
Online Submission ID: 098

Layout Design for Augmented Reality Applications

Figure 1: Designing an immersive augmented reality (AR) application such as a dynamic racing game is difficult. In our framework (a)
declarative rules are used to define game objects and the rules governing them (b) in real-time we analyze an environment to extract scene
geometry and horizontal and vertical planes (c) our exponential move-making algorithm targets the application to the room (d) an additional
result of our system in a different room with a much longer track length.

Abstract1

Creating a layout for an augmented reality (AR) application which2

embeds virtual objects in a physical environment is difficult as it3

must adapt to any physical space. We propose a rule-based frame-4

work for generating object layouts for AR applications. We present5

an algorithm for dynamically targeting the AR application to a new6

environment in real time by solving a constraint-satisfaction problem.7

Under our framework, the developer of an AR application specifies8

a set of cost functions (rules) which enforce self-consistency (rules9

regarding the inter-relationships of application components) and10

scene-consistency (application components are consistent with the11

physical environment they are placed in). Our method is general12

and can be applied to any rule-based layout design problems. We13

represent layout rules using hyper-graphs where nodes in the graph14

represent objects and hyper-edges between nodes represent the rules15

that operate on objects.16

Given an environment, we create a layout for an application using17

a novel solution-space exploration algorithm. Our method exploits18

the fact that for many types of rules, satisfiable assignments can be19

found efficiently, in other words, these rules are locally satisfiable.20

This allows us to sample candidate object values from the known21

partial probability distribution function for each rule. Experimental22

results demonstrate that this sampling technique reduces the number23

of samples required by other algorithms by orders of magnitude24

enabling us to find rule-consistent augmentations for the scene. We25

demonstrate several augmented reality applications, which auto-26

matically adapt to different rooms and changing circumstances in27

each room. Our adaptive search algorithm is general and can be28

used for many other applications such as automatic furniture layout,29

populating virtual worlds and 2D graphic design.30

CR Categories: F.4.1 [Mathematical Logic]: Logic and Con-31

straint Programming— [G.3]: Probability and Statistics—Markov32

Processes;33

Keywords: weighted constraint optimization, layout synthesis,34

augmented reality35

1 Introduction36

Augmented reality is a growing trends both on mobile platforms,37

as well as on emerging wearable computing platforms. Yet, AR38

systems have struggled to make the transition from laboratory to the39

real world. A particular hindrance to the successful deployment of40

AR systems is the complex and variant nature of reality. AR apps41

must work in any environment the user finds herself in. Therefore,42

the layout of the different elements comprising the AR application43

must be consistent with the environment. A particular issue that44

makes this task challenging is the fact that layout of virtual objects45

must be both self-consistent, i.e. consistent with the placement of46

other virtual objects, as well as scene-consistent, i.e. consistent47

with the geometry of the physical environment they are placed in.48

For example an application might require that two game objects be49

placed within two feet of each other (self-consistent) but also they50

be placed on an elevated horizontal surface (scene-consistent).51

We describe FLARE (Fast Layout for Augmented Reality), a system52

which enables targeting AR applications to a variety of environments.53

An AR application is designed using declarative rules, describing54

the correct mapping of the application to an environment.55

We capture the user’s current environment using a Kinect camera56

(rgb and depth streams), and process it using Kinect Fusion [New-57

combe et al. 2011] to extract dense scene geometry. We further58

process the scene to detect planar surfaces in the room and label59

them as vertical (e.g. walls) or horizontal (e.g. floor, table). Pla-60

nar features are common in indoor scenes and are useful to many61

applications. Adding additional detectors (e.g. object detection,62

recognizing previously visited rooms) can enable more complex63

rules and applications. FLARE performs a real-time mapping of the64

application to the user’s current environment, by applying the rules65

to the application objects, and the geometric info extracted from the66

scene.67

Using the declarative rules, we formulate virtual object placement68

as a weighted constraint-satisfaction problem. Our formulation69

incorporates both low-order and high-order interactions between70

design elements. Low-order rules are defined over one or two design71

elements. For example a rule that states that an object must be72

placed on a vertical surface (such as a wall). On the other hand,73

high-order interactions are defined over large number of design74

elements and can capture higher-order relationships between objects75

like co-linearity, co-planarity, equidistant, that are important for76

effectively augmenting the real scene with virtual objects. Note that77

this approach extends easily to optimizing other object properties78

such as material (color, texture).79

We represent the rules that need to be satisfied by the objects using80

hyper-graphs where nodes in the graph represent objects and hyper-81

edges between nodes represent the rules that operate on objects.82

1

Online Submission ID: 098

Computation of the optimal solution under a given hyper-graph83

requires minimization of a non-convex function, which in general, is84

infeasible. A number of approximate methods have been proposed85

in the literature but even they are computationally expensive for86

graphs with arbitrary higher-order relationship (hyper-edges).87

At the core of our system is an algorithm which takes as input a set88

of rules, and encodes the resulting hyper-graph in a simple graph89

in which each node represents an object (and its properties) or an90

auxiliary node (used to represent complex relationships). The rules91

define cost functions on the nodes and edges of the graph. The92

algorithm, in each iteration, generates candidate values for each93

object, and evaluates them simultaneously to find the approximate94

best layout (given the current set of candidates). The key idea that95

drives our algorithm is an observation that for many types of rules,96

satisfiable assignments can be found efficiently. In other words,97

these rules are locally (individually) satisfiable i.e. we can generate98

proposals for objects that locally satisfy individual rules and reduce99

the need for blind sampling.100

Experimental results demonstrate that our locally consistent sam-101

pling technique is very efficient and requires substantially fewer102

number of samples compared to other algorithms. Apart from the103

AR motivated object placement in 3D scenes problem, we also show104

the applicability of our approach to furniture arrangement (com-105

paring to previous work) and both geometric and photometric 2D106

targeting problems (in supplemental material).107

Our contributions are (1) FLARE, a general framework for designing108

the layout of an AR application (2) a quick-converging algorithm for109

finding an optimal layout, geared towards low-powered computing110

devices.111

The rest of the paper is organized as follows, in section 2 we discuss112

related work. In section 3 we provide a formalization for the layout113

design problem and describe how rules operating on objects can be114

represented using graphs. In section 4 we describe our method for115

generating compact mathematical descriptions of design rules and116

our algorithm for computing the optimal layout. In section 5 we117

provide details of the experimental evaluation and show qualitative118

and quantitative results. We conclude in section 6 by listing some119

observations regarding our framework and discussing directions for120

future work.121

2 Related Work122

Mapping AR to the real world Augmented reality [Azuma et al.123

2001; Carmigniani et al. 2011], in general, should work in a large124

range of environments. Different approaches were used in the past125

starting with simply ignoring the structure of the world. Mobile AR126

application such as [Layar 2013; Wikitude 2013] use the location of127

the user and the orientation of the mobile device to add a 2D over-128

lay over the user’s view. For location-specific apps, the geometry129

of a site can be computed in advance, for example archaeological130

sites [Architip 2013], Museums [Margriet Schavemaker and Pon-131

daag 2011], manufacturing floor [Ong and (Eds.) 2004], projection132

mapping [Grasset et al. 2003]. In recent years many augmented133

reality apps and games, were designed for a simple planar world on134

which the augmented content resides. The world plane is attached135

to a known pattern, found on a magazine ad or a packaging of a136

product [Layar 2013; Junayo 2013]. Recent works [Newcombe et al.137

2011; Jones et al. 2013] used the recovered 3D geometry of the138

scene to demonstrate some physical simulation examples.139

Layout Synthesis The availability of 3D models of physical140

spaces has inspired a large amount of work on generating layouts.141

In [Yu et al. 2011; Merrell et al. 2011] a set of rules and spatial142

relationships for optimal furniture positioning are established from143

examples and expert-based design guidelines. These rules are then144

enforced as constraints to generate furniture layout in a new room.145

[Yu et al. 2011] employed a simulated annealing method which is ef-146

fective but takes several minutes, while [Merrell et al. 2011] sample147

a density function using the Metropolis-Hastings algorithm imple-148

mented on a GPU. They evaluate a large number of assignments149

and achieve interactive rates (requiring a strong GPU). Both papers150

work with a small number of objects in relatively small rooms and151

in static scenarios. [Fisher et al. 2012] showed how arrangements152

of 3D objects can be found using a data-driven example based ap-153

proach. [Yeh et al. 2012] populate a scene with a variable number154

of objects (open universe). They present a probabilistic inference155

algorithm extending simulated annealing with local steps, however156

the computation cost is high and the procedure takes upwards of 30157

minutes.158

Constraint Satisfaction for Design The problem of rule based159

design generation has a long history. Design and layout synthesis160

consist of rules referencing a set of objects. An assignment to each161

object can be measured by how well the rules are met, whether they162

are satisfied or violated. As an example of an early work in this163

space, the Ultraviolet [Borning and Freeman-Benson 1998] system164

used a constraint satisfaction algorithm framework for interactive165

graphics. The constraints for user interface layout usually form a166

non-cyclic graph, are hierarchical in nature and container based and167

are therefore less complex.168

Constraint satisfaction problems (CSP) [Mackworth 1977] are funda-169

mental in Artificial Intelligence and Operations Research. A variant170

of the problem, weighted CSP defines a cost function assigned to171

each constraint, and the objective is to minimize the overall cost.172

A large majority of CSP algorithms [Kumar 1992] use a search173

paradigm over a limited set of possible object assignments. More174

recently, [Lin et al. 2013] used rules represented as factor graph to175

perform Pattern Colorizations. These approaches are relatively rigid,176

and do not offer interactive performance. In contrast, our method177

for computing consistent layouts can adapt to the problem at hand178

and is inspired from move making algorithms that have been used179

for image labeling problems.180

Discrete Optimization for Image Labeling In computer vision,181

many tasks such as segmentation of an image can be formulated182

as image labeling problems where each variable (pixel) needs to183

be assigned the label which leads to the most probable (or lowest184

cost/energy) joint labeling of the image. The models for these185

problems are usually specified as factor-graphs in which the factor186

nodes represent the energy potential functions that operate on the187

variables [Kschischang et al. 2001]. In most vision models, the188

energy function is composed of unary and binary terms and the189

interactions between objects are generally limited to variables in a 4190

or 8 neighborhood grid.191

The sparse grid-like structure of the object interactions and the192

limited number of labels allows for fast solution of image label-193

ing problems using techniques such as graph-cuts [Boykov et al.194

2001; Gould et al. 2009; Lempitsky et al. 2010; Szeliski et al. 2006;195

Woodford et al. 2008], belief-propagation [Pearl 1982], and tree196

message-passing [Wainwright et al. 2005; Kolmogorov 2006]. In197

our case rules can be defined over multiple variables, and create198

complex factor graphs which these approaches do not handle well.199

Further, each object typically has a large space of possible configu-200

rations, which increases the complexity in multi-object interactions.201

Furthermore, in all but the simplest scenarios the factor graph con-202

tains cycles that makes the problem NP-hard even if the label space203

for each object is small. Our method, however, can deal with such204

complex factors because of its ability to generate compact encod-205

ings of higher order relations by intelligently exploring the space of206

plausible object placements.207

2

Online Submission ID: 098

3 Layout Design for Augmented Reality Ap-208

plications209

Using FLARE, a designer specifies a rule-set using declarative pro-210

gramming. First objects are defined, each identified by a unique211

name and belonging to one of several predefined classes. An object’s212

class defines its properties which may be initialized to a specific213

value. For each property we can also define a range of acceptable214

values or define it as fixed (not allowed to change in the optimization215

process). For example an object might have geometric properties216

such as position, facing (rotation) and scale, material properties217

(color, specularity), or physical properties (for physical simulations).218

For script examples please see the supplemental material.219

Rules are written using simple algebraic notation and a library of220

predefined routines, either as cost functions or as Boolean conditions221

(in which case we automatically assign a cost function). A rule can222

reference the properties of any of the objects defined, as well as the223

environment. For example when arranging objects in a room the de-224

signer might reference the type of surface on which an object should225

be placed (horizontal, vertical). The number of objects included226

in a rule classify it as unary (one object), binary (two objects) or227

multiple. We call the space of all possible assignments to the object’s228

properties, the layout solution space. We define a cost function229

cost(s) :=
∑
i

ri(ŝi) (1)

where ri : (Oi ⊆ O)→ R is a cost function (rule) operating on a230

subset of the objects, s ∈ S is a specific solution, and ŝi is a slice231

of the solution containing only the objects in Oi. Typically each232

rule applies only to a small subset of the objects. An optimal layout233

for an AR application is one which minimizes the overall cost of its234

rules.235

𝑟2 = 𝑓(𝑜1, 𝑜2, 𝑜3)
𝑟3 = 𝑓(𝑜1, 𝑜2, 𝑜4, 𝑜5)

𝑟1 = 𝑓(𝑜1, 𝑜2)

𝑜3𝑜1 𝑜2 𝑜4 𝑜5

𝑟1 𝑟2

𝑟3

Factor graph

𝑜3

𝑜1 𝑜2 𝑜4 𝑜5
𝑟1

𝑟2

𝑟3

Hyper graph

Figure 2: A design (in this case consisting of three rules over
five objects) can be represented as a Factor Graph, a bipartite
representation connecting object nodes to factor nodes. Alternatively
it can be represented as a hyper-graph in which each node is an
object, and an edge represents common rules between connected
nodes.

3.1 Graph Representation236

A common graph representation for MAP 1 problems is the Factor237

Graph [Yeh et al. 2012] which has two node groups: object nodes238

and factor (rule) nodes. Edges connect factors to the objects they239

reference (Figure 2 left). A factor representing a unary rule will have240

one edge, a binary rule will have two edges and so on. We represent a241

design as a graph G = (V, E). Each object o has an associated node242

vo whose cost function is φ(vo) =
∑
{r|r : {o} → R} (sum of all243

unary rules on object o). We connect an edge e between vo1 and vo2244

1maximum a posteriori probability

𝑟2 = 𝑓(𝑜1, 𝑜2, 𝑜3)

𝑟3 = 𝑓(𝑜1, 𝑜2, 𝑜4, 𝑜5)

𝑜1
𝑜2

𝑜3

𝑟1 = 𝑓(𝑜1, 𝑜2)

𝑜1
𝑜2

𝐴1(𝑜1, 𝑜2)

𝑟1 𝑟1

𝑟2

𝑜3

𝑜1
𝑜2

𝐴1(𝑜1, 𝑜2)

𝑟1

𝑟2

𝑜4 𝑜5

𝐴2(𝑜4, 𝑜5)
𝑟3

1 2

3

Figure 3: We construct a graph for a design incrementally. Rules
which reference more than two objects are transformed into pair-
wise interactions via auxiliary nodes: r1 is a binary rule, r2 is a
ternary rule triggering the creation of A1 which represents a pair of
values (for o1 and o2). r3 involves four variables, in which case we
require two auxiliary nodes (we reuse previously created A1).

if there exists at least one rule associated with these objects. Its cost245

function is ψe =
∑
{r|r : {o1, o2} → R}. Given an assignment to246

all of the objects, the summed cost over the nodes and edges of the247

graph is equal to the design cost (equation 1). Note that a rule may248

refer to more than two objects, and therefore an edge can connect249

more than two nodes, creating a hyper-graph (Figure 2 right).250

4 Application Layout251

An optimal layout is the global minimum in the scalar field defined252

by the design cost function. Finding the optimal layout or even253

a good one is difficult: Rule cost functions may be non-convex,254

rules might be unsatisfiable, for example if they conflict with the255

environment or with themselves, therefore we cannot know the lower256

bound on the cost and it is difficult to specify a stopping criteria. And257

finally, the high-dimensional nature of the space and the assumed258

sparsity of feasible solutions reduce the effectiveness of stochastic259

sampling.260

Similar to [Merrell et al. 2011; Yu et al. 2011] we focus on a dis-261

cretized version of the solution space. Given N objects in the design262

and k possible assignments per object, the size of the solution space263

kN makes performing an exhaustive search prohibitively expensive.264

Previous methods have attempted to sample from the underlying265

probability distribution function, using Metropolis-Hastings [Hast-266

ings 1970] algorithm coupled with concepts from simulated anneal-267

ing. These methods still require a prohibitively large number of268

samples (and of course evaluations of the cost function), therefore269

requiring a long run time or reliance on massively parallel GPU270

implementations [Merrell et al. 2011]. In many applications perfor-271

mance is an issue, and in some platforms such as mobile devices,272

computing is costly. Our approach therefore focused on reducing273

the number of evaluations required to find a feasible solution.274

4.1 Transforming High-order rules into Pairwise Inter-275

actions276

To simplify the graphical representation of the design, we transform277

hyper-edges into pairwise graph interactions by introducing auxiliary278

nodes. We divide the set of objects associated with any hyper-edge e279

into two groups A1 and A2. For each group consisting of more than280

one object, we add an auxiliary node that represents the variables i.e.281

the value assigned to the auxiliary node encodes the value assigned282

to all objects represented by this node. If the group contains only283

one node, then we just use the original object node.284

3

Online Submission ID: 098

The auxiliary node can only takes values in the space of assignments285

that satisfy the rules that operate on the group of variables. Therefore,286

there is zero cost for assigning a particular feasible value to the287

auxiliary node i.e. φ(Ai) = 0 (no unary cost). We connect the two288

group nodes with an edge ê such that ψê = ψe. We then connect289

auxiliary nodes with their associated object nodes. The cost function290

for these edges ψ({o,Ai}) is 0 if the assignment to object omatches291

the assignment to Ai and arbitrarily high otherwise. The addition of292

the auxiliary variables ensures that there are only binary interactions293

between nodes. Formally, this corresponds to a cost function:294

E(x) =
∑
i∈V

φi(xi) +
∑
ij∈E

ψij(xi, xj) (2)

where V and E represents the set of nodes and the set of edges295

between these nodes respectively, xi represents the label taken by a296

particular node, and φi and ψij are functions that encode unary and297

pairwise costs. In the second graph of figure 3 we demonstrate how298

rule r2 that operates on o1, o2 and o3 is represented by introducing299

the auxiliary node A1. The function is then associated with the edge300

between group nodes (A1, o3). Adding r3 reuses A1 while adding301

an additional node A2 and connecting them.302

4.2 Adaptive Layout Space Exploration303

A simple method to find a low-cost solution under the function304

defined in equation 2 is to explore the solution space by local search305

i.e. start from an initial solution and proceed by making a series306

of changes which lead to solutions having lower energy. At each307

step, this move-making [Lempitsky et al. 2010] algorithm explores308

the neighboring solutions and chooses the move which leads to the309

solution having the lowest energy. The algorithm is said to converge310

when no lower energy solution can be found. An example of this311

approach is the Iterated Conditional Modes (ICM) algorithm [Besag312

1986] that at each iteration optimizes the value of a single variable313

keeping all other variables fixed. However, this approach is highly314

inefficient due to the large label space of each variable. Instead we315

could perform a random walk algorithm, in each iteration we select316

a new value for one of the objects and evaluate the cost function.317

Accepting the new configuration with a high probability if the cost318

improves.319

Generating proposals for this algorithm is key to its performance.320

The most straight-forward approach is to sample uniformly over the321

object properties. Another approach is to start with uniform sampling322

(large steps) and over time reduce step size, sampling normally323

around the previous object value. One such algorithm based on324

simulated annealing is parallel tempering [Merrell et al. 2011; Yu325

et al. 2011; Yeh et al. 2012], whose effectiveness relies on a highly-326

parallel GPU setup. In this approach locally sampled moves are327

interspersed with switching values between objects, and optimizing328

in parallel multiple solutions. In scenarios where objects might have329

a large number of properties (high dimensionality of layout space),330

objects might be of different classes (different properties) and a331

highly parallel GPU might not be available, these methods do not332

fare as well (section 5).333

4.3 Exponential-sized Search Neighborhoods334

Using bigger moves (sampling in a larger neighborhood) increases335

the chance of the local search algorithm to reach a good solution.336

This observation has been formalized by [Jung et al. 2009] who337

give bounds on the error of a particular move-making algorithm338

as the size of the search space increases. [Boykov et al. 2001]339

showed that for many classes of energy functions, graph cuts allow340

the computation of the optimal move in a move space whose size341

is exponential in the number of variables in the original function342

minimization problem. These move making algorithms have been343

used to find solutions which are strong local minima of the energy344

(as shown in [Boykov et al. 2001; Komodakis and Tziritas 2005;345

Kohli et al. 2007; Szeliski et al. 2006; Veksler 2007]).346

While traditional move making methods only deal with variables347

with small label sets, their use has recently been extended to minimiz-348

ing functions defined over large or continuous labels spaces [Wood-349

ford et al. 2008; Gould et al. 2009]. An example of this work is the350

Fusion move method [Lempitsky et al. 2010] that in principle allows351

for the minimization of functions defined over continuous variables.352

The fusion-move algorithm starts from an initial labeling of all the353

variables. In every iteration of the algorithm, the algorithm proposes354

a new labeling for all variables. It then chooses for each variable355

whether to retain its previous label or take the new proposed label.356

This binary choice problem is solved for all variables simultaneously357

using graph cuts.358

Our method generalizes the above-mentioned algorithms as, in each359

iteration, instead of proposing a single new labeling for each variable,360

it proposes multiple new proposals for each variable. [Veksler 2007]361

had earlier presented a related range-move algorithm in which partic-362

ular range of labels could be proposed in each iterations. They had363

used this for problems like single channel image denoising where364

ranges of intensity values were proposed for every pixel. However,365

our method differs from this scheme in two specific ways. First,366

instead of proposing particular ranges of labels, our method proposes367

arbitrary set of labels for every variables that are carefully selected368

such that they satisfy all the rules that apply on them. Secondly, our369

method adaptively selects the number of variables included in the370

move. In this way it can smoothly explore the whole spectrum of371

choices between iterated conditional modes on one end (where only372

one variable is selected), and the full multi-proposal fusion move,373

that involves changing the label of all variables.374

Solving a single iteration We formulate the problem of jointly375

selecting the best proposals for all variables that satisfy the most376

rules as a discrete optimization problem. More formally, let Pi =377

{p1i , p2i , ..., pki } be a set of k proposal configurations for variable378

xi. We introduce indicator variables tli, ∀i ∈ V, ∀l ∈ {1...k} where379

tli = 1 indicates that variable xi takes the properties in proposal380

l. Similarly, we introduce binary indicator variables tlrij , ∀ij ∈381

E , ∀l, r ∈ {1...k} where tlrij = 1 indicates that variables xi and xj382

take the position proposed in proposal l and r respectively. Given383

the above notation, the best assignment can be computed by solving384

the following optimization problem:385

min
∑
i∈V

∑
l

tliφi(p
l
i) +

∑
ij∈E

∑
l,r

tlrijψij(p
l
i, p

r
j)

s.t. ∀i,
∑
l

tli = 1

∀i, j, l,
∑
r

tlrij = tli

∀i, j, l, r tli, t
lr
ij ∈ {0, 1}

(3)

The above optimization problem in itself is NP-hard to solve in386

general. Instead, we solve its LP-relaxation and round the fractional387

solution. For this purpose, we could use general purpose linear388

programming solvers. However, we used an implementation of the389

sequential tree re-weighted message passing algorithm (TRW-S)390

[Wainwright et al. 2005; Kolmogorov 2006] that tries to efficiently391

solve the linear program by exploiting the sparse nature of the in-392

teractions between variables. TRW-S guarantees a non-decreasing393

lower bound on the energy, however it makes no assurances regard-394

ing the solution (See [Szeliski et al. 2006] for detailed comparisons).395

4

Online Submission ID: 098

Figure 4: Visualization of the three qualitative evaluation scenarios:
(a) A set of domino tiles set on a curve. Each domino tile is within a
set distance from the next, faces in the same direction and approxi-
mates a straight line (b) A set of objects arranged in a fixed radius
circle around a center object (c) Ten objects such that each one
attempts to approximate the average position of both its neighbors,
and minimize the distance to them.

Therefore our revised algorithm works as follows (algorithm 1):396

Given a design we construct a graph as described in subsection 4.1.397

In each iteration we generate a set of candidates for all objects398

to be optimized (ObjectsToOptimize). In designs with many399

objects (over 20), we optimize a different random subset of ob-400

jects in each iteration to reduce the complexity of the graph.401

In ProposeCandidates we use random sampling and locally-402

satisfiable proposals (section 4.4) in equal proportions to generate k403

candidates for each active object.404

We evaluate the cost of each rule, for the tuples of values associated405

with it. Therefore a unary rule is evaluated k times, a binary rule k2406

times and so on. These costs are transferred to the graph nodes and407

edges as described above. Note that for complex rules, this creates a408

challenging number of evaluations, which can go up to kn (where n409

is the number of objects in the design). We found that by limiting410

the set of candidates for auxiliary nodes to O(k) tuple values did not411

reduce the efficiency of the algorithm, and kept our complexity at412

O(nk2).413

We then attempt to find an improved assignment for our objects,414

based on the populated graph, using TRW-S. In each iteration, given415

that we accept the new solution (based on its cost and temperature416

of the system), we save the new solution and further reduce the tem-417

perature (which also reduces the radius of the sampling radius). We418

repeat for a fixed number of iterations, or until the current accepted419

solution is beneath a minimum cost.420

Algorithm 1 Large Moves

procedure LARGEMOVES(O,R) . Objects, Rules
G← ConstructGraph(O,R)
minSolution← RandomAssignment(O)
minCost← Evaluate(minSolution)
for j ← 1, niters do

A← ObjectsToOptimize(G, currentSolution)
for all oi ∈ A do

Pi ← ProposeCandidates(oi)
end for
for all r ∈ R do

UpdateGraphCosts(G, Evaluate(r, {P1, P2, ...}))
end for
currentSolution← TRWS(G)
cost← Evaluate(currentSolution)
if Accept(cost,minCost) then

minSolution← currentSolution
minCost← cost

end if
end for

end procedure

4.4 Locally Satisfiable Proposals421

The space of possible values (e.g. position, color) of an object is422

very large and it may require an extremely large number of proposals423

to obtain a good assignment [Ishikawa 2009]. We overcome this424

problem by guiding the mechanism through which new proposals425

are generated. For many types of rules, assignments that satisfy426

these rules can be found efficiently. In other words, these rules are427

locally satisfiable. In simple terms, given an assignment to some of428

the objects referenced by r we can generate good proposals for the429

rest, without resorting to blind sampling in the layout solution space.430

Our approach could be seen as performing Gibbs sampling [Casella431

and George 1992], taking advantage of a known partial probability432

function, to sample from the whole solution space. A few examples433

follow434

1. dist(a, b) < 4 is locally satisfiable as given a we generate435

proposals for b within the circle centered around a with radius436

4437

2. collinear(x1, ..xn) is locally satisfiable given assignments to438

two of the objects. As we can sample the rest of the objects on439

the line defined between them.440

3. withinFrustum(a) requires a to be in the camera frustum.441

This is locally satisfiable as generate proposals only from a442

slice of the 3D space.443

4. A constraint on the material properties of two objects,444

complementary(a, b), is locally satisfiable as given the color445

of a, the color of b is easy to calculate.446

When a designer sets rules in our declarative language, he can define447

a rule as locally satisfiable. Each such rule has an ”inverse” function448

which generates proposals for the rule referenced objects, given449

one or more object assignments. We have found that many designs450

contain relatively simple geometric constraints, which are very often451

locally satisfiable.452

A locally satisfiable proposal (LSP) is a candidate for object o which453

was proposed by a locally satisfiable rule r. We generate LSP using454

a greedy strategy. Given the hyper-graph structure of the design,455

we apply a BFS starting from a randomly selected node. As we456

discover new nodes, we generate LSP for them, based on the nodes457

already visited, and the edges by which we discover these nodes. For458

example consider the following rules applied to objects o1, o2, o3, o4459

5

Online Submission ID: 098

dist(o1, o2) = dist(o1, o3) = dist(o1, o4) > 1

in essence a circle of some radius around o1. A greedy LSP gen-460

eration might proceed by selecting o4 and randomly sampling a461

position for it. Then we choose the rule dist(o1, o4) > 1 and select462

a candidate for o1 at a distance of at least 1 from o4. Now given463

positions for o1 and o4, candidates for o2 and o3 are generated on464

the imaginary circle of radius dist(o1, o4). Repeating this algo-465

rithm creates a series of greedy assignments, which we intersperse466

with normal sampling, to produce the full candidate set which we467

evaluate.468

5 Experimental Evaluation469

We attempt to evaluate both the strength of our rule-based design470

framework, as well as the benefits of using locally satisfiable propos-471

als to guide our move making algorithm. In section 5.1 we evaluate472

three constraint sets (design problems), comparing the performance473

of our algorithm to the prevalent standard of parallel tempering. In474

section 5.2 we demonstrate three very different AR apps defined475

using our system, and apply our method to the problem of furniture476

arrangement in comparison to [Merrell et al. 2011]. In the supple-477

mental material with this submission we show a combination of 2D478

design layout and photometric mapping application implemented479

using our system, as further evidence to its wide applicability.480

5.1 Quantitative Evaluation481

We measure the performance and quality of a layout optimization482

algorithm by counting rule evaluations. For example calculating the483

cost of a specific layout for a design is |ri|, the number of rules in the484

design. Previous approaches have counted the number of samples485

the algorithm performs for all objects in all iterations. However,486

this measure favors algorithm which perform an exhaustive search487

over limited combinations of values. Another measure consists488

of counting number of evaluations of complete layouts. However,489

this is not representative of belief-propagation algorithms (such as490

TRW-S) in which partial evaluations are combined together.491

Designs differ in the type and number of rules they contain, and by492

how constrained the solution is. These differences are reflected in493

the underlying graph structure, and in our ability to create locally494

satisfiable proposals. We performed evaluation of our exponential495

move-making algorithm on three designs, with very different graph496

structures. For each design we compared the cost of the solution497

vs. number of evaluations, in comparison to a parallel tempering498

algorithm we simulated on the CPU. In all three designs the rules are499

geometric, and each objects in the design can be assigned position,500

rotation and scale in 2D. For each experiment we ran each algorithm501

30 times and took the median of the results.502

Domino - Thirty tiles arranged in a curve i.e. each tile ti has503

the following rules applied (i) 2 < dist(ti, ti+1) < 5 (ii) 〈ti+1 −504

ti, ti+1.facing〉 ≤ 0.97 (iii) 〈ti+1.facing, ti.facing〉 ≤ 0.9. A505

sample layout can be seen in figure 4(a). The graph is a chain506

structure which is optimally solved by belief propagation algorithms507

such as TRW-S. Moreover, LSP is very successful working on non-508

cyclic graphs as can be seen in figure 5(a).509

Circle - In order to test a highly connected graph with cycles, we510

created a design for nine objects arranged in a circle (with non-fixed511

radius) around a central object. The minimal angle between any512

two objects is at least 25o (example in figure 4(b)). The experiment513

results are in figure 5(b). All rules in this design are ternary, and the514

rules enforcing a minimal angle between all objects create a graph515

with high connectivity. Our algorithm manages to produce good516

LSP and shows an x2 factor over parallel tempering until nearly517

120K evaluations.518

Laplacian Cycle - Finally, to challenge the LSP process, we at-519

tempt to arrange ten objects t1..t10 such that ti = (ti−1 + ti+1)/2520

and d(ti, ti+1) > C. Since the rules wrap around t10 the cost can521

never be 0 and the best possible solution is a least-squares oval struc-522

ture (example in figure 4(c)). In this scenario, where local proposals523

will never lead to a least-squares solution it is evident that we have524

no benefit over parallel tempering. Still, as in every iteration our525

algorithm also performs some random moves, its performance is526

comparable (figure 5(c)).527

5.2 Qualitative Evaluation528

Example Apps In order to demonstrate our design framework529

and layout algorithm we developed several AR apps and games in530

the Unity 3D game engine [Unity3D 2013]. The environments in531

which we layout the apps are real rooms captured using a Kinect532

camera and processed using Kinect Fusion [Newcombe et al. 2011]533

to extract scene geometry. We process the scene geometry to find a534

set of surfaces in the room and label them as vertical or horizontal.535

We implemented our algorithm in a single threaded C# program.536

Angry cannon is a physics-based puzzle game in which a user aims537

a cannon C at brick castles and bomb pillars b1, ...bn, attempting to538

knock them down. The castles and pillars are place around the room,539

within range of the cannon, using existing room features as obstacles.540

The game objects and their properties are the cannon (position,541

rotation), brick castles (position, rotation, number of bricks) and542

bomb pillars (position, rotation, height). The rules are543

1. dist(C, bi) > 4544

2. horizontal(C)545

3. horizontal(bi)546

4. collision(C)547

5. collision(bi)548

AR Racing is a racing game where the race track is dynamically549

created for each new room the player visits. Given a desired track550

length, we create a set of keypoint objects (whose only property is551

position) K = {k1, ...kn}. The rules for each object ki are552

1. dist(ki, ki+1) ∈ [0.5, 1]553

2. lineOfSight(ki, ki+1)554

3. collision(ki, K/ki)555

4. horizontal(ki)556

5. collision(ki)557

where kn+1 ≡ k1 and distances are specified in feet. As the tracks558

grow longer, the keypoints must select different horizontal surfaces559

in order to preserve the minimal distance, creating complex tracks,560

taking advantage of the geometry. In order to render the looped track561

we pass a spline through the keypoints, and on it we place the racing562

cars.563

The Media Library application lets a user browse his collection of564

videos, in any environment. A selection of movies from a database is565

divided into categories, and displayed on several tile poster objects566

p1, ...pn. Each poster has position and facing. Additionally we place567

two video screens V1, V2, meant to hang on the room walls, whose568

position and scale can change. The rules in this application are569

1. horizontal(pi)570

2. vertical(Bi)571

3. inFOV (pi)572

4. inFOV (Vi)573

5. inner(pi.facing, eye) ≤ −0.8574

6. collision(pi)575

7. collision(Bi)576

Sample results for all three applications can be seen in figures 6,7577

and the accompanying video.578

6

Online Submission ID: 098

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1 10 100 1000 10000 100000

Domino - 30 Tiles

LSP Exp. Move

Parallel
Tempering

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 10 100 1000 10000 100000

Circle - 9 Objects around Center

LSP Exp. Move

Parallel Tempering

40

140

240

340

440

540

640

740

840

940

1 10 100 1000 10000 100000

Laplacian - 10 objects

LSP Exp. Move

Parallel Tempering

(a) (b) (c)

Figure 5: Experimental results comparing exponential move LSP to parallel tempering performance. In all three graphs the x axis is log-scale
number of candidate evaluations and y axis is the solution cost. (a) Domino: The chain-like structure of the graph works optimally for our
approach. (b) Circle: A highly connected graph makes it difficult to converge, but still the LSP approach shows much quicker convergence. (c)
Laplacian Cycle: The optimal solution is a least-squares one and mostly our approach degrades to random sampling in this example.

Figure 6: Results from our racing game application, frame pairs showing the AR rendering of the track mid-game, together with the model of
the room.

Furniture Arrangement We recreated the design rules described579

in [Merrell et al. 2011], rewriting them to be locally satisfiable. We580

then used our algorithm to find furniture layout in several room con-581

figurations (figure 8). Our approach produced comparable results582

in 50000 evaluations, compared to 5M − 10M evaluations (extrap-583

olated from figure 7 in their paper). Note that while we produce a584

single feasible solution in each run, they attempt to produce a variety585

of solutions.586

6 Discussion and Future Work587

We presented FLARE, a rule-based design framework for AR appli-588

cations. A designer defines application components as objects with589

layout properties, and a set of rules which help target the application590

to any environment. The environment is represented by a set of591

features is extracted from recovered geometry and the color video592

taken at the scene.593

The richness of the rules is partially dependent on the features ex-594

tracted from the scene. In this paper, we demonstrated using planar595

features as they are common in indoor scenes and were sufficient596

to generate all the examples in the paper. Other environments, such597

as natural scenes, may require other features. In the supplemental598

material we adapt our framework for 2D design, employing saliency599

and color features, as a demonstration of the flexibility of the system.600

At the core of our system is a novel algorithm for rule-based design601

layout problems. Our approach unifies and expands on previously602

proposed local search based methods. We introduced the concept603

of locally satisfiable proposals and demonstrated that their use dra-604

matically reduces the number of evaluations required for finding605

a rule-consistent layout. In cases where LSP fails, our algorithm606

degrades to a random sampling approach.607

All the examples shown in this paper were generated automatically,608

from the geometry reconstruction, to the plane extraction and tar-609

geting the different apps to the environment. However, the mapping610

is not without limitations. It is possible to assign a set of rules that611

will not be satisfied in a given environment. For example, we might612

wish for an object to be positioned on an elevated horizontal surface613

above the floor, which may not exist in a given room. In this case614

the optimal cost function for the design cannot be 0 and the system615

will approach that minimum (e.g. place the object on the floor). In616

designs where the optimal solution would be a least-squares solution,617

our locally-satisfiable proposals do not provide a benefit and our618

algorithm degrades to random sampling.619

In the future we hope to port our algorithm to a massively parallel620

GPU implementation similar to parallel tempering, and adapt it to621

other design problems. We have a strong belief that immersive622

augmented reality will see a surge in research over the next few623

7

Online Submission ID: 098

Figure 7: (top) Results from our angry cannon game. (bottom)
Results from our media library application.

Figure 8: We follow the design rules described in [Merrell et al.
2011] and apply our move-making algorithm to generate these fur-
niture arrangements.

years and hope our system can serve as a basis for other mapping624

algorithms.625

References626

ARCHITIP, 2013. Website. http://architip.mobi.627

AZUMA, R., BAILLOT, Y., BEHRINGER, R., FEINER, S., JULIER, S., AND MACIN-628

TYRE, B. 2001. Recent advances in augmented reality. IEEE Computer Graphics629

and Applications 21, 6 (Nov.), 34–47.630

BESAG, J. 1986. On the statistical analysis of dirty pictures. Journal of the Royal631

Statistical Society. Series B (Methodological), 259–302.632

BORNING, A., AND FREEMAN-BENSON, B. 1998. Ultraviolet: A constraint satisfac-633

tion algorithm for interactive graphics. Constraints 3, 1, 9–32.634

BOYKOV, Y., VEKSLER, O., AND ZABIH, R. 2001. Fast approximate energy mini-635

mization via graph cuts. PAMI 2001.636

CARMIGNIANI, J., FURHT, B., ANISETTI, M., CERAVOLO, P., DAMIANI, E., AND637

IVKOVIC, M. 2011. Augmented reality technologies, systems and applications.638

Multimedia Tools and Applications 51, 1 (Jan.), 341–377.639

CASELLA, G., AND GEORGE, E. I. 1992. Explaining the gibbs sampler. The American640

Statistician 46, 3, 167–174.641

FISHER, M., RITCHIE, D., SAVVA, M., FUNKHOUSER, T., AND HANRAHAN, P.642

2012. Example-based synthesis of 3d object arrangements. In ACM SIGGRAPH643

Asia 2012 papers, SIGGRAPH Asia ’12.644

GOULD, S., AMAT, F., AND KOLLER, D. 2009. Alphabet soup: A framework for645

approximate energy minimization. In CVPR 2009, 903–910.646

GRASSET, R., GASCUEL, J.-D., AND SCHMALSTIEG, D. 2003. Interactive mediated647

reality. In ISMAR 2003.648

HASTINGS, W. K. 1970. Monte carlo sampling methods using markov chains and their649

applications. Biometrika 57, 1, 97–109.650

ISHIKAWA, H. 2009. Higher-order gradient descent by fusion-move graph cut. In ICCV651

2009, 568–574.652

JONES, B. R., BENKO, H., OFEK, E., AND WILSON, A. D. 2013. Illumiroom:653

Peripheral projected illusions for interactive experiences. In CHI 2013.654

JUNAYO, 2013. Website. http://www.junaio.com.655

JUNG, K., KOHLI, P., AND SHAH, D. 2009. Local rules for global map: When do they656

work ? In NIPS, 871–879.657

KOHLI, P., KUMAR, M. P., AND TORR, P. H. S. 2007. P3 & beyond: Solving energies658

with higher order cliques. In CVPR.659

KOLMOGOROV, V. 2006. Convergent tree-reweighted message passing for energy660

minimization. IEEE Trans. Pattern Anal. Mach. Intell. 28, 10 (Oct.), 1568–1583.661

KOMODAKIS, N., AND TZIRITAS, G. 2005. A new framework for approximate662

labeling via graph cuts. In ICCV.663

KSCHISCHANG, F. R., FREY, B. J., AND LOELIGER, H.-A. 2001. Factor graphs664

and the sum-product algorithm. IEEE Transactions on Information Theory 47, 2,665

498–519.666

KUMAR, V. 1992. Algorithms for constraint satisfaction problems: A survey. AI667

MAGAZINE 13, 1, 32–44.668

LAYAR, 2013. Website. http://www.layar.com.669

LEMPITSKY, V. S., ROTHER, C., ROTH, S., AND BLAKE, A. 2010. Fusion moves for670

markov random field optimization. IEEE Trans. Pattern Anal. Mach. Intell. 32, 8,671

1392–1405.672

LIN, S., RITCHIE, D., FISHER, M., AND HANRAHAN, P. 2013. Probabilistic color-by-673

numbers: Suggesting pattern colorizations using factor graphs. In ACM SIGGRAPH674

2013 papers, SIGGRAPH ’13.675

MACKWORTH, A. K. 1977. Consistency in networks of relations. Artificial Intelligence676

8, 1, 99 – 118.677

MARGRIET SCHAVEMAKER, HEIN WILS, P. S., AND PONDAAG, E. 2011. Augmented678

reality and the museum experience. In Museums and the Web 2011.679

MERRELL, P., SCHKUFZA, E., LI, Z., AGRAWALA, M., AND KOLTUN, V. 2011.680

Interactive furniture layout using interior design guidelines. In SIGGRAPH 2011.681

NEWCOMBE, R. A., IZADI, S., HILLIGES, O., MOLYNEAUX, D., KIM, D., DAVISON,682

A. J., KOHLI, P., SHOTTON, J., HODGES, S., AND FITZGIBBON, A. W. 2011.683

Kinectfusion: Real-time dense surface mapping and tracking. In ISMAR, IEEE,684

127–136.685

ONG, S. K., AND (EDS.), A. Y. C. N., Eds. 2004. Virtual and Augmented Reality686

Applications in Manufacturing.687

PEARL, J. 1982. Reverend bayes on inference engines: A distributed hierarchical688

approach. In AAAI, 133–136.689

SZELISKI, R., ZABIH, R., SCHARSTEIN, D., VEKSLER, O., KOLMOGOROV, V.,690

AGARWALA, A., TAPPEN, M. F., AND ROTHER, C. 2006. A comparative study of691

energy minimization methods for markov random fields. In ECCV 2006.692

UNITY3D, 2013. Unity. Website. http://unity3d.com/.693

VEKSLER, O. 2007. Graph cut based optimization for mrfs with truncated convex694

priors. In CVPR 2007.695

WAINWRIGHT, M. J., JAAKKOLA, T., AND WILLSKY, A. S. 2005. Map estimation via696

agreement on trees: message-passing and linear programming. IEEE Transactions697

on Information Theory 51, 11, 3697–3717.698

WIKITUDE, 2013. Website. http://www.wikitude.com.699

WOODFORD, O. J., TORR, P. H. S., REID, I. D., AND FITZGIBBON, A. W. 2008.700

Global stereo reconstruction under second order smoothness priors. In CVPR, IEEE701

Computer Society.702

YEH, Y.-T., YANG, L., WATSON, M., GOODMAN, N. D., AND HANRAHAN, P. 2012.703

Synthesizing open worlds with constraints using locally annealed reversible jump704

mcmc. ACM Trans. Graph. 31, 4 (July), 56:1–56:11.705

YU, L.-F., YEUNG, S.-K., TANG, C.-K., TERZOPOULOS, D., CHAN, T. F., AND706

OSHER, S. J. 2011. Make it home: automatic optimization of furniture arrangement.707

In SIGGRAPH 2011.708

8

http://architip.mobi
http://www.junaio.com
http://www.layar.com
http://unity3d.com/
http://www.wikitude.com

	Introduction
	Related Work
	Layout Design for Augmented Reality Applications
	Graph Representation

	Application Layout
	Transforming High-order rules into Pairwise Interactions
	Adaptive Layout Space Exploration
	Exponential-sized Search Neighborhoods
	Locally Satisfiable Proposals

	Experimental Evaluation
	Quantitative Evaluation
	Qualitative Evaluation

	Discussion and Future Work

