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ABSTRACT

Big data computing platform has evolved to be a multi-
tenant service. The service quality matters because system
failure or performance slowdown could adversely affect
business and user experience. There is few study in lit-
erature on service quality issues in production big data
computing platform. In this paper, we present an empiri-
cal study on the service quality issues in Dolphin, which
is a company-wide multi-tenant big data computing plat-
form in Microsoft, serving thousands of customers from
hundreds of teams. Dolphin has a well-defined escalation
process (i.e., incident management process), which help
customers report and mitigate service quality issues 24/7.

This paper explores the common causes and mitiga-
tions of service quality issues in big data computing. We
conduct an empirical study on randomly sampled 200+
live site service quality issues in Dolphin. Our major
findings include (1) 21.0% of escalations are caused by
hardware faults; (2) 36.2% are caused by system side
defects, including 21.0% code defects, 9.5% design lim-
itations and 5.7% operation faults; (3) 37.1% are due to
customer side faults, including 11.4% misuses, 11.0%
convention violations, 10.0% operation faults, and 4.8%
code defects. We also studied the general diagnosis pro-
cess and the common adopted mitigation solutions; the
findings suggest that it is possible to design an end-to-end
tool to automate the diagnosis by analyzing the collected
telemetry data.

1 INTRODUCTION

Big data computing platforms, including distributed stor-
age systems (GFS [10], HDFS [3]) and distributed data-
parallel execution engines (MapReduce [7], Hadoop [2]
and Dryad [13]), are prevalently used for storing and pro-
cessing web-scale data. Dolphin is a distributed big data
computing platform that is used within Microsoft for s-
toring and analyzing massive amounts of data; multiple
teams such as Ads, Bing, Office 365, Xbox Live, Win-
dows, and Skype use Dolphin for tasks such as web-scale
data mining, developing ranking algorithms, and business
intelligence. Dolphin has evolved into a company-wide
large ecosystem where thousands of customers share hun-
dreds of thousands commodity servers in processing and
storage clusters. Tens of thousands of Dolphin “jobs” are
executed per day with different workloads and scenarios,

while scale is still increasing rapidly.
Dolphin is designed to be fault tolerant where failed

jobs are retried as needed. While a variety of hardware and
software faults are tolerated gracefully, some jobs chron-
ically fail or suffer performance slowdowns, especially
recurring jobs that are submitted hourly, daily, weekly
or monthly. Additionally, failed job waste resources: our
study of jobs over 90 days showed that job failures ac-
counted for 8% of machine resources. When jobs fail or
slow down, the Dolphin team investigates and resolves
issues on 24/7 basis. Guaranteeing service quality for
all users with different service level agreements is chal-
lenging; instead, Dolphin has a well-defined escalation
process that helps customers deal with the live site issues
as they come in. Customers escalate issues via email to a
support address describing issue experienced by customer-
s, business impact, and relevant troubleshooting details,
which are then tracked, prioritized, and processed by the
Dolphin engineering team as incidents in an internal track-
ing system. The engineering team is then responsible for
quickly mitigating issue impact, and following up with a
post-postmortem and root-cause fix.

This paper studies randomly sampled 210 live site
escalations in order to improve the development and oper-
ation of big data infrastructure by understanding escala-
tions with their causes and mitigating solutions. Our study
aims to address the following two questions:

1. RQ1. What are the common faults that hurt service
quality in big data computing?

2. RQ2. What are the common mitigations, and what
is helpful in making fast mitigation decisions?

Answers to these questions are generally useful for both
customers, system engineers and operators, to improve
their daily activities,including system operation, applica-
tion development, and system design and engineering.

The rest of the paper is organized as follows. Section 2
provides a brief primer on Dolphin. Section 3 describes
our study methodology. Section 4 presents the statistics
on live site issues. Section 5 studies the common causes to
answer research question RQ1, followed by our study re-
sults on escalation mitigation in Section 6, which answer
the research question RQ2. We discuss the representative
of this study in Section 7. Section 8 discusses the related
work, and we conclude in Section 9.



2 BACKGROUND

Dolphin includes a distributed file system like GFS and
distributed data-parallel execution engine like MapRe-
duce, where the program is written in a language called
Parrot [5], which is a hybrid language that consists of
declarative SQL-like queries and imperative user-defined
functions and is similar to Pig Latin [17] at Yahoo!,
Hive [19] at Facebook, and FlumeJava [6] at Google.
In Dolphin, a data file stored in Dolphin is called a
stream which consists of data blocks called extents. A
data-parallel program is called a job, and an execution
unit is called a vertex.
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Figure 1: Dolphin work flow.

Figure 1 depicts the brief system framework of Dol-
phin, which includes front end web services (FE) for
bridging between customer requests and the system, a
compiler and optimizer for job compilation and optimiza-
tion, an authentication system (AS) for authenticating
customer requests, a Dolphin store manager (SM) for
managing distributed file system metadata similar to the
master in GFS, and each extent node (EN) for storing
data extents as local files like that in GFS’ ChunkServer,
a Dolphin job service (JS) for job queuing and scheduling
as well as resource capacity management, a global sched-
uler (GS) for maintaining machine health states in a data
center, a job manager (JM) for coordinating the distribut-
ed execution of job vertices, processing nodes (PN) for
executing job vertices and communicating with the job
manager. Each job has a job manger which is actually a
special vertex. EN and PN services are deployed to every
machine in the data center.

The storage and computing resource in Dolphin are
shared and operated by all customer teams in an economic
model. Different customer teams are allocated different
resource quotas based on their business requirements. The
allocated resource quotas for each team are organized as
Virtual Cluster (VC)s, which builds an illusion that each

team has exclusively access to a dedicated data center. The
computing resource unit is called token. One customer
can only submit his jobs to the VCs his team owned, and
the data is shared between VCs by across reference. In
this manner, Dolphin can provide a better fair sharing
and throttling mechanism, and better VC-wise scheduling
where each VC has its own scheduling policy.

Basically, there are two kinds of customer-oriented
services, data service for data movement and storage, and
job service for job submission and execution which is
built on top of data service. Data service is relatively s-
traightforward. Customer requests are dispatched to one
FE server and authenticated by AS; if authentication suc-
ceeds, FE queries the location of each data extent from
SM; and then the customer can directly access the EN
through a Dolphin client library. In Dolphin, the work
flow of a successful job contains seven steps, which are
illustrated in Figure 1: (1) A customer submits a Parrot
job with a job priority and the number of tokens required;
(2) On receiving the submitted job, FE sends it to the
compiler and optimizer, and gets the resulting execution
plan; (3) FE sends the compiled job to JS, which queues
the job in a corresponding VC queue; (4) The job in the
head of queue gets scheduled if the required resources are
available, i.e., the number of remaining tokens is larger
than the requirement; (5) JS schedules the job manager
JM to one machine based on the bookkeeping information
maintained in GS; (6) JM creates the physical execution
plan (a direct acyclic graph) of the job, where each node
is composed of multiple vertices based on a parallelism
of the operation. Then JM schedules the ready vertices to
different PNs with locality awareness. JM coordinates the
vertex execution via heart-beating with PNs. JM would
possibly schedule one vertex to another machine to tol-
erate execution faults or performance slowdown. (7) The
customer gets the job completion notice if the job suc-
ceeds and the job results are stored as Dolphin streams.
Each step would fail or have poor performance. For ease
of diagnosis, the system also traces important event logs
and stored the daily collected telemetry data as a Dolphin
stream for job monitoring and post-mortem analysis, all
computation (JM, PN) and storage (SM and EN) com-
ponents have such event tracing mechanism. To provide
a good user experience, Dolphin also provides multiple
user interfaces, including a web based UI, a Visual Studio
plugin, and so on.

3 METHODOLOGY

3.1 Subjects

We randomly collected 210 escalations that were dis-
cussed in 2,196 emails and the corresponding 188 incident
tracking records (22 escalations did not have correspond-
ing incident records). Additionally, we also collected the
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corresponding job information such as initial input da-
ta, source scripts, execution plan, and runtime statistics
to understand more about a specific escalation. We in-
cluded both emails and incident records because they
are complementary to each other. Emails includes the
whole life cycle of an escalation, from its submission,
the first DRI engagement, and the final mitigation; and
incident records are much more structural and friendly for
automatic-analysis.

3.2 Design of the Study
The study includes two parts: (1) automatically extracting
the metadata information from the collected escalation
database and calculating the metrics on DRI involvement,
(2) manually reading the content of escalation emails
and tracking records, identifying the detailed diagnosis
process and mitigation actions, and reasoning the possible
root causes.

In our study, we first classify the escalations into five
categories from the symptom point of view into five cate-
gories, including job failure, job slowdown, connection
failure, service unavailable and wrong result. We further
classify the common causes into three categories from the
cause location point of view into three categories, includ-
ing hardware faults, system side faults and customer side
faults. Lastly, the mitigation solutions are also classified
from the mitigating action point of view.

3.3 Threats to validity
Internal threats to validity Subjectiveness would arise
during root cause reasoning because of the large amount
of manual effort involved. These threats were mitigated
by cross-validation by several team members. If there
were different opinions, a discussion was brought up to
reach an agreement. When uncertainty occurred, we con-
tact the corresponding DRI for confirmation or correction.
The classifications could be subjective too; however, we
believe they are helpful to derive the findings and impli-
cations.

External threats to validity We conducted our study
on Dolphin only. It is possible that some of our findings
might be specific to Dolphin and would not hold in other
systems. Hence, we do not intend to draw general conclu-
sions for all distributed data-parallel systems. In Section 7,
we discuss in details that our findings could be generalized
to other systems.

4 WHAT ARE THE COMMON SYMPTOM?
We first conduct a study on the common symptoms of ser-
vice quality issues, by manually collecting the escalation
symptoms customers submitted. From the symptom point
of view, the escalations are classified into five categories,
including connection failure, job slowdown, job failure,

Table 1: Classification from escalation symptom point of
view.

Category Number Ratio
Connection Failure 18 8.6%
Job Slowdown 57 27.1%
Job Failure 95 45.2%
Wrong Result 18 8.6%
Service Unavailable 12 5.7%

wrong result and service unavailable. Table 1 shows the
classification statistics that 8.6% (18) of escalations are
with connection failures, 27.1% (57) are with job slow-
down, 45.2% (95) are with job failures, 8.6% (18) are
with wrong result, and the remaining 5.7% (12) are with
service unavailable.

very high
7%

high
37%

medium
30%

low
22%

very low
4%

Figure 2: Escalations severity distribution.

We further study the severity of the escalations. When
escalating the service quality issue to Dolphin team, cus-
tomer is obligated to submit the severity level, which
determines the DRI engagement priority and the required
mitigating time. There are four severity levels from very
high, high, medium, low and very low in a descendent or-
der. Escalation with very high level must be engaged less
than 15 minutes, and mitigated in 1 hour; while level very
low could be engaged with lowest priority and mitigated
in one release cycle if it is worth of fixing. The severity
level is assessed based on both the business significance
of the job or data tier and the impact level of the issue
in system side; if the business impact is higher and the
impact level is higher, severity level will be higher as a
consequence. Figure 2 depicts the severity level distri-
bution among 210 escalations we studied. Only 7% of
escalations are at very high level, 37% are at high level,
30% are at medium level and 22% are at low level, and
about 4% are very low level.

3



Table 2: Classification of escalations causes.
Category Sub-Category No. Ratio
Hardware
fault

Subtotal 44 21.0%

System side
fault

System code defect 44 21.0%
Design limitation 20 9.5%
Operation fault 12 5.7%

Subtotal 76 36.2%

Customer
side fault

Code defect 10 4.8%
Operation fault 21 10.0%

Misuse 24 11.4%
Convention violation 23 11.0%

Subtotal 78 37.1%

5 WHAT ARE THE COMMON CAUSES?
In this section, we classify the escalations from the cause
point of view, aiming to answer what are the common
causes of escalation.

5.1 Cause Classification
We have reasoned the causes of those 210 escalations
manually, and classified them into three categories, in-
cluding hardware faults, system side faults and customer
side faults. Table 2 depicts the detailed categories. For
most of the escalations (94.3%), their causes can be suc-
cessfully classified, with only 5.7% (12) of escalations
whose causes are unknown due to the missing evidence.
We describe each cause category in details in the follow-
ing sections.

5.2 Escalations due to Hardware Faults
Modern data center is built with commodity machines
that have high probability of failure. Our study shows that
hardware fault is one of the most common causes that
lead to escalations. We further divide the hardware faults
into several sub-categories as shown in Table 3. Some sub-
categories (such as machine outages, power off, network
device fault, and overheating) were also observed and
reported by existing studies on hardware faults [18]. It
is noteworthy that some machine outages are caused by
regular data center maintenance, however, we cannot get
the concrete numbers without enough evidence. Our study
reveals two unusual hardware faults, namely bit flipping
and time drifting.
Bit flipping. Bit flipping is an unintentional state switch
from 0 to 1, or vice versa. There are 1.4% (3) cases where
bit flipping caused corrupted data. Bit flipping in memory
happened when the stream was generated and before the
stream is stored into persistent storage, but it was detected
when the stream was read and parsed by the later job. Re-
executing the same Parrot script will generate the good
data.
Time drifting. Time service, which synchronize time
across a network, is critical for the proper operation of

Table 3: Classification of hardware faults.
Category Sub-Category No. Ratio

Hardware
issue

Machine unhealthy or outage 21 10.0%
Power off 5 2.4%

Network device fault 9 4.3%
Overheating 2 1.0%
Bit flipping 3 1.4%

Time drifting 4 1.9%
Subtotal 44 21.0%

Dolphin. There is a case where time stamp of a stream
FE reports to be modified at 7:22 pm while the request
time was 6:57 pm. The clock of one FE server was out
of sync, while soft repairing did not help and that server
was decommissioned.

Fault tolerance is considered to be an effective and
efficient way to tolerate faults, especially hardware faults.
Checkpointing and redundant duplication or replication
are two broadly used techniques. Dolphin relies on mul-
tiple data replicas in storage to tolerate data loss, thus it
provides high data availability; client could access other
replica if the replica it accessed is unavailable. Besides,
Parrot also tolerate vertex execution failure. Once a ver-
tex is considered to be failed or timed out, job manager
will re-reschedule it to another machine. And if hard-
ware outages happened in the machine executing one
upstream vertex, job manager will re-schedule the up-
stream vertex in another machine since the intermediate
result is stored at the local disk rather than persistent stor-
age. Moreover, Dolphin also tolerate the ”outlier” vertex
that caused by unhealthy or overloaded hardware with a
duplicated scheduled counterpart. However, there are still
11.4% (24) failures and 8.1% (17) performance slowdown
that are due to hardware faults. We continue to study the
reason why these hardware faults causes job slowdown
and even failure.
Fault-Tolerance could slowdown performance. The ex-
isting fault tolerant mechanisms try to continue the job ex-
ecution when a fault is encountered, however, they could
slowdown the system runtime performance since the time
spending on failed execution or data access is wasted. The
fault tolerance also need machine resource to re-execute
the vertex or serve the data access, which could overload
the remaining machines. An example is about machine
overloaded due to a rack outage with tens of machines
lost, thereby all vertices compete the remaining machines,
and some vertices (maybe from other jobs) keep timed
out and re-executed.

To detect fault, typical data-parallel systems like
Dolphin adopt a heart-beating mechanism between job
manger and working nodes. An interesting example expos-
es the ineffectiveness of such heart-beating mechanism.
One erroneous machine worked in healthy and unhealthy
state rotationally; and job manager assigned one vertex
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to it when it is at healthy state, while it then became un-
healthy state during the vertex execution; job manager
re-schedule the vertex once it detects such fault. How-
ever, job manger would schedule vertex to that machine
again once it recovers to healthy state. Such fault-tolerant
process continues iteratively, and the job performance is
largely affected.

Lastly, it is paradoxical that duplicate scheduling may
even lead to performance slowdown which is supposed
to improve job performance by hiding vertex outlier. It
is proactively done by job manger that a vertex is re-
scheduled out before the older one fails. Things become
subtle if the outlier is caused by data skew, rather than
hardware faults. For example, one vertex has data skew
and ran much longer than others, duplicate scheduling
happens. However, the duplicated vertex still has the same
data skew and run slowly. The original vertex would be
completed first, thus the resource costed by duplicate
scheduling in this case would be wasted. The locality-
awareness scheduling makes thing worse, if both original
vertex and duplicated vertex were scheduled in the same
machine or rack which leads to resource contention and
overloaded.
Fault-tolerance cannot tolerate all faults. First, fault-
tolerant design cannot tolerate faults in large scale. Fault-
tolerance is not free lunch, and there is tradeoff in system
design to control the cost. Job manager will kill the job if
vertices keep failing and re-executing; system should not
continuous tolerate never-successful fault and never toler-
ate too many faults. Parrot will kill the job if the number
of failed vertices or the number of revocations exceeds a
threshold value. There is an example in our study that an
important network switch failed, which resulted in more
than 250 machines to be unavailable; both replicas of ac-
cessed data are located at those machines, which failed
the job.

Second, there is no fault tolerance for job manager,
which is reasonable because the failure of single master is
unlikely. Parrot aborts the job if job manger fails, which
does not provide checkpointing support for job manag-
er; if hardware issue results in job manager failure, the
job will fail as a consequence. Similarly, Dolphin job ser-
vice (JS) failure will lead to job submission failure, even
though it has persistent job status stored in Dolphin.

Third, fault-tolerant design cannot tolerate all kind
faults. Taking the bit flipping case as an example, it es-
capes the checksum checking in distributed file system,
which ensure the replicas to be the same but failed to
tolerate the bit flipping error in memory.

Fourth, it is impractical to have fault tolerant design
in all components. For example, job failed if compiler
failed because of the input data is unavailable, which is
due to hardware outage. Besides, other faults like human
operation faults cannot be tolerate by system design.
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Figure 3: Wasted ratio of computing time on fault toler-
ance.
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Figure 4: The top fault tolerant events and the correspond-
ing ratio.

We computed the statistics, from 40 weeks traces in
all data centers, on the wasted computing time spending
on various fault tolerant events, including top six events:
vertex invocation due to its upstream vertex is lost, vertex
aborted by job manger, storage read or write error, ver-
tex process creation failure, communication failure with
PN, and vertex execution time is too long, etc. Figure 3
shows the wasted time ratio spending on those fault toler-
ant events; there are about 0.9% to 2.6% of time wasted
(r.e., resource wasted ) by fault tolerance. Figure 4 further
depicts the relative wasted ratio among the seven events,
where Others includes discarded duplicate execution, ver-
tex uses too much memory, and rare happened events.
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Table 4: Classification of system side faults.
Category Sub-Category No. Ratio

System code
defect

Regression 14 6.7%
Component related 16 7.6%

Service outage 12 5.7%
Memory issue 2 1.0%

Subtotal 44 21.0%

Design
limitation

Extreme situation 6 2.9%
Resource contention 8 3.8%
Resource overloaded 6 2.9%

Subtotal 20 9.5%
Operation fault Subtotal 12 5.7%

There are about 42% to 75% of wasted time are due to
vertex invocation, 9% to 20% are due to read error, and
2% to 11% are due to Others.

Finding 1: 21.0% (44) of escalations are caused by
hardware faults.
Implication: Fault tolerance is generally effective and
efficient. However, it would sacrifice performance and
potentially hurt the service quality in certain cases; and
it cannot tolerate all kinds of faults nor all scale of
faults.

5.3 System Side Faults

In this section, we describe our study on system side
faults, which are further classified into system code defect,
design limitation, and operation fault.

5.3.1 System Code Defect

It is unsurprising that code defects in Dolphin account
for 21.0% (44) of the escalations, because escalation was
send out only if customers consider it to be a system side
fault.
Regression. It is surprising that 6.7% (14) of escalations
are due to system regression. This is because the roll-out
policy adopted in Dolphin. The service-oriented architec-
ture advocates agile and independent development in each
sub-service teams; continual changes or new features are
rolled out to the online version independently. Currently
new features are rolled out via flighting policy like A/B
testing, which selects part of the customer jobs or VCs for
partial release; and gradually enlarges the scope until fully
deployed. To fast mitigate the regression issue, historical
versions of system are maintained, customer can choose
which version to use by configuring the job submission
parameter. Once regression happened, job resubmission
with older runtime could mitigate it quickly.
Component related. 7.6% (16) of escalations are caused
by code defects in different system components, including
FE, JS, JM,SM, EN and optimizer. Each component is
responsible for about three escalations. The defects are

mostly trivial code defects. Only two bugs in Parrot opti-
mizer are related to big data computing. One example is
that, the optimizer spends more than 25 minutes without
any update and the job thereby failed to submit, because
the job is large and the optimizer failed to enumerates
all possible execution plans to select the one with mini-
mum cost. Another example is that the optimizer tries to
repartition the large execution graph, but it finally failed.
Service outage. 5.7% (12) of escalations are caused by
service outages, with 83.3% (10/12) of them happened
in FE, 8.3% (1/12) in EN and 8.3% (1/12) in compiler.
Note that the FE outages were happened in only three
time points, with more than one customers escalated such
unavailability. Without further more evidence. We assume
that such service outages are caused by code defects,
because these service are designed to be always available.
It is interesting that the corresponding mitigation is just
to restart the service.
Memory issue. Our study shows that 1.0% (2) of esca-
lations are related to system design limitations. These
escalations could be avoided by improving the system
design.

5.3.2 System Design Limitation

In addition to implementation faults, we continue to
study the system design limitation. 9.5% (20) of escala-
tions could be avoided with proper system design.
Extreme situation. Six escalations are exposed in ex-
treme situation,where system design limitation is blown
up. For example, there is a job that contains a join be-
tween a huge file (with tens of tera bytes) and a smaller
file (with tens of mega bytes), and the customer splits both
files into 8,000 partitions in order to gain more parallelis-
m. All partitions of the files are located at the same single
machine, thereby 8,000 vertices in join stage read that
machine (even 3,000+ simultaneous read), which results
in the machine overloaded and most of vertices failed.
Things could become better if the optimizer applies the
broadcast join or the job manager throttles the vertices
scheduling to a single machine. Another extreme case is
related to the extent sealing in SM storage. There is a fixed
quota of unsealed extents to be sealed in the background
every 10 to 15 minutes because of the expensive oper-
ation; however, at one time there are millions unsealed
extents, thereby with some extents got unsealed in time,
and customer complains the zero-length unsealed extent.
Optimizing the time spending on extent sealing in SM
would largely alleviate it. A much more interesting exam-
ple is the job failure resulted from repeatedly data access
error. Data de-replicating process aims for saving space;
there are usually three replicas when data stream first gets
created, and it turned into two replicas by de-replicating
one. If a vertex is accessing one data replica which is
under de-replicating, that vertex would repeatedly failed.
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By introducing inter-awareness between job scheduling
in job manager and the de-replicating process in SM, such
case can be avoided.
Resource contention and overloaded. We find that re-
source contention and overloaded caused eight and six
escalations, respectively. These escalations can be avoid-
ed by adopting a proper design. One escalation is due
to workload imbalance with huge spike in traffic. The
contention-aware scheduling could largely alleviate it, as
well as the certain performance isolation design. It is not
easy for a contention-free or overloaded-free scheduling
design, especially considering both data storage (EN) and
vertices execution (PN) are executed at the same machine,
and there is no knowledge sharing between job manager
(JM) and SM. For example, there is an job slowdown
happened because some of the vertices are affected by
other activities like data downloading request from other
customers.

Finding 2: 21.0% (44) of escalations are caused by
system code defects with 6.7% (16) system regression,
and 9.5% (20) are due to design limitation.
Implication: The fit-for-all design and bug-free im-
plementation of large scale big data infrastructure is
infeasible in large scale distributed system. The testing
in a broader scope, especially online testing in real pro-
duction would be helpful to expose the system faults
as early as possible.

5.3.3 System Operation Fault

System operation faults include deployment faults, in-
complete provision, and library version mismatch. There
is one example about a deployment restarts ENs in scale-
unit, causing intermediate data loss for long running ver-
tices. An interesting example is that operator updates Par-
rot runtime which poisons the cached runtime, and then is
propagated across many machines. This is a warning sign
that we should be cautious and pay more attention to sys-
tem management operations. Better process management
and guidelines are helpful.

5.4 Customer Side Faults
It is surprising that 37.1% (78) of escalations were caused
by customer side faults. The statistics are shown in Table 2.
The customer side faults include 4.8% (10) code defects,
10.0% (21) operation faults, 11.4% (24) misuse and even
11.0% (23) convention violation system claimed.

5.4.1 Customer Code Defect

Customer code defects are not obvious and hard to
detect, which include buggy or non-optimized code and
inhibitive programming style.
Buggy and non-optimized code. This type of defects
includes optimizable data skew, defects in third-party li-

Table 5: Classification of customer side faults.
Category Sub-Category No. Ratio

Code
defect

Buggy and non-optimized code 8 3.8%
Inhibitive programming style 2 1.0%

Subtotal 10 4.8%
Operation
fault

Subtotal 21 10.0%

Misuse
Incorrect client configuration 15 7.1%

Improper submission parameter 9 4.3%
Subtotal 24 11.4%

Convention
violation

Out of system endurance 17 8.1%
Beyond system capability 3 1.4%

Delay time window 3 1.4%
Subtotal 23 11.0%

brary, and misunderstanding of advanced programming
features. Some job slowdowns are due to data skew, where
groups with some keys are much bigger than other else,
thus the corresponding vertices become the ”outliers” [1].
Code defects also happen to the third-party library, which
is invisible and hard to detect.

The advanced language feature provided by Parrot
could also introduce defects. Parrot allows customer to
write user-defined recursive reducer, which provides par-
tial aggregation optimization [21], like the combiner in
Hadoop. Instead of sending all mapper data to reducer,
it partially aggregates the data on each mapper side, re-
cursively combines the intermediate result, and finalizes
the result in reducer side. Taking SQL clause SUM as an
example, the recursive implementation is to first compute
the local sum on each mapper machine, and add them
together in reducer. It is computed like a tree, with the
output of one vertex being used as the input to the next.
Thus it requires that the recursive reducer must be asso-
ciative and commutative, since it would be executed more
than once. However, in this example customer did not
know such semantics constraints, and obtained the wrong
result.

Inhibitive programming style. Parrot automatically ex-
ecutes the job in a parallelized and distributing manner,
and it encourages customer to write multi-threaded, user-
defined mapper or reducer to gain further parallelism,
This would sacrifice the fairness between customers and
result in unpredictable execution behavior, which in turn
affects the scheduling decision.

Finding 3: 4.8% (10) of escalations are caused by
customer code defect, which includes buggy and non-
optimized code, as well as inhibitive programming
style.
Implication: Such code defects are hard to diagnose.
It is better to detect the error-prone patterns, optimize
the data skew, and enforce the programming style much
earlier during compilation.
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5.4.2 Customer Operation Fault

There are 10.0% (21) of escalations caused by cus-
tomer side operation faults. There are many kinds of oper-
ation faults, such as non-intentional data deletion, wrong
data expiration time setting, non-intentional data file re-
naming, job dependent resource missing, unavailable data,
low free storage space, VC switch, and even the zero sized
input data.

5.4.3 Misuse

We treat incorrect client configuration and improper
submission parameter as misuse; they are mitigated by
resubmission with new configuration or parameters.
Incorrect client configuration. 7.1% (15) of escalations
are due to incorrect client configuration, which includes
system authorization, proxy configuration, customer li-
brary version mismatch, machine-IP address mapping and
stream access authorization.
Improper submission parameter. 4.8% (10) of esca-
lations are due to improper job submission parameter.
40.0% (4) of them could be mitigated by increasing the
resource quotas to meet the job SLA. Job performance
varies (maybe largely) depending on whether or not the
data center is busy, which affects the ability to get the
”free” resources. Sometimes the job latency could satisfy
the SLA even with the same smaller quotas, while perfor-
mance slowdown happens if the data center is very busy.
It would be better if tools can decide the right number of
resource quotas as small as possible to satisfy job SLA.
Another interesting job submission parameter is about the
largest number of scheduled vertices across the Vlan to
control the cross Vlan traffic by job manager. This will de-
lay the vertex scheduling latency especially in job critical
path. Besides, system also provides a option to control the
unavailable ratio of input data, since it is not uncommon
that there is negligible data loss in big data computing,
which can tolerate it with almost the same result.

Finding 4: 10.0% (21) of escalations are are caused
by customer operation faults, and 11.4% (24) are due
to customer misuse, with 21.4% (45) in total.
Implication: Better training and process management
are helpful to avoid misuse; and automatic configura-
tion or adjusting is a promising direction to reduce the
configuration faults.

5.4.4 System Convention Violation

System is always designed with certain assumption-
s and conventions. Such design assumptions should be
clearly communicated to and agreed by customers. Our
study finds that 11.0% (23) of escalations are due to vio-
lation of such conventions.
Out of system endurance. 8.1% (17) of escalations oc-
curred due to out of system endurance. 7 of them are out

of endurance in job manager, such as any vertex execu-
tion consumes more than 6 GB memory, or the execution
exceeds a threshold time. The job manager will kill these
jobs to control the contention in shared resource or pun-
ish the non-optimized or incorrect code. Most of these
cases are due to data skew or computation skew, which
could be optimized by customer. For example, customer
can change the keys to reduce or join for more balanced
partition, or apply selection and projection in query opti-
mization to reduce the data volume as early as possible.
FE also has the throttling mechanism to control the re-
quest rate from customers. It is noteworthy that most of
them are due to automatically generated requests by client
side programs.
Beyond system capability. There are 1.4% (3) of escala-
tions that are beyond the system capability. For example,
compiler has the internal limitation on the number of
partitions, SM has limited the number of simultaneous
stream creations, and Parrot runtime has limitation on the
data volume to be sampled. There is one extreme case
that customer created more than 1 million streams at a
time, which is disallowed by system.
Delay time window. There is a 15 minutes delay time
window between the creation of data stream and the first
use. If customer accessed the data in such time window,
an error complaining the instable data stream would occur.
It is actually because that the job that generated the input
data is delayed and behind the time schedule.

Finding 5: 11.0% (23) of escalations are are caused
by system assumption violation.
Implication: It is better to detect such violation pat-
terns as early as possible. Meanwhile, better failure
messages could help customer understand and diagno-
sis the problems.

6 FROM ESCALATION TO MITIGATION

When a service quality issue is escalated to Dolphin team,
DRIs are responsible to provide a mitigation solution in
time. In this section, we study the mitigation they applied
and investigate what kind of information they used for
diagnosis.

6.1 Mitigation Categorization

Compared to traditional bug fixes, the aim of mitigation
is to recover the system and resume the impacted jobs as
quickly as possible to meet the SLAs. A mitigation may
not need to be a thorough root cause fix. On the contrary,
we only need a work-around solution for most cases. In
our study, we found that there are mainly seven categories
of mitigation actions that DRIs have adopted. Table 6
depicts the detailed categories of mitigation solutions,
with only 2.38% (5) of escalations whose mitigation is
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unknown due to lack of explicit description in emails and
internal bug records.

Refine customer code, configuration or submis-
sion parameter. As mentioned in Section 5, about 37.1%
escalations are caused by the faults at customer side. From
DRIs’ perspective, there is no any fault in Dolphin and
no actual mitigation adopted in system side. In current
practice, DRIs instead provide the diagnosed causes to
customers, and suggest customers to refine their code,
configuration, submission parameter or data placement,
and so on.

Resubmit jobs. About 21.0% escalations are caused
by hardware faults, and most of them (19.1%) are inter-
mittent faults; simply resubmitting the job for job failure
could automatically mitigated it, and there is nothing to
do for job slowdown. In fact, all machines in our data
centers are managed by AutoPilot [12] which detects
and recovers from software and hardware faults. Once
AutoPilot detects a machine being in a faulty or unhealthy
state, it automatically de-commits the machine and tries
to recover it by restarting or re-imaging the machine. For
such cases, simply resubmitting jobs can mitigate the
escalations.

De-commit/Restart faulty machines or services.
As we have mentioned in Section 5, not all kinds of faults
could be handled by the fault-tolerance mechanism. In
most fault tolerant systems, there are only two health s-
tates for a machine or program: Healthy (H) and Faulty
(F). However, in reality, a machine (or a process) can be in
a ”weird” state. A machine (or a process) in a weird state
still has heart-beats, but executes abnormally. Here is a
real escalation. Customer reports that their job ran very
slowly, which was caused by a disk fault which reading
2G bytes costed more than 30 minutes. Such ”weird” ma-
chines are likely to become faulty soon [18], DRIs need
to label the machine as a bad state and de-commit the
machine. Meanwhile, customer still need to resubmit the
job. In our study, only 1.4 (3) of escalations are mitigated
with extra machine decommission.

Rollback the runtime. Obviously, escalations caused
by software regressions can be resolved by rolling back
to the previous one. Actually, all latest Parrot runtime
versions are stored in the system, and there is no explicit
rolling back option; instead, customer resubmits the job
with a parameter to configure it with the previous runtime
version. About 6.7% (14) of escalations are mitigated by
runtime rollback.

Resubmit jobs with new parameters to mitigate
server side code defects. It is interesting that many fail-
ures caused by code defects at the system side can also
be mitigated through resubmitting jobs, but with new sub-
mission parameters. Our study shows that some exsection
paths of the run-time for new features can be disabled by
setting proper parameters. When a new bug introduced

by a new code segment occurs, DRIs may suggest cus-
tomers to run the job with some specific parameters to
avoid the execution of the buggy code segment. For ex-
ample, a job is failed because the optimizer generates too
many vertices to be handled by the job manager. This is a
code defect of optimizer. In order to mitigate the problem,
the DRI suggested the customer to resubmit the job with
a new job parameter (r.e., the maximal vertex number
allowed). In these cases, DRIs are responsible to figure
out the causes and the new parameters as a work-around
solution.

Hot Fix. For the remaining escalations caused by sys-
tem code defects, if the code defect can be easily fixed,
a hot fix is provided for mitigation. In order to avoid the
potential negative regression of the hot fix, DRIs often
provide the customers with a private build with the fix. If
the fix passes the stress testing and verification, it becomes
a formal patch. In our study, only 3.8% (8) of escalations
are mitigated with hot fix.

Recover Faulty Operation. About 5.7% (12) of es-
calations are caused by system operation fault. The miti-
gation is to simply recover the faulty operation.

Others. The mitigation solutions for the remaining
escalations includes data regeneration by third-party data
producer, further re-escalation to AutoPilot team, etc. For
example, most issues caused by design limitation under
extreme situations are transient, simply job resubmission
could mitigate them. Long-term resolution for some sys-
tem code defects and design limitations would also be
provided in the future release cycle.

Finding 6: There are mainly seven categories of miti-
gation solutions. More than one third escalations can
be resolved by simply resubmitting jobs. Only 3.8%
escalations adopt hot fix.
Implication: It is possible to automate the mitigation
operations of most escalations.

6.2 Telemetry Data Used for Mitigation

The above mitigating solutions are relative straightfor-
ward and the TTM time is mainly spend on causes diag-
nosis. The fast diagnosis would be helpful to reduce the
TTM time. As described in Section 2, Dolphin records a
lot of telemetry data for troubleshooting including perfor-
mance counters of machines, execution traces for each job.
Performance counters are a set of special-purpose coun-
ters built into modern microprocessors, operating systems,
and applications to keep the counts of system activities
within computer systems. Performance counters mainly
count the information about resource usage, throughput,
performance, etc. For example, Dolphin records the da-
ta size processed by a vertex, the processing time of a
vertex, the CPU usage of a machine, the memory usage
of a machine, and so on. Program traces are recorded
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Table 6: Classification of escalation mitigation.
Escalation
category

Escalation sub-category Mitigation solution

Customer
side fault

Code defect Instruct customers to refine their code,
configuration, submission parameter or data
placement

Operation fault
Misuse

Convention violation

System
side fault

Code defect(not regression) Hotfix or nothing to do if it is exposed by extreme conditions
Design limitation Instruct customers to resubmit jobs with new parameters,

regression Roll it back
Operation fault Recover it

Hardware
fault

Machine unhealthy or outage
Power off

Network device fault Instruct customer to resubmit job, nothing to do for job slowdown
Overheating
Bit flipping

Time drifting De-commit failure machines or restart a sub-service

when the system executes a job, which allow developers
to follow the execution of a job in the system to investi-
gate why a code path has failed, or to provide detailed
information for performance analysis. Different types of
telemetry data play different roles when DRIs diagnose
escalations. Table 7 lists most of telemetry data they used.
Note that some application level performance counters
are calculated from the log messages.

The diagnosis process roughly consists of the follow-
ing steps. DRIs often start their diagnosis from identifying
a critical path of the problematic job through analyzing
the program traces, which could be used to simulate the
job execution. The critical path contains bottleneck stages
or failed stages. Then, DRIs dive into the bottleneck stage
or failed stage, and try to identify some execution outlier
vertices. Because there are always thousands of vertices in
a single stage, and these vertices are supposed to have sim-
ilar execution behavior. If some of them behave differently
from others, they are suspicious and likely the culprits.
If some vertices generate log events that do not appear
in other vertices, or the performance-counter values of
some vertices are varies largely with others, these vertices
are detected as outliers. For recurring jobs, the telemetry
data of the last successful execution are also analyzed as
basses for comparison. With outlier detection, DRIs will
further look into the outlier vertices by checking their log
messages or machine level performance counters (e.g.,
CPU, memory, disk, and network counters) to identify
the potential causes. In most cases, they can find that ex-
ception messages in traces or counters. Essentially, such
diagnosis process is top-down guided by a decision-tree
to exclude the impossible causes.

For some escalations, local simulation were conducted
to diagnose their root causes, r.e., downloading all vertex
execution related info into local disk and re-run it as a
simulation.

Finding 7: Program traces and performance counters
are used in the escalations diagnosis. And a clear deci-
sion flow exists in the diagnosis procedure.
Implication: It is possible to design an end-to-end
tool to automate the diagnosis by collecting and ana-
lyzing the program traces and performance counters.

7 DISCUSSION

Most of the findings and implications we obtained from
Dolphin are suitable for other big data computing plat-
forms, such as GFS/MapReduce and HDFS/Hadoop sys-
tems. Our findings and implications on live site issues are
representative and could be applied to those systems as
well. First, such systems are provisioned with the similar
commodity hardware in data center, thereby sharing simi-
lar hardware faults and similar failure probability. Second,
they also have similar system design, and even the same
workload characteristics. Although they differ in detailed
implementations, they could contain similar system side
faults including design limitations. We believe that the
experience learned from Dolphin would be beneficial to
other systems as well. Lastly, all systems provide similar
programming interface and languages, therefore customer
would produce the similar failures. For example, the coun-
terpart of the recursive reducer in Hadoop is combiner.
The findings and implications on root cause diagnosis
and mitigation are also applicable to other systems. With
the similar telemetry data such as performance counters
and execution traces, those system can apply the same
top-down and decision-tree based process in diagnosis
and mitigation, because all these systems share the same
execution model and storage model, even the operation
model. In summary, most of the findings and implications
learned from Dolphin are also applicable to other systems
as well.
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Table 7: Telemetry data used in diagnosis.
Categories Sub-categories Examples
Application
specific
performance
counters

Request latency related counters response time, wait time, execution time
Throughput related counters # of request per second, queue length
Vertex IO related counters read/written bytes, partition number, shuffling size
Computing resource related counters token usage

Operating system
performance
counters

CPU usage average CPU usage percentage
Memory usage available memory, paging file
Disk usage disk read/write queue length
Network usage round trip time, bytes received/sent
Machine repairing state Faulty or Healthy

Program logs
Exception messages file not found exception
Log entries of important execution points entering and leaving a stage
Log entries of important measurements data size of a vertex

8 RELATED WORK

There have been some previous studies in the literature
on the network or hardware failures [18] of a data center.
For example, Ford et al. studied [9] the data availability
of Google distributed storage systems, and characterized
the sources of faults contributing to unavailability. Their
results indicate that cluster-wide failure events should
be paid more attention during the design of system com-
ponents, such as replication and recovery policies. We
studied in a larger scope including not only distributed
file system, but also execution engine, and not only the
unavailability, but also the job failures and performance
issues. Gill et al. [11] presented a large-scale analysis
of failures in a data center network. They characterized
failure events of network links and devices, estimated
their failure impact, and analyzed the effectiveness of net-
work redundancy in masking failures. Vishwanath and
Nagappan [20] classified server failures in a data center
and found that 8% of all servers had at least one hard-
ware incident in a given year. They also found that the
distribution of successive failure on a server fits an inverse
curve. Both their studies could be helpful to reduce the
hardware faults, especially the networking faults. Dinu
and Ng [8] analyzed Hadoop behavior under failures of
compute nodes, and found that a single failure can result
in unpredictable system performance. They believed that
this problem was caused by unrealistic assumptions about
task progress rates made by Hadoop. We share the similar
findings that fault-tolerance could slowdown performance
and even fail jobs.

There are also empirical studies on data-parallel pro-
grams. Kavulya et al. [15] studied failures in MapRe-
duce programs. There is also a work [14] studied the
performance slowdown caused by system side inefficien-
cy. Their studies just take simple workloads rather than
production jobs. Li et al. [16] studied the failure charac-
teristics in SCOPE jobs, and revealed that exceptional
data and mismatched data schema are the major source

of job failures, rather than code logic. They advocated a
graceful exception handling logic to take care of excep-
tional data and tooling support to detect the code defects
that could be exploited by potential exceptional data. As
a complementary, our study also studied the system side
faults, hardware faults and even human operation fault-
s, and they together provide a comprehensive study on
data-parallel programs.

Researchers have also studied the failures recovery or
mitigation. For example, in [11], the authors computed
the repair time as the time between a device’s failure
notification and the time it is reported as being back online.
They found that load balancers experienced short-lived
failures and inter-data center links took the longest time
to repair. In our study, more than half of escalations can
be mitigated by simply resubmitting the job, which is
short-lived issues; while the mitigation needs code fix
or more time to diagnosis would be relative long-lived.
Zhang et al. [22] performed an empirical study of the bug-
fixing time using real industrial projects, and proposed
methods to predict the effort required to fix bugs. Benson
et al. [4] examined 8,684 reported problems appearing
in the forum of a large IaaS provider. They discovered
that ten operators were responsible for resolving most
problems and that a significant delay of 20-110 hours
existed between the initial operator involvement and the
problem resolution. They argued that the lessons derived
from their study could help design a more efficient support
model for cloud computing. We do not directly evaluate
the individual DRI activity, but believe that an incentive
mechanism in the big data ecosystem among engineers,
operators and customers, other than specific techniques,
would be helpful to improve almost all kinds of daily
activities, including not only system operation, but also
application development, system design and engineering,
etc.
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9 CONCLUSION

This paper has presented the first comprehensive study on
escalations to mitigate service quality issue in production
big data computing platform. We aim to answer research
questions such as ”what are the common causes of the
issues in the system side”? and ”how to diagnose and
mitigate the issues in practice?”. We studied more than
200+ escalation records. The results reveal that different
types of issues (hardware faults, code defects, human er-
rors, configuration and regression) occurred in big data
computing. Although fault-tolerance works well on tol-
erating most of the hardware faults and hiding the vertex
latency for most cases, it would slowdown the job exe-
cution and even fail the job in certain extreme situations.
The study also tries to bridge the gap between escalation
symptom and its (root) causes, and the gap between (root)
causes and the mitigation or resolution. We believe that
our findings and implications provide valuable guidelines
for future design and maintenance of big data infrastruc-
ture, and also serve as motivations for future researches
on reliable program development and efficient escalation
processing with tooling support.
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