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Abstract

We present a new algorithm for the contextual bandit learning problem, where the learner repeat-
edly takes an action in response to the observed context, observing the reward only for that action.
Our method assumes access to an oracle for solving cost-sensitive classification problems and achieves
the statistically optimal regret guarantee with only Õ(

√

T ) oracle calls across all T rounds. By doing
so, we obtain the most practical contextual bandit learning algorithm amongst approaches that work
for general policy classes. We further conduct a proof-of-concept experiment which demonstrates the
excellent computational and prediction performance of (an online variant of) our algorithm relative
to several baselines.

1 Introduction

In the contextual bandit problem, an agent collects rewards for actions taken over a sequence of rounds;
in each round, the agent chooses an action to take on the basis of (i) context (or features) for the current
round, as well as (ii) feedback, in the form of rewards, obtained in previous rounds. The feedback is
incomplete: in any given round, the agent observes the reward only for the chosen action; the agent
does not observe the reward for other actions. Contextual bandit problems are found in many important
applications such as online recommendation and clinical trials, and represent a natural half-way point
between supervised learning and reinforcement learning. The use of features to encode context is inherited
from supervised machine learning, while exploration is necessary for good performance as in reinforcement
learning.

The choice of exploration distribution on actions is important. The strongest known results (Auer et al.,
2002; McMahan and Streeter, 2009; Beygelzimer et al., 2011) provide an algorithm that carefully controls
the exploration distribution to achieve an optimal regret after T rounds of

O
(√

KT log |Π|
)

relative to a set of policies Π ⊆ XA mapping contexts x ∈ X to actions a ∈ A (where K is the number
of actions). The regret is the difference between the cumulative reward of the best policy in Π and the
cumulative reward collected by the algorithm. Because the bound has a mild logarithmic dependence
on |Π|, the algorithm can compete with very large policy classes that are likely to yield high rewards,
in which case the algorithm also earns high rewards. However, the computational complexity of the
algorithm is linear in |Π|, making it tractable for only simple policy classes.
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A sub-linear in |Π| running time is possible for policy classes that can be efficiently searched. In
this work, we use the abstraction of an optimization oracle to capture this property: given a set of con-
text/reward vector pairs, the oracle returns a policy in Π with maximum total reward. Using such an ora-
cle in an i.i.d. setting (formally defined in Section 2.1), it is possible to create ǫ-greedy (Sutton and Barto,
1998) or epoch-greedy (Langford and Zhang, 2007) algorithms that run in time O(log |Π|) with only
a single call to the oracle per round. However, these algorithms have suboptimal regret bounds of
O((K log |Π|)1/3T 2/3) because the algorithms randomize uniformly over actions when they choose to
explore.

The RandomizedUCB algorithm of Dud́ık et al. (2011a) achieves the optimal regret bound (up to
logarithmic factors) in the i.i.d. setting, and runs in time poly(T, log |Π|) with poly(T ) calls to the
optimization oracle. This is a fascinating result because it shows that the oracle can provide an exponential
speed-up over previous algorithms with optimal regret bounds. However, the algorithm is not practical
because the degree of the running time polynomial is high.

In this work, we prove the following1:

Theorem 1. There is an algorithm for the i.i.d. contextual bandit problem with an optimal regret bound
requiring Õ(

√
KT ) calls to the optimization oracle over T rounds.

Concretely, we make Õ(
√
KT ) calls to the oracle with a net running time of Õ(T 1.5K1/2 log |Π|), vastly

improving over the complexity of RandomizedUCB. The major components of the new algorithm are (i)
a new coordinate descent procedure for computing a very sparse distribution over policies which can be
efficiently sampled from, and (ii) a new epoch structure which allows the distribution over policies to be
updated very infrequently. We consider variants of the epoch structure that make different computational
trade-offs; on one extreme we concentrate the entire computational burden on O(log T ) rounds with
Õ(

√
KT ) oracle calls each time, while on the other we spread our computation over

√
T rounds with

Õ(K) oracle calls for each of these rounds. We stress that in either case, the total number of calls to
the oracle is only sublinear. Finally, we develop a more efficient online variant, and conduct a proof-of-
concept experiment showing low computational complexity and high reward relative to several natural
baselines.

Motivation and related work. The EXP4-family of algorithms (Auer et al., 2002; McMahan and Streeter,
2009; Beygelzimer et al., 2011) solve the contextual bandit problem with optimal regret by updating
weights (multiplicatively) over all policies in every round. Except for a few special cases (Helmbold and Schapire,
1997; Beygelzimer et al., 2011), the running time of such measure-based algorithms is generally linear in
the number of policies.

In contrast, the RandomizedUCB algorithm of Dud́ık et al. (2011a) is based on a natural abstraction
from supervised learning—the ability to efficiently find a function in a rich function class that minimizes
the loss on a training set. This abstraction is encapsulated in the notion of an optimization oracle,
which is also useful for ǫ-greedy (Sutton and Barto, 1998) and epoch-greedy (Langford and Zhang, 2007).
However, these algorithms have only suboptimal regret bounds.

Another class of approaches based on Bayesian updating is Thompson sampling (Thompson, 1933; Li,
2013), which often enjoys strong theoretical guarantees in expectation over the prior and good empirical
performance (Chapelle and Li, 2011). Such algorithms, as well as the closely related upper-confidence
bound algorithms (Auer, 2002; Chu et al., 2011), are computationally tractable in cases where the pos-
terior distribution over policies can be efficiently maintained or approximated. In our experiments, we
compare to a strong baseline algorithm that uses this approach (Chu et al., 2011).

To circumvent the Ω(|Π|) running time barrier, we restrict attention to algorithms that only access the
policy class via the optimization oracle. Specifically, we use a cost-sensitive classification oracle, and a key
challenge is to design good supervised learning problems for querying this oracle. The RandomizedUCB

algorithm of Dud́ık et al. (2011a) uses a similar oracle to construct a distribution over policies that solves
a certain convex program. However, the number of oracle calls in their work is prohibitively large, and
the statistical analysis is also rather complex.2

1Throughout this paper, we use the Õ notation to suppress dependence on logarithmic factors.
2The paper of Dud́ık et al. (2011a) is colloquially referred to, by its authors, as the “monster paper” (Langford, 2014).
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Main contributions. In this work, we present a new and simple algorithm for solving a similar convex
program as that used by RandomizedUCB. The new algorithm is based on coordinate descent: in each
iteration, the algorithm calls the optimization oracle to obtain a policy; the output is a sparse distribution
over these policies. The number of iterations required to compute the distribution is small—at most
Õ(

√
Kt) in any round t. In fact, we present a more general scheme based on epochs and warm start

in which the total number of calls to the oracle is, with high probability, just Õ(
√
KT ) over all T

rounds ; we prove that this is nearly optimal for a certain class of optimization-based algorithms. The
algorithm is natural and simple to implement, and we provide an arguably simpler analysis than that
for RandomizedUCB. Finally, we report proof-of-concept experimental results using a variant algorithm
showing strong empirical performance.

2 Preliminaries

In this section, we recall the i.i.d. contextual bandit setting and some basic techniques used in previous
works (Auer et al., 2002; Beygelzimer et al., 2011; Dud́ık et al., 2011a).

2.1 Learning Setting

Let A be a finite set of K actions, X be a space of possible contexts (e.g., a feature space), and Π ⊆ AX

be a finite set of policies that map contexts x ∈ X to actions a ∈ A.3 Let ∆Π := {Q ∈ R
Π : Q(π) ≥

0 ∀π ∈ Π,
∑
π∈ΠQ(π) ≤ 1} be the set of non-negative weights over policies with total weight at most

one, and let RA+ := {r ∈ R
A : r(a) ≥ 0 ∀a ∈ A} be the set of non-negative reward vectors.

Let D be a probability distribution over X× [0, 1]A, the joint space of contexts and reward vectors; we
assume actions’ rewards from D are always in the interval [0, 1]. Let DX denote the marginal distribution
of D over X .

In the i.i.d. contextual bandit setting, the context/reward vector pairs (xt, rt) ∈ X × [0, 1]A over all
rounds t = 1, 2, . . . are randomly drawn independently from D. In round t, the agent first observes the
context xt, then (randomly) chooses an action at ∈ A, and finally receives the reward rt(at) ∈ [0, 1]
for the chosen action. The (observable) record of interaction resulting from round t is the quadruple
(xt, at, rt(at), pt(at)) ∈ X × A× [0, 1]× [0, 1]; here, pt(at) ∈ [0, 1] is the probability that the agent chose
action at ∈ A. We let Ht ⊆ X × A × [0, 1]× [0, 1] denote the history (set) of interaction records in the

first t rounds. We use the shorthand notation Êx∼Ht
[·] to denote expectation when a context x is chosen

from the t contexts in Ht uniformly at random.
Let R(π) := E(x,r)∼D[r(π(x))] denote the expected (instantaneous) reward of a policy π ∈ Π, and

let π⋆ := argmaxπ∈ΠR(π) be a policy that maximizes the expected reward (the optimal policy). Let
Reg(π) := R(π⋆) − R(π) denote the expected (instantaneous) regret of a policy π ∈ Π relative to the
optimal policy. Finally, the (empirical cumulative) regret of the agent after T rounds4 is defined as

T∑

t=1

(
rt(π⋆(xt))− rt(at)

)
.

2.2 Inverse Propensity Scoring

An unbiased estimate of a policy’s reward may be obtained from a history of interaction records Ht using
inverse propensity scoring (IPS; also called inverse probability weighting): the expected reward of policy
π ∈ Π is estimated as

R̂t(π) :=
1

t

t∑

i=1

ri(ai) · 1{π(xi) = ai}
pi(ai)

. (1)

3Extension to VC classes is simple using standard arguments.
4We have defined empirical cumulative regret as being relative to π⋆, rather than to the empirical reward maximizer

argmaxπ∈Π

∑

T

t=1
rt(π(xt)). However, in the i.i.d. setting, the two do not differ by more than O(

√

T ln(N/δ)) with proba-
bility at least 1− δ.
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This technique can be viewed as mapping Ht 7→ IPS(Ht) of interaction records (x, a, r(a), p(a)) to con-
text/reward vector pairs (x, r̂), where r̂ ∈ R

A
+ is a fictitious reward vector that assigns to the chosen

action a a scaled reward r(a)/p(a) (possibly greater than one), and assigns to all other actions zero
rewards. This transformation IPS(Ht) is detailed in Algorithm 3 (in Appendix A); we may equivalently

define R̂t by R̂t(π) := t−1
∑

(x,r̂)∈IPS(Ht)
r̂(π(x)). It is easy to verify that E[r̂(π(x))|(x, r)] = r(π(x)), as

p(a) is indeed the agent’s probability (conditioned on (x, r)) of picking action a. This implies R̂t(π) is
an unbiased estimator for any history Ht.

Let πt := argmaxπ∈Π R̂t(π) denote a policy that maximizes the expected reward estimate based

on inverse propensity scoring with history Ht (π0 can be arbitrary), and let R̂egt(π) := R̂t(πt)− R̂t(π)

denote estimated regret relative to πt. Note that R̂egt(π) is generally not an unbiased estimate of Reg(π),
because πt is not always π⋆.

2.3 Optimization Oracle

One natural mode for accessing the set of policies Π is enumeration, but this is impractical in general.
In this work, we instead only acceess Π via an optimization oracle which corresponds to a cost-sensitive
learner. Following (Dud́ık et al., 2011a), we call this oracle AMO5.

Definition 1. For a set of policies Π, the argmax oracle (AMO) is an algorithm, which for any sequence
of context and reward vectors, (x1, r1), (x2, r2), . . . , (xt, rt) ∈ X × R

A
+, returns

argmax
π∈Π

t∑

τ=1

rτ (π(xτ )).

2.4 Projections and Smoothing

In each round, our algorithm chooses an action by randomly drawing a policy π from a distribution over
Π, and then picking the action π(x) recommended by π on the current context x. This is equivalent
to drawing an action according to Q(a|x) :=

∑
π∈Π:π(x)=aQ(π), ∀a ∈ A . For keeping the variance of

reward estimates from IPS in check, it is desirable to prevent the probability of any action from being
too small. Thus, as in previous work, we also use a smoothed projection Qµ(·|x) for µ ∈ [0, 1/K],
Qµ(a|x) := (1 − Kµ)

∑
π∈Π:π(x)=aQ(π) + µ, ∀a ∈ A. Every action has probability at least µ under

Qµ(·|x).
For technical reasons, our algorithm maintains non-negative weights Q ∈ ∆Π over policies that sum

to at most one, but not necessarily equal to one; hence, we put any remaining mass on a default policy
π̄ ∈ Π to obtain a legitimate probability distribution over policies Q̃ = Q +

(
1−∑π∈ΠQ(π)

)
1π̄. We

then pick an action from the smoothed projection Q̃µ(·|x) of Q̃ as above. This sampling procedure
Sample(x,Q, π̄, µ) is detailed in Algorithm 4 (in Appendix A).

3 Algorithm and Main Results

Our algorithm (ILOVETOCONBANDITS) is an epoch-based variant of the RandomizedUCB algorithm of
Dud́ık et al. (2011a) and is given in Algorithm 1. Like RandomizedUCB, ILOVETOCONBANDITS also
solves an optimization problem (OP) to obtain a distribution over policies to sample from (Step 7), but
does so on an epoch schedule, i.e., only on certain pre-specified rounds τ1, τ2, . . .. The only requirement
of the epoch schedule is that the length of epoch m is bounded as τm+1 − τm = O(τm). For simplicity,
we assume τm+1 ≤ 2τm for m ≥ 1, and τ1 = O(1).

The crucial step here is solving (OP). This problem is very similar to the one in (Dud́ık et al., 2011a),
and our coordinate descent algorithm in Section 3.1 gives a constructive proof that the problem is feasible.
As in (Dud́ık et al., 2011a), we have the following regret bound:

5Cost-sensitive learners often need a cost instead of reward, in which case we use ct = 1− rt.
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Theorem 2. Suppose it is possible to solve the optimization problem (OP). With probability at least
1− δ, the regret of ILOVETOCONBANDITS after T rounds is

O
(√

KT ln(T |Π|/δ) +K ln(T |Π|/δ)
)
.

Algorithm 1 Importance-weighted LOw-Variance Epoch-Timed Oracleized CONtextual BANDITS al-
gorithm (ILOVETOCONBANDITS)

input Epoch schedule 0 = τ0 < τ1 < τ2 < · · · , allowed failure probability δ ∈ (0, 1).
1: Initial weights Q0 := 0 ∈ ∆Π, initial epoch m := 1.

Define µm := min{1/2K,
√
ln(16τ2m|Π|/δ)/(Kτm)} for all m ≥ 0.

2: for round t = 1, 2, . . . do
3: Observe context xt ∈ X .
4: (at, pt(at)) := Sample(xt, Qm−1, πτm−1, µm−1).
5: Select action at and observe reward rt(at) ∈ [0, 1].
6: if t = τm then

7: Let Qm be the solution to (OP) with history Ht and minimum probability µm.
8: m := m+ 1.
9: end if

10: end for

Optimization Problem (OP)

Given a historyHt and minimum probability µm, define bπ := R̂egt(π)
ψµm

for ψ := 100, and find Q ∈ ∆Π

such that
∑

π∈Π

Q(π)bπ ≤ 2K (2)

∀π ∈ Π : Êx∼Ht

[
1

Qµm(π(x)|x)

]
≤ 2K + bπ. (3)

3.1 Solving (OP) via Coordinate Descent

We now present a coordinate descent algorithm to solve (OP). The pseudocode is given in Algorithm 2.
Our analysis, as well as the algorithm itself, are based on a potential function which we use to measure
progress. The algorithm can be viewed as a form of coordinate descent applied to this same potential
function. The main idea of our analysis is to show that this function decreases substantially on every
iteration of this algorithm; since the function is nonnegative, this gives an upper bound on the total
number of iterations as expressed in the following theorem.

Theorem 3. Algorithm 2 (with Qinit := 0) halts in ≤ 4 ln(1/(Kµ))
µ iterations, and outputs a solution Q

to (OP).

3.2 Using an Optimization Oracle

We now show how to implement Algorithm 2 via AMO (c.f. Section 2.3).

Lemma 1. Algorithm 2 can be implemented using one call to AMO before the loop is started, and one
call for each iteration of the loop thereafter.
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Algorithm 2 Coordinate Descent Algorithm

Require: History Ht, minimum probability µ, initial weights Qinit ∈ ∆Π.
1: Set Q := Qinit.
2: loop

3: Define, for all π ∈ Π,

Vπ(Q) = Êx∼Ht
[1/Qµ(π(x)|x)]

Sπ(Q) = Êx∼Ht

[
1/(Qµ(π(x)|x))2

]

Dπ(Q) = Vπ(Q)− (2K + bπ).

4: if
∑
π Q(π)(2K + bπ) > 2K then

5: Replace Q by cQ, where

c :=
2K∑

πQ(π)(2K + bπ)
< 1. (4)

6: end if

7: if there is a policy π for which Dπ(Q) > 0 then

8: Add the (positive) quantity

απ(Q) =
Vπ(Q) +Dπ(Q)

2(1−Kµ)Sπ(Q)

to Q(π) and leave all other weights unchanged.
9: else

10: Halt and output the current set of weights Q.
11: end if

12: end loop

Proof. At the very beginning, before the loop is started, we compute the best empirical policy so far, πt,
by calling AMO on the sequence of historical contexts and estimated reward vectors; i.e., on (xτ , r̂τ ), for
τ = 1, 2, . . . , t.

Next, we show that each iteration in the loop of Algorithm 2 can be implemented via one call to
AMO. Going over the pseudocode, first note that operations involving Q in step Step 4 can be performed
efficiently since Q has sparse support. Note that the definitions in step Step 3 don’t actually need to be
computed for all policies π ∈ Π, as long as we can identify a policy π for which Dπ(Q) > 0. We can
identify such a policy using one call to AMO as follows.

First, note that for any policy π, we have

Vπ(Q) = Êx∼Ht

[
1

Qµ(π(x)|x)

]
=

1

t

t∑

τ=1

1

Qµ(π(xτ )|xτ )
,

and

bπ =
R̂egt(π)

ψµ
=

R̂t(πt)

ψµ
− 1

ψµt

t∑

τ=1

r̂τ (π(xτ )).

Now consider the sequence of historical contexts and reward vectors, (xτ , r̃τ ) for τ = 1, 2, . . . , t, where
for any action a we define

r̃τ (a) :=
1

t

(
ψµ

Qµ(a|xτ )
+ r̂t(a)

)
. (5)

It is easy to check that

Dπ(Q) =
1

ψµ

t∑

τ=1

r̃τ (π(xτ ))−
(
2K +

R̂t(πt)

ψµ

)
.
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Since 2K + R̂t(πt)
ψµ is a constant independent of π, we have

argmax
π∈Π

Dπ(Q) = argmax
π∈Π

t∑

τ=1

r̃τ (π(xτ )),

and hence, calling AMO once on the sequence (xτ , r̃τ ) for τ = 1, 2, . . . , t, we obtain a policy that maximizes
Dπ(Q) and thereby identify a policy for which Dπ(Q) > 0, if one exists.

3.3 Epoch Schedule

Theorem 3 shows that Algorithm 2 solves (OP) with Õ(
√
t) calls to AMO in round t. Thus, if we use the

epoch schedule τm = m (i.e., run Algorithm 2 in every round), then we get a total of Õ(T 3/2) calls to
AMO over all T rounds. This number can be dramatically reduced using a more carefully chosen epoch
schedule.

Lemma 2. For the epoch schedule τm := 2m−1, the total number of calls to AMO is Õ(
√
KT ).

Proof. The epoch schedule satisfies the requirement τm+1 ≤ 2τm. With this epoch schedule, Algorithm 2
is run only O(log T ) times over T rounds, leading to Õ(

√
KT ) total calls to AMO over the entire period.

3.4 Warm Start

We now present a different technique to reduce the number of calls to AMO. This is based on the
observation that practically speaking, it seems terribly wasteful, at the start of a new epoch, to throw out
the results of all of the preceding computations and to begin yet again from nothing. Instead, intuitively,
we expect computations to be more moderate if we begin again where we left off last, i.e., a “warm-start”
approach. Here, when Algorithm 2 is called at the end of epoch m, we use Qinit := Qm−1 (the previously
computed weights) rather than 0.

We can combine warm-start with a different epoch schedule to guarantee Õ(
√
KT ) total calls to AMO,

spread across O(
√
T ) calls to Algorithm 2.

Lemma 3. Define the epoch schedule (τ1, τ2) := (3, 5) and τm := m2 for m ≥ 3 (this satisfies τm+1 ≤
2τm). With high probability, the warm-start variant of Algorithm 1 makes Õ(

√
KT ) calls to AMO over

T rounds and O(
√
T ) calls to Algorithm 2.

3.5 A Lower Bound on the Support Size

So far we have seen various ways to solve the optimization problem (OP), with corresponding bounds
on the number of calls to AMO. An attractive feature of the coordinate descent algorithm, Algorithm 2,
is that the number of oracle calls is directly related to the number of policies in the support of Qm.
Specifically, for the doubling schedule of Section 3.3, Theorem 3 implies that we never have non-zero

weights for more than 4 ln(1/(Kµm))
µm

policies in epoch m. Similarly, the total number of oracle calls for the
warm-start approach in Section 3.4 bounds the total number of policies which ever have non-zero weight
over all T rounds. The support size of the distributions Qm in Algorithm 1 is crucial to the computational
complexity of sampling an action (Step 4 of Algorithm 1).

In this section, we demonstrate a lower bound showing that it is not possible to construct substantially
sparser distributions that also satisfy the low-variance constraint (3) in the optimization problem (OP).
To formally define the lower bound, fix an epoch schedule 0 = τ0 < τ1 < τ2 < · · · and consider the
following set of non-negative vectors over policies:

Qm :={Q ∈ ∆Π : Q satisfies Eq. (3) in round τm}.
(The distribution Qm computed by Algorithm 1 is in Qm.) Let us also define supp(Q) to be the set of
policies where Q puts non-zero entries, with |supp(Q)| denoting the cardinality of this set. Then we have
the following lower bound.

7



Theorem 4. For any epoch schedule 0 = τ0 < τ1 < τ2 < · · · and any M ∈ N sufficiently large, there
exists a distribution D over X × [0, 1]A and a policy class Π such that, with probability at least 1− δ,

inf
m∈N:

τm≥τM/2

inf
Q∈Qm

|supp(Q)| = Ω

(√
KτM

ln(|Π|τM/δ)

)
.

The proof of the theorem is deferred to Appendix E. In the context of our problem, this lower bound
shows that the bounds in Lemmas 2 and 3 are unimprovable, since the number of calls to AMO is at least
the size of the support, given our mode of access to Π.

4 Regret Analysis

In this section, we outline the regret analysis for our algorithm ILOVETOCONBANDITS, with details
deferred to Appendix B and Appendix C.

The deviations of the policy reward estimates R̂t(π) are controlled by (a bound on) the variance of

each term in Eq. (1): essentially the left-hand side of Eq. (3) from (OP), except with Êx∼Ht
[·] replaced by

Ex∼DX
[·]. Resolving this discrepancy is handled using deviation bounds, so Eq. (3) holds with Ex∼DX

[·],
with worse right-hand side constants.

The rest of the analysis, which deviates from that of RandomizedUCB, compares the expected regret
Reg(π) of any policy π with the estimated regret R̂egt(π) using the variance constraints Eq. (3):

Lemma 4 (Informally). With high probability, for each m such that τm ≥ Õ(K log |Π|), each round t in

epoch m, and each π ∈ Π, Reg(π) ≤ 2R̂egt(π) +O(Kµm).

This lemma can easily be combined with the constraint Eq. (2) from (OP): since the weights Qm−1

used in any round t in epoch m satisfy
∑
π∈ΠQm−1R̂egτm−1(π) ≤ 2Kµτm−1, we obtain a bound on the

(conditionally) expected regret in round t using the above lemma: with high probability,

∑

π∈Π

Q̃m−1 Reg(π) ≤ O(Kµm−1).

Summing these terms up over all T rounds and applying martingale concentration gives the final regret
bound in Theorem 2.

5 Analysis of the Optimization Algorithm

In this section, we give a sketch of the analysis of our main optimization algorithm for computing weights
Qm on each epoch as in Algorithm 2. As mentioned in Section 3.1, this analysis is based on a potential
function.

Since our attention for now is on a single epoch m, here and in what follows, when clear from context,
we drop m from our notation and write simply τ = τm, µ = µm, etc. Let UA be the uniform distribution
over the action set A. We define the following potential function for use on epoch m:

Φm(Q) = τµ

(
Êx[RE (UA‖Qµ(· | x))]

1−Kµ
+

∑
π∈ΠQ(π)bπ

2K

)
. (6)

The function in Eq. (6) is defined for all vectors Q ∈ ∆Π. Also, RE (p‖q) denotes the unnormalized
relative entropy between two nonnegative vectors p and q over the action space (or any set) A:

RE (p‖q) =
∑

a∈A

(pa ln(pa/qa) + qa − pa).

8



This number is always nonnegative. Here, Qµ(·|x) denotes the “distribution” (which might not sum to
1) over A induced by Qµ for context x as given in Section 2.4. Thus, ignoring constants, this potential
function is a combination of two terms: The first measures how far from uniform are the distributions
induced by Qµ, and the second is an estimate of expected regret under Q since bπ is proportional to the
empirical regret of π. Making Φm small thus encourages Q to choose actions as uniformly as possible
while also incurring low regret — exactly the aims of our algorithm. The constants that appear in this
definition are for later mathematical convenience.

For further intuition, note that, by straightforward calculus, the partial derivative ∂Φm/∂Q(π) is
roughly proportional to the variance constraint for π given in Eq. (3) (up to a slight mismatch of con-
stants). This shows that if this constraint is not satisfied, then ∂Φm/∂Q(π) is likely to be negative,
meaning that Φm can be decreased by increasing Q(π). Thus, the weight vector Q that minimizes Φm
satisfies the variance constraint for every policy π. It turns out that this minimizing Q also satisfies the
low regret constraint in Eq. (2), and also must sum to at most 1; in other words, it provides a complete
solution to our optimization problem. Algorithm 2 does not fully minimize Φm, but it is based roughly
on coordinate descent. This is because in each iteration one of the weights (coordinate directions) Q(π)
is increased. This weight is one whose corresponding partial derivative is large and negative.

To analyze the algorithm, we first argue that it is correct in the sense of satisfying the required
constraints, provided that it halts.

Lemma 5. If Algorithm 2 halts and outputs a weight vector Q, then the constraints Eq. (3) and Eq. (2)
must hold, and furthermore the sum of the weights Q(π) is at most 1.

The proof is rather straightforward: Following step 4, Eq. (2) must hold, and also the weights must
sum to 1. And if the algorithm halts, then Dπ(Q) ≤ 0 for all π, which is equivalent to Eq. (3).

What remains is the more challenging task of bounding the number of iterations until the algorithm
does halt. We do this by showing that significant progress is made in reducing Φm on every iteration. To
begin, we show that scaling Q as in step 4 cannot cause Φm to increase.

Lemma 6. Let Q be a weight vector such that
∑

π Q(π)(2K+ bπ) > 2K, and let c be as in Eq. (4). Then
Φm(cQ) ≤ Φm(Q).

Proof sketch. We consider Φm(cQ) as a function of c, and argue that its derivative (with respect to
c) at the value of c given in the lemma statement is always nonnegative. Therefore, by convexity, it is
nondecreasing for all values exceeding c. Since c < 1, this proves the lemma.

Next, we show that substantial progress will be made in reducing Φm each time that step 8 is executed.

Lemma 7. Let Q denote a set of weights and suppose, for some policy π, that Dπ(Q) > 0. Let Q′ be
a new set of weights which is an exact copy of Q except that Q′(π) = Q(π) + α where α = απ(Q) > 0.
Then

Φm(Q)− Φm(Q′) ≥ τµ2

4(1−Kµ)
. (7)

Proof sketch. We first compute exactly the change in potential for general α. Next, we apply a second-
order Taylor approximation, which is maximized by the α used in the algorithm. The Taylor approxi-
mation, for this α, yields a lower bound which can be further simplified using the fact that Qµ(a|x) ≥ µ
always, and our assumption that Dπ(Q) > 0. This gives the bound stated in the lemma.

So step 4 does not cause Φm to increase, and step 8 causes Φm to decrease by at least the amount
given in Lemma 7. This immediately implies Theorem 3: for Qinit = 0, the initial potential is bounded by
τµ ln(1/(Kµ))/(1−Kµ), and it is never negative, so the number of times step 8 is executed is bounded
by 4 ln(1/(Kµ))/µ as required.

5.1 Epoching and Warm Start

As shown in Section 2.3, the bound on the number of iterations of the algorithm from Theorem 3 also
gives a bound on the number of times the oracle is called. To reduce the number of oracle calls, one
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Algorithm ǫ-greedy Explore-first Bagging LinUCB Online Cover Supervised
P.V. Loss 0.095 0.081 0.059 0.128 0.053 0.051
Searched 0.02 = ǫ 2× 105 first 16 bags 103 dim, minibatch-10 cover n = 1 nothing
Seconds 22 5.6 339 212× 103 17 6.9

Table 1: Progressive validation loss of various algorithm on RCV1.

approach is the “doubling trick” of Section 3.3, which enables us to bound the total combined number of
iterations of Algorithm 2 in the first T rounds is only Õ(

√
KT ). This means that the average number of

calls to the arg-max oracle is only Õ(
√
K/T ) per round, meaning that the oracle is called far less than

once per round, and in fact, at a vanishingly low rate.
We now turn to warm-start approach of Section 3.4, where in each epoch m + 1 we initialize the

coordinate descent algorithm with Qinit = Qm, i.e. the weights computed in the previous epoch m.
To analyze this, we bound how much the potential changes from Φm(Qm) at the end of epoch m to
Φm+1(Qm) at the very start of epoch m + 1. This, combined with our earlier results regarding how
quickly Algorithm 2 drives down the potential, we are able to get an overall bound on the total number
of updates across T rounds.

Lemma 8. Let M be the largest integer for which τM+1 ≤ T . With probability at least 1 − 2δ, for all
(not too small) T , the total epoch-to-epoch increase in potential is

M∑

m=1

(Φm+1(Qm)− Φm(Qm)) ≤ Õ

(√
T

K

)
,

where M is the largest integer for which τM+1 ≤ T .

Proof sketch. The potential function, as written in Eq. (6), naturally breaks into two pieces whose
epoch-to-epoch changes can be bounded separately. Changes affecting the relative entropy term on the
left can be bounded, regardless of Qm, by taking advantage of the manner in which these distributions
are smoothed. For the other term on the right, it turns out that these epoch-to-epoch changes are related
to statistical quantities which can be bounded with high probability. Specifically, the total change in this
term is related first to how the estimated reward of the empirically best policy compares to the expected
reward of the optimal policy; and second, to how the reward received by our algorithm compares to that
of the optimal reward. From our regret analysis, we are able to show that both of these quantities will
be small with high probability.

Thus, the total amount that the potential increases across T rounds is at most Õ(
√
T/K). On the

other hand, Lemma 7 shows that each time Q is updated by Algorithm 2 the potential decreases by
at least Ω̃(1/K). Therefore, the total number of updates of the algorithm totaled over all T rounds is
at most Õ(

√
KT ). For instance, if we use (τ1, τ2) := (3, 5) and τm := m2 for m ≥ 3, then the weight

vector Q is only updated about
√
T times in T rounds, and on each of those rounds, Algorithm 2 requires

Õ(
√
K) iterations, on average. This proves Lemma 3.

6 Experimental Evaluation

In this section we evaluate a variant of Algorithm 1 against several baselines. While Algorithm 1 is
significantly more efficient than many previous approaches, the overall computational complexity is still
at least Õ(T 1.5) excluding the running time of the oracle, since each invocation of the oracle at round t of
Algorithm 1 needs O(t) time in order to create t cost-sensitive classification (henceforth CSC) examples
through the transformation (5). After further accounting for the running time of the oracle itself, this
seems markedly larger than the complexity of an ordinary supervised learning problem where it is typically
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possible to perform an O(1) complexity update upon receiving a fresh example using online learning
algorithms.

A natural solution is to use an “online” oracle which is stateful and accepts examples one by one.
An online CSC oracle takes as input a weighted example and returns a predicted class (corresponding
to one of K actions in our setting). Since the oracle is stateful, it remembers and uses examples from
all previous calls in answering questions, thereby reducing the complexity of each oracle invocation to
O(1) as in supervised learning. Using several of these oracles, we can efficiently track a distribution
over good policies and sample from it. The detailed pseduo-code describing this high-level idea (which
we call Online Cover) is provided in Algorithm 5 in Appendix F. The algorithm maintains a uniform
distribution over a fixed number n of policies where n is a parameter of the algorithm. Upon receiving a
fresh example, it updates all n policies with the suitable CSC examples (5). The specific CSC algorithm
we use is a reduction to squared regression described in Algorithms 4 and 5 of Beygelzimer and Langford
(2009), which is amenable to online updates. Our implementation is public and will be referenced in the
final draft.

Due to lack of public datasets for contextual bandit problems, we use a simple supervised-to-contextual-
bandit transformation (Dud́ık et al., 2011b) on the CCAT document classification problem in RCV1 (Lewis et al.,
2004). This is a dataset of 781, 265 examples, with a total of d = 47, 152 TF-IDF features. In the data
transformation, we treated the class labels as actions, and one minus 0/1-loss as the reward. Using this
dataset, we provide a proof-of-concept that this approach can be empirically very effective. Our evalu-
ation criteria is progressive validation (Blum et al., 1999) on 0/1 loss. We compare ourselves to several
plausible baselines, whose results are summarized in Table 1. All baselines and our online algorithm take
advantage of linear representations which are known to work well on this dataset. For each algorithm we
report the result for the best parameter settings which are mentioned in Table 1.

1. ǫ-greedy (Sutton and Barto, 1998) explores randomly with probability ǫ and otherwise exploits.

2. Explore-first is a common variant where you explore uniformly over actions before switching to an
exploit-only phase.

3. A less common but powerful baseline is based on bagging. In essence, multiple algorithms can
be trained with examples sampled with replacement. The different predictions of these different
learned predictors yield a distribution over actions from which we can sample effectively.

4. Another reasonable baseline is based on Thompson sampling (Chapelle and Li, 2011; Li, 2013) or
linear UCB (Auer, 2002; Li et al., 2010), the latter being quite effective in past evaluations (Li et al.,
2010; Chapelle and Li, 2011). It is impractical to run vanilla LinUCB on this problem due to the
high-dimensionality which makes matrix inversions impractical. We report results for the algorihm
run after doing a dimesionality reduction via random projections to 1000 dimensions. Even then the
algorithm required 59 hours6, and simpler variants such as using diagonal matrix approximations
or infrequent updating performed substantially worse.

5. Finally, our algorithm achieves the best loss of 0.0530. Somewhat surprisingly, the minimum occurs
for us with a cover set of size 1—apparently for this problem the small decaying amount of uniform
random sampling imposed is adequate exploration. Prediction performance is similar with a larger
covering set.

All baselines except for LinUCB are implemented as a simple modification of Vowpal Wabbit, an open
source online learning system. All reported results use default parameters where not otherwise specified.
The contextual bandit learning algorithms all operate in a doubly robust mode similar to the reward
estimates formed by our algorithm.

Because this is actually a fully supervised dataset, we can apply a fully supervised online multiclass
algorithm to solve it. We use a simple one-against-all implementation to reduce this to binary classifica-
tion, yielding an error rate of 0.051 which is competitive with the best previously reported results. This
result is effectively a lower bound on the quality of the solution we can hope to achieve with algorithms

6The linear algebra routines are based on Intel MKL package.
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using only partial information. Our algorithm nearly achieves this lower bound with a running time only
a factor of 2.5 slower. Hence on this dataset, very little further algorithmic improvement is possible.

7 Conclusions

In this paper we have presented the first practical algorithm to our knowledge that attains the statistically
optimal regret guarantee and is computationally efficient in the setting of general policy classes. A
remarkable feature of the algorithm is that the total number of oracle calls over all T rounds is sublinear—
a remarkable improvement over previous works in this setting. We believe that the online variant of the
approach which we implemented in our experiments has the right practical flavor for a scalable solution
to the contextual bandit problem. In future work, it would be interesting to directly analyze the Online
Cover algorithm.
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Algorithm 3 IPS(H)

input History H ⊆ X ×A× [0, 1]× [0, 1].
output Data set S ⊆ X × R

A
+.

1: Initialize data set S := ∅.
2: for each (x, a, r(a), p(a)) ∈ H do

3: Create fictitious rewards r̂ ∈ R
A
+ with r̂(a) = r(a)/p(a) and r̂(a′) = 0 for all a′ ∈ A \ {a}.

4: S := S ∪ {(x, r̂)}.
5: end for

6: return S.

Algorithm 4 Sample(x,Q, π̄, µ)

input Context x ∈ X , weights Q ∈ ∆Π, default policy π̄ ∈ Π, minimum probability µ ∈ [0, 1/K].
output Selected action ā ∈ A and probability p̄ ∈ [µ, 1].
1: Let Q̃ := Q+ (1 −∑π∈ΠQ(π))1π̄

(so
∑

π∈Π Q̃(π) = 1).
2: Randomly draw action ā ∈ A using the distribution

Q̃µ(a|x) := (1−Kµ)
∑

π∈Π:
π(x)=a

Q̃(π) + µ, ∀a ∈ A.

3: Let p̄(ā) := Q̃µ(ā|x).
4: return (ā, p̄(ā)).

H. Brendan McMahan and Matthew Streeter. Tighter bounds for multi-armed bandits with expert advice.
In COLT, 2009.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning, an introduction. MIT Press, 1998.

William R. Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3–4):285–294, 1933.

A Omitted Algorithm Details

Algorithm 3 and Algorithm 4 give the details of the inverse propensity scoring transformation IPS and
the action sampling procedure Sample.

B Deviation Inequalities

B.1 Freedman’s Inequality

The following form of Freedman’s inequality for martingales is from Beygelzimer et al. (2011).

Lemma 9. Let X1, X2, . . . , XT be a sequence of real-valued random variables. Assume for all t ∈
{1, 2, . . . , T }, Xt ≤ R and E[Xt|X1, . . . , Xt−1] = 0. Define S :=

∑T
t=1Xt and V :=

∑T
t=1 E[X

2
t |X1, . . . , Xt−1].

For any δ ∈ (0, 1) and λ ∈ [0, 1/R], with probability at least 1− δ,

S ≤ (e− 2)λV +
ln(1/δ)

λ
.
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B.2 Variance Bounds

Fix the epoch schedule 0 = τ0 < τ1 < τ2 < · · · .
Define the following for any probability distribution P over Π, π ∈ Π, and µ ∈ [0, 1/K]:

V (P, π, µ) := Ex∼DX

[
1

Pµ(π(x)|x)

]
, (8)

V̂m(P, π, µ) := Êx∼Hτm

[
1

Pµ(π(x)|x)

]
. (9)

The proof of the following lemma is essentially the same as that of Theorem 6 from Dud́ık et al.
(2011a).

Lemma 10. Fix any µm ∈ [0, 1/K] for m ∈ N. For any δ ∈ (0, 1), with probability at least 1− δ,

V (P, π, µm) ≤ 6.4V̂m(P, π, µm) +
75(1−Kµm) ln |Π|

µ2
mτm

+
6.3 ln(2|Π|2m2/δ)

µmτm

for all probability distributions P over Π, all π ∈ Π, and all m ∈ N. In particular, if

µm ≥
√

ln(2|Π|m2/δ)

Kτm
, τm ≥ 4K ln(2|Π|m2/δ),

then
V (P, π, µm) ≤ 6.4V̂m(P, π, µm) + 81.3K.

Proof sketch. By Bernstein’s (or Freedman’s) inequality and union bounds, for any choice of Nm ∈ N

and λm ∈ [0, µm] for m ∈ N, the following holds with probability at least 1− δ:

V (P, π, µm)− V̂m(P, π, µm) ≤ (e − 2)λmV (P, π, µm)

µm
+

ln(|Π|Nm+12m2/δ)

λmτm

all Nm-point distributions P over Π, all π ∈ Π, and all m ∈ N. Here, an N -point distribution over Π is
a distribution of the form 1

N

∑N
i=1 1πi

for π1, π2, . . . , πN ∈ Π. We henceforth condition on this ≥ 1 − δ
probability event (for choices of Nm and λm to be determined).

Using the probabilistic method, it can be shown that for any probability distribution P over Π, any
π ∈ Π, any µm ∈ [0, 1/K], and any cm > 0, there exists an Nm-point distribution P̃ over Π such that

(
V (P, π, µm)− V (P̃ , π, µm)

)
+ cm

(
V̂m(P̃ , π, µm)− V̂m(P, π, µm)

)

≤ γNm,µm

(
V (P, π, µm) + cmV̂m(P, π, µm)

)

where γN,µ :=
√
(1 −Kµ)/(Nµ) + 3(1−Kµ)/(Nµ).

Combining the displayed inequalities (using cm := 1/(1− (e− 2)λm/µm)) and rearranging gives

V (P, π, µm) ≤ 1 + γNm,µm

1− γNm,µm

· V̂m(P, π, µm)

1− (e− 2)λm

µm

+
1

1− γNm,µm

· 1

1− (e− 2)λm

µm

· ln(|Π|
Nm+12m2/δ)

λmτm
.

Using Nm := ⌈12(1−Kµm)/µm⌉ and λm := 0.66µm for all m ∈ N gives the claimed inequalities.
If µm ≥

√
ln(2|Π|m2/δ)/(Kτm) and τm ≥ 4K ln(2|Π|m2/δ), then µ2

mτm ≥ ln(|Π|)/K and µmτm ≥
ln(2|Π|2m2/δ), and hence

75(1−Kµm) ln |Π|
µ2
mτm

+
6.3 ln(2|Π|2m2/δ)

µmτm
≤ (75 + 6.3)K = 81.3K.
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B.3 Reward Estimates

Again, fix the epoch schedule 0 = τ0 < τ1 < τ2 < · · · . Recall that for any epoch m ∈ N and round t in
epoch m,

• Qm−1 ∈ ∆Π are the non-negative weights computed at the end of epoch m− 1;

• Q̃m−1 is the probability distribution over Π obtained from Qm−1 and the policy πm−1 with the
highest reward estimate through epoch m− 1;

• Q̃
µm−1

m−1 (·|xt) is the probability distribution used to choose at.

Let
m(t) := min{m ∈ N : t ≤ τm} (10)

be the index of the epoch containing round t ∈ N, and define

Vt(π) := max
0≤m≤m(t)−1

{V (Q̃m, π, µm)} (11)

for all t ∈ N and π ∈ Π.

Lemma 11. For any δ ∈ (0, 1) and any choices of λm−1 ∈ [0, µm−1] for m ∈ N, with probability at least
1− δ,

|R̂t(π)−R(π)| ≤ Vt(π)λm−1 +
ln(4t2|Π|/δ)
tλm−1

for all policies π ∈ Π, all epochs m ∈ N, and all rounds t in epoch m.

Proof. Fix any policy π ∈ Π, epoch m ∈ N, and round t in epoch m. Then

R̂t(π)−R(π) =
1

t

t∑

i=1

Zi

where Zi := r̂i(π(xi))− ri(π(xi)). Round i is in epoch m(i) ≤ m, so

|Zi| ≤
1

Q̃
µm(i)−1

m(i)−1 (π(xi)|xi)
≤ 1

µm(i)−1

by the definition of the fictitious rewards. Because the sequences µ1 ≥ µ2 ≥ · · · and m(1) ≤ m(2) ≤ · · ·
are monotone, it follows that Zi ≤ 1/µm−1 for all 1 ≤ i ≤ t. Furthermore, E[Zi|Hi−1] = 0 and

E[Z2
i |Hi−1] ≤ E[r̂i(π(xi))

2|Hi−1]

≤ V (Q̃m(i)−1, π, µm(i)−1) ≤ Vt(π)

for all 1 ≤ i ≤ t. The first inequality follows because for var(X) ≤ E(X2) for any random variable
X ; and the other inequalities follow from the definitions of the fictitious rewards, V (·, ·, ·) in Eq. (8),
and Vt(·) in Eq. (11). Applying Freedman’s inequality and a union bound to the sums (1/t)

∑t
i=1 Zi and

(1/t)
∑t
i=1(−Zi) implies the following: for all λm−1 ∈ [0, µm−1], with probability at least 1−2·δ/(4t2|Π|),

∣∣∣∣∣
1

t

t∑

i=1

Zi

∣∣∣∣∣ ≤ (e − 2)Vt(π)λm−1 +
ln(4t2|Π|/δ)
tλm−1

.

The lemma now follows by applying a union bound for all choices of π ∈ Π and t ∈ N, since

∑

π∈Π

∑

t∈N

δ

2t2|Π| ≤ δ.
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C Regret Analysis

Throughout this section, we fix the allowed probability of failure δ ∈ (0, 1) provided as input to the
algorithm, as well as the epoch schedule 0 = τ0 < τ1 < τ2 < · · · .

C.1 Definitions

Define, for all t ∈ N,

dt := ln(16t2|Π|/δ), (12)

and recall that,

µm = min

{
1

2K
,

√
dτm
Kτm

}
.

Observe that dt/t is non-increasing with t ∈ N, and µm is non-increasing with m ∈ N.
Let

m0 := min

{
m ∈ N :

dτm
τm

≤ 1

4K

}
.

Observe that τm0 ≥ 2.
Define

ρ := sup
m≥m0

{√
τm
τm−1

}
.

Recall that we assume τm+1 ≤ 2τm; thus ρ ≤
√
2.

C.2 Deviation Control and Optimization Constraints

Let E be the event in which the following statements hold:

V (P, π, µm) ≤ 6.4V̂m(P, π, µm) + 81.3K (13)

for all probability distributions P over Π, all π ∈ Π, and all m ∈ N such that µm ≥
√
dτm/(Kτm) and

τm ≥ 4Kdτm ; and

|R̂t(π)−R(π)| ≤ Vt(π)λt +
dt
tλt

(14)

where

λt :=

{√
dt
2Kt if m ≤ m0,

µm−1 if m > m0.

for all all policies π ∈ Π, all epochs m ∈ N, and all rounds t in epoch m. By Lemma 10, Lemma 11, and
a union bound, Pr(E) ≥ 1− δ/2.

For every epoch m ∈ N, the weights Qm computed at the end of the epoch (in round τm) as the
solution to (OP) satisfy the constraints Eq. (2) and Eq. (3): they are, respectively:

∑

π∈Π

Qm(π)R̂egτm(π) ≤ ψ · 2Kµm (15)

and, for all π ∈ Π,

V̂m(Qm, π, µm) ≤ 2K +
R̂egτm(π)

ψ · µm
. (16)

Recall that ψ = 100 (as defined in (OP), assuming ρ ≤
√
2). Define θ1 := 94.1 and θ2 := ψ/6.4 (which

come from Lemma 12); the proof of Lemma 13 requires that θ2 ≥ 8ρ, and hence ψ ≥ 6.4 · 8ρ; this is true
with our setting of ψ since ρ ≤

√
2.
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C.3 Proof of Theorem 2

We now give the proof of Theorem 2, following the outline in Section 4.
The following lemma shows that if Vt(π) is large—specifically, much larger thanK—then the estimated

regret of π was large in some previous round.

Lemma 12. Assume event E holds. Pick any round t ∈ N and any policy π ∈ Π, and let m ∈ N be the
epoch achieving the max in the definition of Vt(π). Then

Vt(π) ≤





2K if µm = 1/(2K),

θ1K +
R̂egτm(π)

θ2µm
if µm < 1/(2K).

Proof. Fix a round t ∈ N and policy π ∈ Π. Let m ≤ m(t) − 1 be the epoch achieving the max in the

definition of Vt(π) from Eq. (11), so Vt(π) = V (Q̃m, π, µm). If µm = 1/(2K), then V (Q̃m, π, µm) ≤ 2K.
So assume instead that 1/(2K) > µm =

√
dτm/(Kτm). This implies that τm > 4Kdτm . By Eq. (13),

which holds in event E ,
V (Q̃m, π, µm) ≤ 6.4V̂m(Q̃m, π, µm) + 81.3K.

The probability distribution Q̃m satisfies the inequalities

V̂m(Q̃m, π, µm) ≤ V̂m(Qm, π, µm) ≤ 2K +
R̂egτm(π)

ψµm
.

Above, the first inequality follows because the value of V̂m(Qm, π, µm) decreases as the value of Qm(πτm)

increases, as it does when going from Qm to Q̃m; the second inequality is the constraint Eq. (16) satisfied
by Qm. Combining the displayed inequalities from above proves the claim.

In the next lemma, we compare Reg(π) and R̂egt(π) for any policy π by using the deviation bounds
for estimated rewards together with the variance bounds from Lemma 12. Define t0 := min{t ∈ N :
dt/t ≤ 1/(4K)}.
Lemma 13. Assume event E holds. Let c0 := 4ρ(1 + θ1). For all epochs m ≥ m0, all rounds t ≥ t0 in
epoch m, and all policies π ∈ Π,

Reg(π) ≤ 2R̂egt(π) + c0Kµm;

R̂egt(π) ≤ 2Reg(π) + c0Kµm.

Proof. The proof is by induction on m. As the base case, consider m = m0 and t ≥ t0 in epoch m. By
definition of m0, µm = 1/(2K) for all m < m0, so Vt(π) ≤ 2K for all π ∈ Π by Lemma 12. By Eq. (14),
which holds in event E , for all π ∈ Π,

|R̂t(π)−R(π)| ≤ 2Kλ+
dt
tλ

for all π ∈ Π, where λ =
√
dt/(2Kt). This implies

|R̂t(π) −R(π)| ≤ 2

√
2Kdt
t

and therefore |R̂egt(π) − Reg(π)| ≤ 4
√
2Kdt/t by the triangle inequality and optimality of πt and π⋆.

Since t > τm0−1 and c0 ≥ 4
√
2ρ, it follows that |R̂egt(π)− Reg(π)| ≤ 4

√
2ρKµm0 ≤ c0Kµm0 .

For the inductive step, fix some epoch m > m0. We assume as the inductive hypothesis that for all
epochs m′ < m, all rounds t′ in epoch m′, and all π ∈ Π,

Reg(π) ≤ 2R̂egt′(π) + c0Kµm′ ;

R̂egt′(π) ≤ 2Reg(π) + c0Kµm′ .
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We first show that
Reg(π) ≤ 2R̂egt(π) + c0Kµm (17)

for all rounds t in epoch m and all π ∈ Π. So fix such a round t and policy π; by Eq. (14) (which holds
in event E),

Reg(π) − R̂egt(π) =
(
R(π⋆)−R(π)

)
−
(
R̂t(πt)− R̂t(π)

)

≤
(
R(π⋆)−R(π)

)
−
(
R̂t(π⋆)− R̂t(π)

)

≤
(
Vt(π) + Vt(π⋆)

)
µm−1 +

2dt
tµm−1

. (18)

Above, the first inequality follows from the optimality of πt. By Lemma 12, there exist epochs i, j < m
such that

Vt(π) ≤ θ1K +
R̂egτi(π)

θ2µi
· 1{µi < 1/(2K)},

Vt(π⋆) ≤ θ1K +
R̂egτj (π⋆)

θ2µj
· 1{µj < 1/(2K)}.

Suppose µi < 1/(2K), so m0 ≤ i < m: in this case, the inductive hypothesis implies

R̂egτi(π)

θ2µi
≤ 2Reg(π) + c0Kµi

θ2µi
≤ c0K

θ2
+

2Reg(π)

θ2µm−1

where the second inequality uses the fact that i ≤ m− 1. Therefore,

Vt(π)µm−1 ≤
(
θ1 +

c0
θ2

)
Kµm−1 +

2

θ2
Reg(π). (19)

Now suppose µj < 1/(2K), so m0 ≤ j < m: as above, the inductive hypothesis implies

R̂egτj (π⋆)

θ2µj
≤ 2Reg(π⋆) + c0Kµj

θ2µj
=
c0
θ2
K

since Reg(π⋆) = 0. Therefore,

Vt(π⋆)µm−1 ≤
(
θ1 +

c0
θ2

)
Kµm−1. (20)

Combining Eq. (18), Eq. (19), and Eq. (20), and rearranging gives

Reg(π) ≤ 1

1− 2
θ2

(
R̂egt(π) + 2

(
θ1 +

c0
θ2

)
Kµm−1 +

2dt
tµm−1

)
.

Sincem ≥ m0+1, it follows that µm−1 ≤ ρµm by definition of ρ. Moreover, since t > τm−1, (dt/t)/µm−1 ≤
Kµ2

m−1/µm−1 ≤ ρKµm Applying these inequalities to the above display, and simplifying, yields Eq. (17)
because c0 ≥ 4ρ(1 + θ1) and θ2 ≥ 8ρ.

We now show that
R̂egt(π) ≤ 2Reg(π) + c0Kµm (21)

for all π ∈ Π. Again, fix an arbitrary π ∈ Π, and by Eq. (14),

R̂egt(π)− Reg(π) =
(
R̂t(πt)− R̂t(π)

)
−
(
R(π⋆)−R(π)

)

≤
(
R̂t(πt)− R̂t(π)

)
−
(
R(πt)−R(π)

)

≤
(
Vt(π) + Vt(πt)

)
µm−1 +

2dt
tµm−1

(22)
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where the first inequality follows from the optimality of π⋆. By Lemma 12, there exists an epoch j < m
such

Vt(πt) ≤ θ1K +
R̂egτj (πt)

θ2µj
· 1{µj < 1/(2K)}.

Suppose µj < 1/(2K), so m0 ≤ j < m: in this case the inductive hypothesis and Eq. (17) imply

R̂egτj (πt)

θ2µj
≤ 2Reg(πt) + c0Kµj

θ2µj
≤

2
(
2R̂egt(πt) + c0Kµm

)
+ c0Kµj

θ2µj
=

3c0
θ2
K

(the last equality follows because R̂egt(πt) = 0). Thus

Vt(πt)µτ(t)−1 ≤
(
θ1 +

3c0
θ2

)
Kµm−1. (23)

Combining Eq. (22), Eq. (23), and Eq. (19) gives

R̂egt(π) ≤
(
1 +

2

θ2

)
Reg(π) +

(
2θ1 +

4c0
θ2

)
Kµm−1 +

2dt
tµm−1

.

Again, applying the inequalities µm−1 ≤ ρµm and (dt/t)/µm−1 ≤ Kµm to the above display, and simpli-
fying, yields Eq. (21) because c0 ≥ 4ρ(1 + θ1) and θ2 ≥ 8ρ. This completes the inductive step, and thus
proves the overall claim.

The next lemma shows that the “low estimated regret guarantee” of Qt−1 (optimization constraint

Eq. (15)) also implies a “low regret guarantee”, via the comparison of R̂egt(·) to Reg(·) from Lemma 13.

Lemma 14. Assume event E holds. For every epoch m ∈ N,
∑

π∈Π

Q̃m−1(π)Reg(π) ≤ (4ψ + c0)Kµm−1

where c0 is defined in Lemma 13.

Proof. Fix any epoch m ∈ N. If m ≤ m0, then µm−1 = 1/(2K), in which case the claim is trivial.
Therefore assume m ≥ m0 + 1. Then

∑

π∈Π

Q̃m−1(π)Reg(π) ≤
∑

π∈Π

Q̃m−1(π)
(
2R̂egτm−1

(π) + c0Kµm−1

)

=

(
2
∑

π∈Π

Qm−1(π)R̂egτm−1
(π)

)
+ c0Kµm−1

≤ ψ · 4Kµm−1 + c0Kµm−1.

The first step follows from Lemma 13, as all rounds in an epoch m ≥ m0 + 1 satisfy t ≥ t0; the second
step follows from the fact that Q̃m−1 is a probability distribution, that Q̃m−1 = Qm−1 + α1πτm−1

for

some α ≥ 0, and that R̂egτm−1
(πτm−1) = 0; and the last step follows from the constraint Eq. (15) satisfied

by Qm−1.

Finally, we straightforwardly translate the “low regret guarantee” from Lemma 14 to a bound on the
cumulative regret of the algorithm. This involves summing the bound in Lemma 14 over all rounds t
(Lemma 15 and Lemma 16) and applying a martingale concentration argument (Lemma 17).

Lemma 15. For any T ∈ N,
T∑

t=1

µm(t) ≤ 2

√
dτm(T )

τm(T )

K
.
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Proof. We break the sum over rounds into the epochs, and bound the sum within each epoch:

T∑

t=1

µm(t) ≤
m(T )∑

m=1

τm∑

t=τm−1+1

µm

≤
m(T )∑

m=1

τm∑

t=τm−1+1

√
dτm
Kτm

≤
√
dτm(T )

K

m(T )∑

m=1

τm − τm−1√
τm

≤
√
dτm(T )

K

m(T )∑

m=1

∫ τm

τm−1

dx√
x
=

√
dτm(T )

K

∫ τm(T )

τ0

dx√
x
= 2

√
dτm(T )

K

√
τm(T ).

Above, the first step uses the fact that m(1) = 1 and τm(t)−1 + 1 ≤ t ≤ τm(t). The second step uses
the definition of µm. The third step simplifies the sum over t and uses the bound dτm−1 ≤ dτm(T )

. The
remaining steps use an integral bound which is then directly evaluated (recalling that τ0 = 0).

Lemma 16. For any T ∈ N,

T∑

t=1

µm(t)−1 ≤ τm0

2K
+

√
8dτm(T)

τm(T )

K
.

Proof. Under the epoch schedule condition τm+1 ≤ 2τm, we have µm(t)−1 ≤
√
2µm(t) whenever m(t) >

m0; also, µm(t)−1 ≤ 1/(2K) whenever m(t) ≤ m0. The conclusion follows by applying Lemma 15.

Lemma 17. For any T ∈ N, with probability at least 1− δ, the regret after T rounds is at most

C0

(
4Kdτm0−1 +

√
8Kdτm(T)

τm(T )

)
+
√
8 log(2/δ)

where C0 := (4ψ + c0) and c0 is defined in Lemma 13.

Proof. Fix T ∈ N. For each round t ∈ N, let Zt := rt(π⋆(xt))− rt(at)−
∑

π∈Π Q̃m(t)−1Reg(π). Since

E[rt(π⋆(xt))− rt(at)|Ht−1] = R(π⋆)−
∑

π∈Π

Q̃m(t)−1(π)R(π) =
∑

π∈Π

Q̃m(t)−1Reg(π),

it follows that E[Zt|Ht−1] = 0. Since |Zt| ≤ 2, it follows by Azuma’s inequality that

T∑

t=1

Zt ≤ 2
√
2T ln(2/δ)

with probability at least 1− δ/2. By Lemma 10, Lemma 11, and a union bound, the event E holds with
probability at least 1 − δ/2. Hence, by another union bound, with probability at least 1 − δ, event E
holds and the regret of the algorithm is bounded by

T∑

t=1

∑

π∈Π

Q̃m(t)−1(π)Reg(π) + 2
√
2 ln(2/δ).

The double summation above is bounded by Lemma 14 and Lemma 16:

T∑

t=1

∑

π∈Π

Q̃m(t)−1(π)Reg(π) ≤ (4ψ + c0)K

T∑

t=1

µm(t)−1 ≤ (4ψ + c0)

(
τm0

2
+
√
8Kdτm(T)

τm(T )

)
.

By the definition of m0, τm0−1 ≤ 4Kdτm0−1 . Since τm0 ≤ 2τm0−1 by assumption, it follows that τm0 ≤
8Kdτm0−1 .
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Theorem 2 follows from Lemma 17 and the fact that τm(T ) ≤ 2(T − 1) whenever τm(T )−1 ≥ 1.
There is one last result implied by Lemma 12 and Lemma 13 that is used elsewhere.

Lemma 18. Assume event E holds, and t is such that dτm(t)−1
/τm(t)−1 ≤ 1/(4K). Then

R̂t(πt) ≤ R(π⋆) +

(
θ1 +

c0
θ2

+ c0 + 1

)
Kµm(t)−1.

Proof. Let m′ < m(t) achieve the max in the definition of Vt(π⋆). If µm′ < 1/(2K), then m′ ≥ m0, and

Vt(π⋆) ≤ θ1K +
R̂egτm′

(π⋆)

θ2µm′

≤ θ1K +
2Reg(π⋆) + c0Kµm′

θ2µm′

= cK

for c := θ1 + c0/θ2. Above, the second inequality follows by Lemma 13. If µm′ = 1/(2K), then the same
bound also holds. Using this bound, we obtain from Eq. (14),

R̂t(π⋆)−R(π⋆) ≤ cKµm(t)−1 +
dt

tµm(t)−1
.

To conclude,

R̂t(πτm) = R(π⋆) +
(
R̂t(π⋆)−R(π⋆)

)
+ R̂egt(π⋆)

≤ R(π⋆) + cKµm(t)−1 +
dt

tµm(t)−1
+ R̂egt(π⋆)

≤ R(π⋆) + cKµm(t)−1 +
dt

tµm(t)−1
+ c0Kµm(t)

where the last inequality follows from Lemma 13. The claim follows because dt/t ≤ dτm(t)−1
/τm(t)−1 and

µm(t) ≤ µm(t)−1.

D Details of Optimization Analysis

D.1 Proof of Lemma 5

Following the execution of step 4, we must have

∑

π

Q(π)(2K + bπ) ≤ 2K. (24)

This is because, if the condition in step 7 does not hold, then Eq. (24) is already true. Otherwise, Q is
replaced by Q′ = cQ, and for this set of weights, Eq. (24) in fact holds with equality. Note that, since all
quantities are nonnegative, Eq. (24) immediately implies both Eq. (2), and that

∑
π Q(π) ≤ 1.

Furthermore, at the point where the algorithm halts at step 10, it must be that for all policies π,
Dπ(Q) ≤ 0. However, unraveling definitions, we can see that this is exactly equivalent to Eq. (3).

D.2 Proof of Lemma 6

Consider the function
g(c) = B0Φm(cQ),
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where, in this proof, B0 = 2K/(τµ). Let Qµc (a|x) = (1 −Kµ)cQ(a|x) + µ. By the chain rule, the first
derivative of g is:

g′(c) = B0

∑

π

Q(π)
∂G(cQ)

∂Q(π)

=
∑

π

Q(π)

(
(2K + bπ)− 2Êx∼Ht

[
1

Qµc (π(x)|x)

])
(25)

To handle the second term, note that

∑

π

Q(π)Êx∼Ht

[
1

Qµc (π(x)|x)

]
=

∑

π

Q(π)Êx∼Ht

[∑

a∈A

1{π(x) = a}
Qµc (a|x)

]

= Êx∼Ht

[∑

a∈A

∑

π

Q(π)1{π(x) = a}
Qµc (a|x)

]

= Êx∼Ht

[∑

a∈A

Q(a|x)
Qµc (a|x)

]

=
1

c
Êx∼Ht

[∑

a∈A

cQ(a|x)
(1−Kµ)cQ(a|x) + µ

]
≤ K

c
. (26)

To see the inequality in Eq. (26), let us fix x and define qa = cQ(a|x). Then ∑a qa = c
∑

πQ(π) ≤ 1 by
Eq. (4). Further, the expression inside the expectation in Eq. (26) is equal to

∑

a

qa
(1−Kµ)qa + µ

= K · 1

K

∑

a

1

(1−Kµ) + µ/qa

≤ K · 1

(1−Kµ) +Kµ/
∑
a qa

(27)

≤ K · 1

(1−Kµ) +Kµ
= K. (28)

Eq. (27) uses Jensen’s inequality, combined with the fact that the function 1/(1−Kµ+ µ/x) is concave
(as a function of x). Eq. (28) uses the fact that the function 1/(1−Kµ+Kµ/x) is nondecreasing (in x),
and that the qa’s sum to at most 1.

Thus, plugging Eq. (26) into Eq. (25) yields

g′(c) ≥
∑

π

Q(π)(2K + bπ)−
2K

c
= 0

by our definition of c. Since g is convex, this means that g is nondecreasing for all values exceeding c. In
particular, since c < 1, this gives

B0Φm(Q) = g(1) ≥ g(c) = B0Φm(cQ),

implying the lemma since B0 > 0.

D.3 Proof of Lemma 7

We first compute the change in potential for general α. Note that Q′µ(a|x) = Qµ(a|x) if a 6= π(x), and
otherwise

Q′µ(π(x)|x) = Qµ(π(x)|x) + (1−Kµ)α.
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Thus, most of the terms defining Φm(Q) are left unchanged by the update. In particular, by a direct
calculation:

2K

τµ
(Φm(Q)− Φm(Q′)) =

2

1−Kµ
Êx∼Ht

[
ln

(
1 +

α(1−Kµ)

Qµ(π(x)|x)

)]
− α(2K + bπ)

≥ 2

1−Kµ
Êx∼Ht

[
α(1 −Kµ)

Qµ(π(x)|x) − 1

2

(
α(1−Kµ)

Qµ(π(x)|x)

)2
]

−α(2K + bπ) (29)

= 2αVπ(Q)− (1−Kµ)α2Sπ(Q)− α(2K + bπ)

= α(Vπ(Q) +Dπ(Q))− (1−Kµ)α2Sπ(Q) (30)

=
(Vπ(Q) +Dπ(Q))2

4(1−Kµ)Sπ(Q)
. (31)

Eq. (29) uses the bound ln(1+x) ≥ x−x2/2 which holds for x ≥ 0 (by Taylor’s theorem). Eq. (31) holds
by our choice of α = απ(Q), which was chosen to maximize Eq. (30). By assumption, Dπ(Q) > 0, which
implies Vπ(Q) > 2K. Further, since Qµ(a|x) ≥ µ always, we have

Sπ(Q) = Êx∼Ht

[
1

Qµ(π(x) | x)2
]

≤ 1

µ
· Êx∼Ht

[
1

Qµ(π(x) | x)

]
=
Vπ(Q)

µ
.

Thus,

(Vπ(Q) +Dπ(Q))2

Sπ(Q)
≥ Vπ(Q)

2

Sπ(Q)
= Vπ(Q) · Vπ(Q)

Sπ(Q)
≥ 2Kµ.

Plugging into Eq. (31) completes the lemma.

D.4 Proof of Lemma 8

We break the potential of Eq. (6) into pieces and bound the total change in each separately. Specifically,
by straightforward algebra, we can write

Φm(Q) = φam(Q) + φbm + φcm(Q) + φdm(Q)

where

φam(Q) =
τmµm

K(1−Kµm)
Êx∼Ht

[
−
∑

a

lnQµ(a|x)
]

φbm =
τmµm lnK

1−Kµm

φcm(Q) = τmµm

(∑

π

Q(π)− 1

)

φdm(Q) =
τmµm
2K

∑

π

Q(π)bπ.

We assume throughout that
∑

π Q(π) ≤ 1 as will always be the case for the vectors produced by
Algorithm 2. For such a vector Q,

φcm+1(Q)− φcm(Q) = (τm+1µm+1 − τmµm)

(∑

π

Q(π)− 1

)
≤ 0
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since τmµm is nondecreasing. This means we can essentially disregard the change in this term.
Also, note that φbm does not depend on Q. Therefore, for this term, we get a telescoping sum:

M∑

m=1

(φbm+1 − φbm) = φbM+1 − φb1 ≤ φbM+1 ≤ 2

√
TdT
K

lnK

since KµM+1 ≤ 1/2, and where dT , used in the definition of µm, is defined in Eq. (12).
Next, we tackle φam:

Lemma 19.
M∑

m=1

(φam+1(Qm)− φam(Qm)) ≤ 6

√
TdT
K

ln(1/µM+1).

Proof. For the purposes of this proof, let

Cm =
µm

1−Kµm
.

Then we can write

φam(Q) = −Cm
K

τm∑

t=1

∑

a

lnQµm(a|xt).

Note that Cm ≥ Cm+1 since µm ≥ µm+1. Thus,

φam+1(Q)− φam(Q) ≤ Cm+1

K

[ τm∑

t=1

∑

a

lnQµm(a|xt)

−
τm+1∑

t=1

∑

a

lnQµm+1(a|xt)
]

=
Cm+1

K

[ τm∑

t=1

∑

a

ln

(
Qµm(a|xt)
Qµm+1(a|xt)

)

−
τm+1∑

t=τm+1

∑

a

lnQµm+1(a|xt).
]

≤ Cm+1[τm ln(µm/µm+1)− (τm+1 − τm) lnµm+1]. (32)

Eq. (32) uses Qµm+1(a|x) ≥ µm+1, and also

Qµm(a|x)
Qµm+1(a|x) =

(1 −Kµm)Q(a|x) + µm
(1 −Kµm+1)Q(a|x) + µm+1

≤ µm
µm+1

.

A sum over the two terms appearing in Eq. (32) can now be bounded separately. Starting with the
one on the left, since τm < τm+1 ≤ T and Kµm ≤ 1/2, we have

Cm+1τm ≤ 2τmµm+1 ≤ 2τm+1µm+1 ≤ 2

√
TdT
K

.

Thus,

M∑

m=1

Cm+1τm ln(µm/µm+1) ≤ 2

√
TdT
K

M∑

m=1

ln(µm/µm+1)

= 2

√
TdT
K

ln(µ1/µM+1))

≤ 2

√
TdT
K

(− ln(µM+1)). (33)
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For the second term in Eq. (32), using µm+1 ≥ µM+1 for m ≤M , and definition of Cm, we have

M∑

m=1

−Cm+1(τm+1 − τm) lnµm+1 ≤ −2(lnµM+1)

M∑

m=1

(τm+1 − τm)µm+1

≤ −2(lnµM+1)

T∑

t=1

µm(t)

≤ −4

√
TdT
K

(lnµM+1) (34)

by Lemma 15. Combining Eqs. (32), (33) and (34) gives the statement of the lemma.
Finally, we come to φdm(Q), which, by definition of bπ, can be rewritten as

φdm(Q) = B1τm
∑

π

Q(π)R̂egτm(π)

whereB1 = 1/(2Kψ) and ψ is the same as appears in optimization problem (OP). Note that, conveniently,

τmR̂egτm(π) = Ŝm(πm)− Ŝm(π),

where Ŝm(π) is the cumulative empirical importance-weighted reward through round τm:

Ŝm(π) =

τm∑

t=1

r̂t(π(xt)) = τmR̂τm(π).

From the definition of Q̃, we have that

φdm(Q̃) = φdm(Q)

+B1

(
1−

∑

π

Q(π)

)
τmR̂egτm(πm)

= φdm(Q)

since R̂egτm(πm) = 0. And by a similar computation, φdm+1(Q̃) ≥ φdm+1(Q) since R̂egτm+1
(π) is always

nonnegative.
Therefore,

φdm+1(Qm)− φdm(Qm) ≤ φdm+1(Q̃m)− φdm(Q̃m)

= B1

∑

π

Q̃m(π)

[(
Ŝm+1(πm+1)− Ŝm+1(π)

)
−
(
Ŝm(πm)− Ŝm(π)

)]

= B1

(
Ŝm+1(πm+1)− Ŝm(πm)

)

−B1

(
τm+1∑

t=τm+1

∑

π

Q̃m(π)r̂t(π(xt))

)
. (35)

We separately bound the two parenthesized expressions in Eq. (35) when summed over all epochs.
Beginning with the first one, we have

M∑

m=1

(
Ŝm+1(πm+1)− Ŝm(πm)

)
= ŜM+1(πM+1)− Ŝ1(π1) ≤ ŜM+1(πM+1).
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But by Lemma 18 (and under the same assumptions),

ŜM+1(πM+1) = τM+1R̂τM+1(πM+1)

≤ τM+1(R(π⋆) +D0KµM )

≤ τM+1R(π⋆) +D0

√
KTdT ,

where D0 is the constant appearing in Lemma 18.
For the second parenthesized expression of Eq. (35), let us define random variables

Zt =
∑

π

Q̃τ(t)(π)r̂t(π(xt)).

Note that Zt is nonnegative, and if m = τ(t), then

Zt =
∑

π

Q̃m(π)r̂t(π(xt))

=
∑

a

Q̃m(a|xt)r̂t(a)

=
∑

a

Q̃m(a|xt)
rt(a)1{a = at}
Q̃µm(a|xt)

≤ rt(at)

1−Kµm
≤ 2

since Q̃µm(a|x) ≥ (1 − Kµm)Q̃m(a|x), and since rt(at) ≤ 1 and Kµm ≤ 1/2. Therefore, by Azuma’s
inequality, with probability at least 1− δ,

τM+1∑

t=1

Zt ≥
τM+1∑

t=1

E[Zt|Ht−1]−
√
2τM+1 ln(1/δ).

The expectation that appears here can be computed to be

E[Zt|Ht−1] =
∑

π

Q̃m(π)R(π)

so

R(π⋆)− E[Zt|Ht−1] =
∑

π

Q̃m(π)(R(π⋆)−R(π))

=
∑

π

Q̃m(π)Reg(π)

≤ (4ψ + c0)Kµm

by Lemma 14 (under the same assumptions, and using the same constants). Thus, with high probability,

τM+1∑

t=1

(R(π⋆)− Zt) ≤ (4ψ + c0)K

τM+1∑

t=1

µm(t) +
√
2τM+1 ln(1/δ)

≤ (4ψ + c0)
√
8KTdT +

√
2T ln(1/δ)

by Lemma 16.
Putting these together, and applying the union bound, we find that with probability at least 1− 2δ,

for all T (and corresponding M),

M∑

m=1

(φdm(Qm)− φdm+1(Qm)) ≤ O

(√
T

K
ln(T/δ)

)
.

Combining the bounds on the separate pieces, we get the bound stated in the lemma.
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E Proof of Theorem 4

Recall the earlier definition of the low-variance distribution set

Qm = {Q ∈ ∆Π : Q satisfies Eq. (3) in round τm}.

Fix δ ∈ (0, 1) and the epoch sequence, and assume M is large enough so µm =
√
ln(16τ2m|Π|/δ)/τm for

all m ∈ N with τm ≥ τM/2. The low-variance constraint Eq. (3) gives, in round t = τm,

Êx∼Ht

[
1

Qµm(π(x)|x)

]
≤ 2K +

R̂egτm(π)

ψµm
, ∀π ∈ Π.

Below, we use a policy class Π where every policy π ∈ Π has no regret (Reg(π) = 0), in which case
Lemma 13 implies

Êx∼Ht

[
1

Qµm(π(x)|x)

]
≤ 2K +

c0Kµm
ψµm

= K

(
2 +

c0
ψ

)
, ∀π ∈ Π.

Applying Lemma 10 (and using our choice of µm) gives the following constraints: with probability at
least 1− δ, for all m ∈ N with τm ≥ τM/2, for all π ∈ Π,

Ex∼DX

[
1

Q̃µm(π(x)|x)

]
≤ 81.3K + 6.4K

(
2 +

c0
ψ

)
=: cK (36)

(to make Q into a probability distribution Q̃, the leftover mass can be put on any policy, say, already in
the support of Q). That is, with high probability, for every relevant epoch m, every Q ∈ Qm satisfies
Eq. (36) for all π ∈ Π.

Next, we construct an instance with the property that these inequalities cannot be satisfied by a very
sparse Q. An instance is drawn uniformly at random from N different contexts denoted as {1, 2, . . . , N}
(where we set, with foresight, N := 1/(2

√
2cKµM )). The reward structure in the problem will be

extremely simple, with action K always obtaining a reward of 1, while all the other actions obtain a
reward of 0, independent of the context. The distribution D will be uniform over the contexts (with these
deterministic rewards). Our policy set Π will consist of (K−1)N separate policies, indexed by 1 ≤ i ≤ N
and 1 ≤ j ≤ K − 1. Policy πij has the property that

πij(x) =

{
j if x = i,

K otherwise.

In words, policy πij takes action j on context i, and action K on all other contexts. Given the uniform
distribution over contexts and our reward structure, each policy obtains an identical reward

R(π) =

(
1− 1

N

)
· 1 + 1

N
· 0 = 1− 1

N
.

In particular, each policy has a zero expected regret as required.
Finally, observe that on context i, πij is the unique policy taking action j. Hence we have that

Q̃(j|i) = Q̃(πij) and Q̃
µm(j|i) = (1−Kµm)Q̃(πij) +µm. Now, let us consider the constraint Eq. (36) for

the policy πij . The left-hand side of this constraint can be simplified as

Ex∼DX

[
1

Q̃µm(π(x)|x)

]
=

1

N

N∑

x=1

1

Q̃µm(πij(x)|x)

=
1

N

∑

x 6=i

1

Q̃µm(πij(x)|x)
+

1

N
· 1

Q̃µm(j|i)

≥ 1

N
· 1

Q̃µm(j|i)
.
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If the distribution Q̃ does not put any support on the policy πij , then Q̃
µm(j|i) = µm, and thus

Ex∼DX

[
1

Q̃µm(π(x)|x)

]
≥ 1

N
· 1

Q̃µm(j|i)
=

1

Nµm
≥ 1√

2NµM
> cK

(since N < 1/(
√
2cKµM )). Such a distribution Q̃ violates Eq. (36), which means that every Q ∈ Qm

must have Q̃(πij) > 0. Since this is true for each policy πij , we see that every Q ∈ Qm has

|supp(Q)| ≥ (K − 1)N =
K − 1

2
√
2cKµM

= Ω

(√
KτM

ln(τM |Π|/δ)

)

which completes the proof.

F Online Cover algorithm

This section describes the pseudocode of the precise algorithm use in our experiments. The minimum
exploration probability µ was set as 0.05 min(1/K, 1/

√
tK) for our evaluation.

Algorithm 5 Online Cover

input Cover size n, minimum sampling probability µ.
1: Initialize online cost-sensitive minimization oracles O1, O2, . . . , On, each of which controls a policy
π(1), π(2), . . . , π(n); U := uniform probability distribution over these policies.

2: for round t = 1, 2, . . . do
3: Observe context xt ∈ X .
4: (at, pt(at)) := Sample(xt, U, ∅, µ).
5: Select action at and observe reward rt(at) ∈ [0, 1].
6: for each i = 1, 2, . . . , n do

7: Qi := (i − 1)−1
∑

j<i 1π(j)
.

8: pi(a) := Qµ(a|xt).
9: Create cost-sensitive example (xt, c) where c(a) = 1− rt(at)

pt(at)
1{a = at} − µ

pi(a)
.

10: Update π(i) = Oi(x, c)
11: end for

12: end for

Two additional details are important in step 9:

1. We pass a cost vector rather than a reward vector to the oracle since we have a loss minimization
rather than a reward maximization oracle.

2. We actually used a doubly robust estimate Dud́ık et al. (2011b) with a linear reward function that
was trained in an online fashion.
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