄k − x⋆)] = (E∆k)

T (x̄k − x⋆) = 0.

In addition, we can bound the term E‖∆k‖
2 using Corollary 3 to obtain

E‖xk−x⋆‖
2 ≤ ‖xk−1−x⋆‖

2−2η[EP (xk)−P (x⋆)]+8LQη
2[P (xk−1)−P (x⋆)+P (x̃)−P (x⋆)].

We consider a fixed stage s, so that x0 = x̃ = x̃s−1 and x̃s = 1
m

∑m

k=1 xk. By summing
the previous inequality over k = 1, . . . ,m and taking expectation with respect to the history
of random variables i1, . . . , im, we obtain

E‖xm − x⋆‖
2 + 2η[EP (xm)− P (x⋆)] + 2η(1− 4LQη)

m−1
∑

k=1

[EP (xk)− P (x⋆)]

≤ ‖x0 − x⋆‖
2 + 8LQη

2
[

P (x0)− P (x⋆) +m(P (x̃)− P (x⋆))
]

.

Notice that 2η(1− 4LQη) < 2η and x0 = x̃, so we have

2η(1− 4LQη)
m
∑

k=1

[EP (xk)− P (x⋆)] ≤ ‖x̃− x⋆‖
2 + 8LQη

2(m+ 1)[P (x̃)− P (x⋆)].

By convexity of P and definition of x̃s, we have P (x̃s) ≤
1
m

∑m

t=1 P (xk). Moreover, strong
convexity of P implies ‖x̃− x⋆‖

2 ≤ 2
µ
[P (x̃)− P (⋆)]. Therefore, we have

2η(1− 4LQη)m[EP (x̃s)− P (x⋆)] ≤

(

2

µ
+ 8LQη

2(m+ 1)

)

[P (x̃s−1)− P (x⋆)].

Divide both sides of the above inequality by 2η(1− 4LQη)m, we arrive at

EP (x̃s)− P (x⋆) ≤

(

1

µη(1− 4LQη)m
+

4LQη(m+ 1)

(1− 4LQη)m

)

[P (x̃s−1)− P (x⋆)].

Finally using the definition of ρ in (14), and applying the above inequality recursively, we
obtain

EP (x̃s)− P (x⋆) ≤ ρs[P (x̃0)− P (x⋆)],

which is the desired result.

12



data sets n d source λ2 λ1

rcv1 20,242 47,236 [LYRL04] 10−4 10−5

covertype 581,012 54 [BDA13] 10−5 10−4

sido0 12,678 4,932 [Guy08] 10−4 10−4

Table 1: Summary of data sets and regularization parameters used in our experiments.

4 Numerical experiments

In this section we present results of several numerical experiments to illustrate the properties
of the Prox-SVRG method, and compare its performance with several related algorithms.

We focus on the regularized logistic regression problem for binary classification: given a
set of training examples (a1, b1), . . . , (an, bn) where ai ∈ R

d and bi ∈ {+1,−1}, we find the
optimal predictor x ∈ R

d by solving

minimize
x∈Rd

1

n

n
∑

i=1

log
(

1 + exp(−bia
T
i x)

)

+
λ2

2
‖x‖22 + λ1‖x‖1,

where λ2 and λ1 are two regularization parameters. The ℓ1 regularization is added to promote
sparse solutions. In terms of the model (1) and (2), we can have either

fi(x) = log(1 + exp(−bia
T
i x)) + (λ2/2)‖x‖

2
2, R(x) = λ1‖x‖1, (17)

or
fi(x) = log(1 + exp(−bia

T
i x)), R(x) = (λ2/2)‖x‖

2
2 + λ1‖x‖1, (18)

depending on the algorithm used.
We used three publicly available data sets. Their sizes n, dimensions d as well as sources

as listed in Table 1. For rcv1 and covertype, we used the processed data for binary
classification from [FL11]. The table also listed the values of λ2 and λ1 that were used in
our experiments. These choices are typical in machine learning benchmarks to obtain good
classification performance.

4.1 Properties of Prox-SVRG

We first illustrate the numerical characteristics of Prox-SVRG on the rcv1 dataset. Each
example in this dataset has been normalized so that ‖ai‖2 = 1 for all i = 1, . . . , n, which
leads to the same upper bound on the Lipschitz constants L = Li = ‖ai‖

2
2/4. In our imple-

mentation, we used the splitting in (17) and uniform sampling of the component functions.
We choose the number of stochastic gradient steps m between full gradient evaluations as a
small multiple of n.

Figure 2 shows the behavior of Prox-SVRG with m = 2n when we used three different
step sizes. The horizontal axis is the number of effective passes over the data, where each
effective pass evaluates n component gradients. Each full gradient evaluation counts as one

13
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Figure 2: Prox-SVRG on the rcv1 dataset: varying the step size η with m = 2n.
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Figure 3: Prox-SVRG on the rcv1 dataset with step size η = 0.1/L: varying the period m
between full gradient evaluations, with λ2 = 10−4 on the left and λ2 = 10−5 on the right.

effective pass, and appears as a small flat segment of length 1 on the curves. It can be seen
that the convergence of Prox-SVRG becomes slow if the step size is either too big or too
small. The best choice of η = 0.1/L matches our theoretical analysis (see the first remark
after Theorem 1). The number of non-zeros (NNZs) in the iterates xk converges quickly to
7237 after about 10 passes over the data.

Figure 3 shows how the objective gap P (xk)− P⋆ decreases when we vary the period m
of evaluating full gradients. For λ2 = 10−4, the fastest convergence per stage is achieved by
m = 1, but the frequent evaluation of full gradients makes its overall performance slightly
worse than m = 2. Longer periods leads to slower convergence, due to the lack of effective
variance reduction. For λ2 = 10−5, the condition number is much larger, thus longer periodm
is required to have sufficient reduction during each stage.
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Figure 4: Comparison of different methods on the rcv1 dataset.

4.2 Comparison with related algorithms

We implemented the following algorithms to compare with Prox-SVRG:

• Prox-SG: the proximal stochastic gradient method given in (6). We used a constant
step size that gave the best performance among all powers of 10.

• RDA: the regularized dual averaging method in [Xia10]. The step size parameter γ in
RDA is also chosen as the one that gave best performance among all powers of 10.

• Prox-FG: the proximal full gradient method given in (5), with an adaptive line search
scheme proposed in [Nes13].

• Prox-AFG: an accelerated version of the Prox-FG method that is very similar to FISTA
[BT09], also with an adaptive line search scheme.

• Prox-SAG: a proximal version of the stochastic average gradient (SAG) method [SRB13,
Section 6]. We note that the convergence of this Prox-SAG method has not been es-
tablished for the general model considered in this paper. Nevertheless it demonstrates
good performance in practice.

• Prox-SDCA: the proximal stochastic dual coordinate ascent method [SSZ12]. In order
to obtain the complexity O ((n+ L/µ) log(1/ǫ)), it needs to use the splitting (18).

Figure 4 shows the comparison of Prox-SVRG (m = 2n and η = 0.1/L) with different
methods described above on the rcv1 dataset. For the Prox-SAG method, we used the same
step size η = 0.1/L as for Prox-SVRG. We can see that the three methods that performed
best are Prox-SAG, Prox-SVRG and Prox-SDCA. The superior performance of Prox-SVRG
and Prox-SDCA are predicted by their low complexity analysis. While the complexity of
Prox-SAG has not been formally established, its performance is among the best. In terms
of obtaining sparse iterates under the ℓ1-regularization, RDA, Prox-SDCA and Prox-SAG
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Figure 5: Comparison of different methods on covertype (left) and sido0 (right).

converged to the correct NNZs quickly, followed by Prox-SVRG and the two full gradient
methods. The Prox-SG method didn’t converge to the correct NNZs.

Figure 5 shows the comparison of different methods on two other data sets listed in
Table 1. Here we also included comparison with Prox-SVRG2, which is a hybrid method
by performing Prox-SG for one pass over the data and then switch to Prox-SVRG. This
hybrid scheme was suggested in [JZ13], and it often improves the performance of Prox-SVRG
substantially. Similar hybrid schemes also exist for SDCA [SSZ12] and SAG [SRB13].

The behaviors of the stochastic gradient type of algorithms on covertype (Figure 5, left)
are similar to those on rcv1, but the two full gradient methods Prox-FG and Prox-AFG
perform worse because of the smaller regularization parameter λ2 and hence worse condition
number. The sido0 data set turns out to be more difficult to optimize, and much slower
convergence are observed in Figure 5 (right). The Prox-SAG method performs best on this
data set, followed by Prox-SVRG2 and Prox-SVRG.

5 Conclusions

We developed a new proximal stochastic gradient method, called Prox-SVRG, for minimizing
the sum of two convex functions: one is the average of a large number of smooth component
functions, and the other is a general convex function that admits a simple proximal map-
ping. This method exploits the finite average structure of the smooth part by extending the
variance reduction technique of SVRG [JZ13], which computes the full gradient periodically
to modify the stochastic gradients in order to reduce their variance.

The Prox-SVRG method enjoys the same low complexity as that of SDCA [SSZ13, SSZ12]
and SAG [RSB12, SRB13], but applies to a more general class of problems, and does not
require the storage of the most recent gradient for each component function. In addition, our
method incorporates a weighted sampling scheme, which achieves an improved complexity
result for problems where the component functions vary substantially in smoothness.
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A Proof of Lemma 3

We can write the proximal update x+ = proxηR(x− ηv) more explicitly as

x+ = argmin
y

{

1

2
‖y − (x− ηv)‖2 + ηR(y)

}

.

The associated optimality condition states that there is a ξ ∈ ∂R(x+) such that

x+ − (x− ηv) + ηξ = 0.

Combining with the definition of g = (x− x+)/η, we have ξ = g − v.
By strong convexity of F and R, we have for any x ∈ dom(R) and y ∈ R

d,

P (y) = F (y) +R(y)

≥ F (x) +∇F (x)T (y − x) +
µF

2
‖y − x‖2 +R(x+) + ξT (y − x+) +

µR

2
‖y − x+‖2.

By smoothness of F , we can further lower bound F (x) by

F (x) ≥ F (x+)−∇F (x)T (x+ − x)−
L

2
‖x+ − x‖2.

Therefore,

P (y) ≥ F (x+)−∇F (x)T (x+ − x)−
L

2
‖x+ − x‖2

+∇F (x)T (y − x) +
µF

2
‖y − x‖2 +R(x+) + ξT (y − x+) +

µR

2
‖y − x+‖2

= P (x+)−∇F (x)T (x+ − x)−
Lη2

2
‖g‖2

+∇F (x)T (y − x) +
µF

2
‖y − x‖2 + ξT (y − x+) +

µR

2
‖y − x+‖2,

where in the last equality we used P (x+) = F (x+) + R(x+) and x+ − x = −ηg. Collecting
all inner products on the right-hand side, we have

−∇F (x)T (x+ − x) +∇F (x)T (y − x) + ξT (y − x+)

= ∇F (x)T (y − x+) + (g − v)T (y − x+)

= gT (y − x+) + (v −∇F (x))T (x+ − y)

= gT (y − x+ x− x+) + ∆T (x+ − y)

= gT (y − x) + η‖g‖2 +∆T (x+ − y),

where in the first equality we used ξ = g− v, in the third equality we used ∆ = v−∇F (x),
and in the last equality we used x− x+ = ηg. Putting everything together, we obtain

P (y) ≥ P (x+) + gT (y − x) +
η

2
(2− Lη)‖g‖2 +

µF

2
‖y − x‖2 +

µR

2
‖y − x+‖2 +∆T (x+ − y).

Finally using the assumption 0 < η ≤ 1/L, we arrive at the desired result.
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B Convergence analysis of the Prox-FG method

Here we prove the convergence rate in (7) for the Prox-FG method (5). First we define the
full gradient mapping Gk = (xk − xk−1)/η and use it to obtain

‖xk − x⋆‖
2 = ‖xk−1 − x⋆ − ηGk‖

2

= ‖xk−1 − x⋆‖
2 − 2ηGT

k (xk−1 − x⋆) + η2‖Gk‖
2.

Applying Lemma 3 with x = xk−1, v = ∇F (xk−1), x
+ = xk, g = Gk and y = x⋆, we have

∆ = 0 and

−GT
k (xk−1 − x⋆) +

η

2
‖Gk‖

2 ≤ P (x⋆)− P (xk)−
µF

2
‖xk−1 − x⋆‖

2 −
µR

2
‖xk − x⋆‖

2.

Therefore,

‖xk − x⋆‖
2 ≤ ‖xk−1 − x⋆‖

2 + 2η
(

F (x⋆)− F (xk)−
µF

2
‖xk−1 − x⋆‖

2 −
µR

2
‖xk − x⋆‖

2
)

.

Rearranging terms in the above inequality yields

2η
(

F (xk)− F (x⋆)
)

+ (1 + ηµR)‖xk − x⋆‖
2 ≤ (1− ηµF )‖xk−1 − x⋆‖

2. (19)

Dropping the nonnegative term 2η
(

F (xk)− F (x⋆)
)

on the left-hand side results in

‖xk − x⋆‖
2 ≤

1− ηµF

1 + ηµR

‖xk−1 − x⋆‖
2,

which leads to

‖xk − x⋆‖
2 ≤

(

1− ηµF

1 + ηµR

)k

‖x0 − x⋆‖
2.

Dropping the nonnegative term (1 + ηµR)‖xk − x⋆‖
2 on the left-hand side of (19) yields

F (xk)− F (x⋆) ≤
1− ηµF

2η
‖xk−1 − x⋆‖

2 ≤
1 + ηµR

2η

(

1− ηµF

1 + ηµR

)k

‖x0 − x⋆‖
2.

Setting η = 1/L, the above inequality is equivalent to (7).
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