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Adaptive Exploration of Locally Satisfiable Proposals for Design Layout

Figure 1: Rule-based design layout algorithms can solve everything from laying out domino tiles, through arranging furniture in a room to
superimposing metadata on a photograph following aesthetic principles. We formulate the problem as an iterative move-making algorithm
and present a new approach to generating locally-satisfiable proposals for each object.

Abstract1

We present a new approach for rule-based design layout prob-2

lems, examples of which include automated graphic design, fur-3

niture arrangement and synthesizing virtual worlds. We formu-4

late this as a weighted constraint-satisfaction problem which is5

high-dimensional and requires non-convex optimization. We use6

a hyper-graph to represent a set of objects and the design rules ap-7

plied to them. Although inference in graphs with higher order edges8

is computationally expensive, we present a hybrid solution-space9

exploration algorithm that adaptively represents higher order rela-10

tions compactly. We exploit the fact that for many types of rules,11

satisfiable assignments can be found efficiently. In other words,12

these rules are locally satisfiable. Therefore we can sample from13

the known partial probability distribution function for each rule.14

Experimental results demonstrate that this sampling technique re-15

duces the number of samples required by other algorithms by orders16

of magnitude. We demonstrate usage via different layout examples17

such as superimposing textual and visual elements on photographs.18

Our adaptive search algorithm is applicable to other optimization19

problems and generalizes many previously proposed local search20

based algorithms like graph cuts and iterated conditional modes.21

CR Categories: F.4.1 [Mathematical Logic]: Logic and Con-22

straint Programming— [G.3]: Probability and Statistics—Markov23

Processes;24

Keywords: weighted constraint optimization, layout synthesis,25

graphic design26

1 Introduction27

Computer-assisted (or automated) design, layout synthesis and ob-28

ject arrangement problems consist of assigning values to object29

properties, guided by a set of rules. These rules are domain spe-30

cific and may for example be geometric, examining the spatial re-31

lations between objects; color-based, matching the object’s appear-32

ance to the palette of the design or enhancing the contrast of spe-33

cific objects; or semantic, taking into account the functionality of34

the object. Regardless of their origin, they are represented as cost35

functions that measure the quality of any configuration of one or36

more objects. This paper focuses on instances of these problems in37

which a single ‘good’ solution is required, with low computational38

and time costs, mostly targeted at mobile devices.39

Graphic design requires an eye for aesthetics and is more art than40

science. In most cases, creating a design combining textual and vi-41

sual elements is a job better left to professionals. However, there are42

applications in which there is need real time layout of textual and43

graphical elements, based on predetermined rules. In these cases44

it is not possible to design each and every instance. For example,45

when browsing through a photo collection, it is useful to be able to46

view the image meta-data (title, exposure information, histogram),47

both on the camera and on various other devices. However, simply48

superimposing elements on a photo can obstruct faces and other49

salient regions and produce an unattractive layout. We aim to de-50

fine rules that reference an image’s saliency map, color palette and51

major edges, and lay out the data by observing symmetry, saliency,52

photographic principles and other quantifiable measures.53

We formulate design layout as a weighted constraint-satisfaction54

problem. Our formulation incorporates both low-order and high-55

order interactions between design elements. Low-order rules are56

defined over one or two design elements. For example a rule that57

states that two particular objects should be close to each other. On58

the other hand, high-order interactions are defined over large num-59

ber of design elements. For example a rule specifying that a group60

of objects needs to be collinear.61

We represent a group of design rules operating on a set of objects62

using a hyper-graph. In this graph, each node represents an ob-63

ject and each edge is a rule, connected to all the objects it refer-64

ences. Inference in graphs with higher order edges is computation-65

ally expensive. We propose an adaptive solution space exploration66

algorithm that iteratively explores the solution space and in doing67

so is able to represent higher order relations compactly. We ap-68

ply our adaptive search algorithm to design layout problems, how-69

ever it is applicable to other optimization problems and generalizes70

many previously proposed local search based algorithms like Graph71

cuts [Boykov et al. 2001; Szeliski et al. 2006; Woodford et al. 2008;72

Gould et al. 2009; Lempitsky et al. 2010] and Iterated conditional73

modes [Szeliski et al. 2006; Jung et al. 2009].74

The key idea that drives our exploration algorithm is an observation75

that for many types of rules, satisfiable assignments can be found76

efficiently. In other words, these rules are locally (individually) sat-77

isfiable i.e. we generate proposals for objects that locally satisfy in-78

dividual rules with no need for blind sampling. Our method gener-79
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ates, over several iterations, locally satisfiable and random propos-80

als for each object (node), until it converges to a solution that can-81

not be improved. Experimental results demonstrate that our locally82

consistent sampling technique is very efficient and requires sub-83

stantially fewer number of samples compared to other algorithms.84

We demonstrate our approach on 2D layout problems involving su-85

perimposing textual and visual elements on photographs as well as86

comparing to previous results in furniture arrangement.87

2 Related Work88

Constraint Satisfaction Design and layout synthesis consist of89

rules referencing a set of objects. An assignment to each object can90

be measured by how well the rules are met, whether they are sat-91

isfied or violated. In essence these are constraint satisfaction prob-92

lems (CSP) [Mackworth 1977], fundamental in Artificial Intelli-93

gence and Operations Research. A variant of the problem, weighted94

CSP defines a cost function assigned to each constraint, and the ob-95

jective is to minimize the overall cost. A large majority of CSP al-96

gorithms [Kumar 1992] use a search paradigm over a limited set of97

possible object assignments. These approaches are relatively rigid,98

and do not offer interactive performance.99

MAP Inference In computer vision, many tasks such as segmen-100

tation of an image can be formulated as image labeling problems101

where each variable (pixel) needs to be assigned the label which102

leads to the most probable (or lowest cost/energy) joint labeling of103

the image. The models for these problems are usually specified as104

factor-graphs in which the factor nodes represent the energy po-105

tential functions that operate on the variables [Kschischang et al.106

2001]. In most vision models, the energy function is composed107

of unary and binary terms and the interactions between objects are108

generally limited to variables in a 4 or 8 neighborhood grid.109

The sparse grid-like structure of the object interactions and the110

limited number of labels allows for fast solution of image label-111

ing problems using techniques such as graph-cuts [Boykov et al.112

2001; Gould et al. 2009; Lempitsky et al. 2010; Szeliski et al. 2006;113

Woodford et al. 2008], belief-propagation [Pearl 1982], and tree114

message-passing [Wainwright et al. 2005; Kolmogorov 2006]. In115

our case rules can be defined over multiple variables, and create116

complex factor graphs which these approaches do not handle well.117

Further, each object typically has a large space of possible configu-118

rations, which increases the complexity in multi-object interactions.119

Furthermore, in all but the simplest scenarios the factor graph con-120

tains cycles that makes the problem NP-hard even if the label space121

for each object is small.122

Layout Synthesis Ultraviolet [Borning and Freeman-Benson123

1998] uses a constraint satisfaction algorithm framework for inter-124

active graphics. The constraints for user interface layout usually125

form a non-cyclic graph, are hierarchical in nature and container126

based and are therefore less complex. In [Yu et al. 2011; Merrell127

et al. 2011] a set of rules and spatial relationships for optimal fur-128

niture positioning are established from examples and expert-based129

design guidelines. These rules are then enforced as constraints to130

generate furniture layout in a new room. [Yu et al. 2011] employed131

a simulated annealing method which is effective but takes several132

minutes, while [Merrell et al. 2011] sample a density function using133

the Metropolis-Hastings algorithm implemented on a GPU. They134

evaluate a large number of assignments and achieve interactive rates135

(requiring a strong GPU). Both papers work with a small number136

of objects in relatively small rooms and in static scenarios. In [Yeh137

et al. 2012], the motivation is to populate a scene with a variable138

number of objects (open universe). They present a probabilistic in-139

ference algorithm extending simulated annealing with local steps.140

3 Layout Specification141

We define a design as a set of rules that are created by an artist142

or designer. The design is used to find a layout, an assignment of143

values to a set of objects, that satisfy the rules of the design. Given144

an environment in which we need to lay out the objects, we call145

the space of all possible assignments the layout solution space. We146

define a cost function for the design147

c(s) :=
∑
i

ri(ŝ) (1)

where ri : (Oi ⊆ O) → R is a cost function (rule) operating on a148

subset of the objects, s ∈ S is a specific solution, and ŝ is a slice of149

the solution containing only the objects in Oi. Typically each rule150

applies only to a small subset of the objects.151

𝑟2 = 𝑓(𝑜1, 𝑜2, 𝑜3)
𝑟3 = 𝑓(𝑜1, 𝑜2, 𝑜4, 𝑜5)

𝑟1 = 𝑓(𝑜1, 𝑜2)

𝑜3𝑜1 𝑜2 𝑜4 𝑜5

𝑟1 𝑟2

𝑟3

Factor graph

𝑜3

𝑜1 𝑜2 𝑜4 𝑜5
𝑟1

𝑟2

𝑟3

Hyper graph

Figure 2: A design (in this case consisting of three rules over five
objects) can be represented as a Factor Graph, a bipartite represen-
tation connecting object nodes to factor nodes. Alternatively it can
be represented as a hyper-graph in which each node is an object,
and an edge represents common rules between connected nodes.

A user specifies a design using declarative programming. First ob-152

jects are defined, each identified by a unique name and belonging to153

one of several predefined classes. An object’s class defines its prop-154

erties which may be initialized to a specific value, and may be fixed155

(not allowed to change in the optimization process). For example an156

object of class Title might have properties such as position, rotation,157

font, font size, and color.158

Rules are written using simple algebraic notation and a library of159

predefined routines, either as cost functions or as Boolean condi-160

tions (in which case we automatically assign a cost function). A161

rule can reference any of the objects defined (and their properties),162

as well as the environment. For example when arranging objects in163

a room the designer might reference wall and floor positions, in a164

2D poster design the designer might reference the color palette of165

the background image. The number of objects included in a rule166

classify it as unary (one object), binary (two objects), ternary (three167

objects) or multiple.168

3.1 Graph Representation169

A common graph representation for MAP problems is the Factor170

Graph [Yeh et al. 2012] which has two node groups: object nodes171

and factor (rule) nodes. Edges connect factors to the objects they172

reference (Figure 2 left). A factor representing a unary rule will173

have one edge, a binary rule will have two edges and so on. We rep-174

resent a design as a graphG = (V, E). Each object o has an associ-175

ated node vo whose cost function is φ(vo) =
∑
{r|r : {o} → R}176
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𝑟2 = 𝑓(𝑜1, 𝑜2, 𝑜3)
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Figure 3: We construct a graph for a design incrementally. Rules
which reference more than two objects are transformed into pair-
wise interactions via auxiliary nodes: r1 is a binary rule, r2 is a
ternary rule triggering the creation of A1 which represents a pair
of values (for o1 and o2). r3 involves four variables, in which case
we require two auxiliary nodes (we reuse previously created A1).

(sum of all unary rules on object o). We connect an edge e between177

vo1 and vo2 if there exists at least one rule associated with these178

objects. Its cost function is ψe =
∑
{r|r : {o1, o2} → R}. Given179

an assignment to all of the objects, the summed cost over the nodes180

and edges of the graph is equal to the design cost (equation 1). Note181

that a rule may refer to more than two objects, and therefore an edge182

can connect more than two nodes, creating a hyper-graph (Figure 2183

right).184

4 Finding an Optimal Layout185

An optimal layout is the global minimum in the scalar field defined186

by the design cost function. Finding the optimal layout or even a187

good one is difficult: Rule cost functions may be non-convex, rules188

might be unsatisfiable, for example if they conflict with the envi-189

ronment or with themselves, therefore we cannot know the lower190

bound on the cost and it is difficult to specify a stopping crite-191

ria. And finally, the high-dimensional nature of the space and the192

assumed sparsity of feasible solutions reduce the effectiveness of193

stochastic sampling.194

Similar to [Merrell et al. 2011; Yu et al. 2011] we focus on a195

discretized version of the solution space. In some instances the196

application domain necessitates this (fixed resolution image back-197

grounds) while in other instances there is a specific resolution re-198

quirement which we need to meet. Given N objects in the design199

and k possible assignments per object, the size of the solution space200

kN makes performing an exhaustive search prohibitively expensive.201

Previous methods have attempted to sample from the underlying202

probability distribution function, using Metropolis-Hastings [Hast-203

ings 1970] algorithm coupled with concepts from simulated anneal-204

ing. These methods still require a prohibitively large number of205

samples (and of course evaluations of the cost function), therefore206

requiring a long run time or reliance on massively parallel GPU207

implementations [Merrell et al. 2011]. In many applications perfor-208

mance is an issue, and in some platforms such as mobile devices,209

computing is costly. Our approach therefore focused on reducing210

the number of evaluations required to find a feasible solution.211

4.1 Transforming High-order rules into Pairwise Inter-212

actions213

To simplify the graphical representation of the design, we transform214

hyper-edges into pairwise graph interactions by introducing auxil-215

iary nodes. We divide the set of objects associated with a hyper-216

edge e into two groups A1 and A2. For each group consisting of217

more than one object we add an auxiliary node (otherwise we use218

the original object node). An assignment to auxiliary node Ai is219

an assignment to all variables associated with this node. The cost220

function of an auxiliary node is φ(Ai) = 0 (no unary cost). We221

connect the two nodes with an edge ê such that ψê = ψe. We con-222

nect auxiliary nodes with their associated object nodes. The cost223

function for these edges ψ({o,Ai}) is 0 if the assignment to object224

o matches the assignment to Ai and arbitrarily high otherwise. The225

addition of the auxiliary variables ensures that there are only binary226

interactions between nodes. Formally, this corresponds to a cost227

function:228

E(x) =
∑
i∈V

φi(xi) +
∑
ij∈E

ψij(xi, xj) (2)

where V and E represent the set of nodes and the set of edges be-229

tween these nodes respectively, xi represents the label taken by a230

particular node, and φi and ψij are functions that encode unary and231

binary costs. In figure 3 we demonstrate how the introduction of232

r2 drives the creation of auxiliary node A1, while the cost function233

is associated with the edge (A1, o3). Adding r3 reuses A1 while234

adding an additional node A2 and connecting them.235

4.2 Adaptive Layout Space Exploration236

A simple method to find a low-cost solution under the function de-237

fined in equation 2 is to explore the solution space by local search238

i.e. start from an initial solution and proceed by making a series239

of changes which lead to solutions having lower energy. At each240

step, this move-making algorithm explores the neighboring solu-241

tions and chooses the move which leads to the solution having the242

lowest energy. The algorithm is said to converge when no lower243

energy solution can be found. An example of this approach is the244

Iterated Conditional Modes (ICM) algorithm that at each iteration245

optimizes the value of a single variable keeping all other variables246

fixed. However, this approach is highly inefficient due to the large247

label space of each variable. Instead we could perform a random248

walk algorithm, in each iteration we select a new value for one of249

the objects and evaluate the cost function. If the cost improves we250

save the new configuration:251

Algorithm 1 Random Walk

minSolution← RandomAssignment()
currentSolution← minSolution
minCost← Evaluate(minSolution)
for i← 1, niters do

for all O ∈ Objects do
pO ← nextProposal
currentSolution← p0
cost← Evaluate(currentSolution)
if cost < minCost then

minSolution← currentSolution
minCost← cost

end if
end for

end for

Generating proposals for this algorithm is key to its performance.252
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The most straight-forward approach is to sample uniformly over253

the object properties. Another approach is to start with uniform254

sampling (large steps) and over time reduce step size, sampling255

normally around the previous object value which we term multi-256

resolution random walk. Other heuristics exist and have been tried257

before, such as swapping between objects.258

4.3 Exponential-sized Search Neighborhoods259

Using a bigger move space has a higher chance of reaching a good260

solution. This observation has been formalized by [Jung et al. 2009]261

who give bounds on the error of a particular move making algo-262

rithm as the size of the search space increases. [Boykov et al. 2001]263

showed that for many classes of energy functions, graph cuts allow264

the computation of the optimal move in a move space whose size265

is exponential in the number of variables in the original function266

minimization problem. These move making algorithms have been267

used to find solutions which are strong local minima of the energy268

(as shown in [Boykov et al. 2001; Komodakis and Tziritas 2005;269

Kohli et al. 2007; Szeliski et al. 2006; Veksler 2007]).270

While the traditional move making methods only dealt with vari-271

ables with small label sets, their use has recently been extended272

to minimizing functions defined over large or continuous labels273

spaces [Lempitsky et al. 2010; Woodford et al. 2008; Gould et al.274

2009]. An example of this work is the Fusion move method that275

in principle allows for the minimization of functions defined over276

continuous variables. Given a set of variables, the fusion-move al-277

gorithm works by proposing a labeling for all variables. It chooses278

for each variable whether to retain its previous label or take the new279

proposed label. Our method generalizes the above algorithms as, in280

each iteration, instead of proposing a single new label, it proposes281

multiple new proposals for each variable. Unlike [Veksler 2007],282

a large majority of these proposals are arbitrary values in the label283

space of each variable that are locally satisfiable (see section 4.4).284

However, the bigger difference is the fact that our method adap-285

tively selects the number of variables included in the move. In this286

way it can smoothly explore the whole spectrum of choices between287

iterated conditional modes on one end, and the full multi-proposal288

fusion move, that involves changing the label of all variables.289

Solving a single iteration We formulate the problem of jointly290

selecting the best proposals for all variables that satisfy the most291

rules as a discrete optimization problem. More formally, let Pi =292

{p1i , p2i , ..., pki } be a set of k proposal configurations for variable xi.293

We introduce indicator variables tli, ∀i ∈ V, ∀l ∈ {1...k} where294

tli = 1 indicates that variable xi takes the properties in proposal295

l. Similarly, we introduce binary indicator variables tlr, ∀ij ∈296

E , ∀l, r ∈ {1...k} where tlrij = 1 indicates that variables xi and xj297

take the position proposed in proposal l and r respectively. Given298

the above notation, the best assignment can be computed by solving299

the following optimization problem:300

min
∑
i∈V

∑
l

tliφi(p
l
i) +

∑
ij∈E

∑
l,r

tlrijψij(p
l
i, p

r
j )

s.t. ∀i,
∑
l

tli = 1

∀i, j, l,
∑
r

tlrij = tli

∀i, j, l, r tli, t
lr
ij ∈ {0, 1}

(3)

The above optimization problem in itself is NP-hard to solve in301

general. Instead, we solve its LP-relaxation and round the frac-302

tional solution. For this purpose, we could use general purpose303

linear programming solvers. However, we used an implementa-304

tion of the sequential tree re-weighted message passing algorithm305

(TRW-S) [Wainwright et al. 2005; Kolmogorov 2006] that tries to306

efficiently solve the linear program by exploiting the sparse nature307

of the interactions between variables. TRW-S guarantees a non-308

decreasing lower bound on the energy, however it makes no assur-309

ances regarding the solution (See [Szeliski et al. 2006] for detailed310

comparisons).311

Algorithm 2 Large Moves

procedure LARGEMOVES(O,R) . Objects, Rules
G← ConstructGraph(O,R)
minSolution← RandomAssignment(O)
minCost← Evaluate(minSolution)
for i← 1, niters do

A← ObjectsToOptimize(G, currentSolution)
for all oi ∈ A do

Pi ← ProposeCandidates()
end for
for all r ∈ R do

UpdateGraphCosts(G, Evaluate(r, {P1, P2, ...}))
end for
currentSolution← TRWS(G)
cost← Evaluate(currentSolution)
if cost < minCost then

minSolution← currentSolution
minCost← cost

end if
end for

end procedure

Therefore our revised algorithm works as follows (see algorithm 2):312

Given a design we construct a graph as described in subsection 4.1.313

In each iteration we generate a set of candidates for all objects to314

be optimized. Candidates are sampled randomly or through locally-315

satisfiable proposals as described in subsection 4.4. We evaluate the316

cost of each rule, for each tuple of values associated with it. There-317

fore a unary rule is evaluated k times (k being the number of candi-318

dates), a binary rule k2 times (if each of its referenced objects has319

k candidates) and so on. These costs are transferred to the graph320

nodes and edges as described above. Note that for complex rules,321

this creates a challenging number of evaluations, which can go up to322

kn (where n is the number of objects in the design). We found that323

by limiting the set of candidates for auxiliary nodes to O(k) tuple324

values did not detract from the efficiency of the algorithm, and kept325

our complexity at O(nk2) overall. We then attempt to find an im-326

proved assignment for our objects, based on the populated graph. In327

each iteration we use either Random-Walk or TRW-S dependent on328

the number of objects to optimize. We repeat this procedure, carry-329

ing forward the current best assignment, until a maximum number330

of iterations or evaluations is reached, or the current solution is of331

acceptable cost.332

4.4 Locally Satisfiable Proposals333

The space of possible placements (style, color etc.) of a design ele-334

ment (object) is very large and it may take a large number of propos-335

als to obtain a good assignment for the object [Ishikawa 2009]. We336

overcome this problem by guiding the mechanism through which337

new proposals are generated. For many types of rules, assignments338

that satisfy these rules can be found efficiently. In other words,339

these rules are locally satisfiable. In simple terms, given an assign-340

ment to some of the objects referenced by r we can generate good341

proposals for the rest, without resorting to blind sampling in the342
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…
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𝑥3. 𝑓𝑟𝑜𝑛𝑡, 𝑥2. 𝑓𝑟𝑜𝑛𝑡 ≥ 0.9
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Figure 4: A set of domino tiles laid out on a curve (a) Each domino
tile must be within a set distance from its two neighbors, face in
roughly the same direction, and remain roughly in line (b) Resulting
graph is a chain where each each edge represents a compound rule
between neighboring tiles (c) A result for ten tiles.
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𝑐
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𝑥2

𝑥3

𝐴1(𝑐, 𝑥1)

𝑑 𝑐, 𝑥1 = 𝑑(𝑐, 𝑥3)

𝑑 𝑐, 𝑥1 = 𝑑(𝑐, 𝑥2)

𝐴2(𝑐, 𝑥2)

∠ 𝑐, 𝑥2, 𝑥3 ≥ 25

∠ 𝑐, 𝑥1, 𝑥2 ≥ 25

∠ 𝑐, 𝑥1, 𝑥3 ≥ 25

(a) (b)

Figure 5: A set of objects arranged in a circle around a central ob-
ject (top right) The distance from each object to c is equal, the angle
between each pair of objects xi, xj and c is at least 25 degrees (b)
A partially labeled graph which shows auxiliary nodes created to
represent ternary constraints. The dashed edges are auxiliary con-
straints, propagating the selected value of an object to its auxiliary
nodes. This graph has high connectivity.

layout solution space. Our approach could be seen as performing343

Gibbs sampling [Casella and George 1992], taking advantage of a344

known partial probability function, to sample from the whole solu-345

tion space. For example a geometric constraint dist(a, b) < 4 is346

locally satisfiable as given a we generate proposals for b within347

the circle centered around a with radius 4. A color constraint348

complementary(a, b) is locally satisfiable as given color a, b is349

easy to calculate. A unary constraint saliency(a, bg) < 0.1 at-350

tempting to place a 2D element a on a background image bg can351

generate proposals for a based on a pre-calculated saliency map of352

bg. When a designer declares rules in our declarative language, he353

can define a rule as locally satisfiable. This ”inverse” function gen-354

erates proposals for the rule referenced objects, given one or more355

object assignments. Rules which have not been declared explicitly356

can still be emulated as locally satisfiable by randomly sampling357

a large number of value tuples for the rule referenced objects, and358

picking the best tuples (which comes with a computational cost).359

A locally satisfiable proposal (LSP) is a candidate for object o360

which was proposed by a locally satisfiable rule r. We generate361

𝑥𝑖 =
𝑥𝑖+1 − 𝑥𝑖−1

2

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

𝑥10

𝐴1(𝑥1, 𝑥2) 𝐴2(𝑥2, 𝑥3) 𝐴3(𝑥3, 𝑥4) …

𝐴10(𝑥10, 𝑥1)

𝑑 𝑥𝑖 , 𝑥𝑖+1 > 𝐶

𝑥1
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Figure 6: (a) Ten objects are arranged such that each object at-
tempts to be near the average of its two neighbors, and yet maintain
a minimal distance from both. (b) The solution to this design is a
least-squares one, satisfying none of the constraints fully.

LSP using two strategies:362

• Local: Given a current assignment to all objects, and a set of363

active objects to be optimized in this iteration, we iterate over364

all rules referencing these objects. For each rule r and for365

each object r references, we fix that object value and produce366

one or more LSP for the other objects.367

• Greedy: Given the hyper-graph structure of the design, we368

apply a BFS starting from a randomly selected node. As we369

discover new nodes, we generate LSP for them, based on370

the nodes already visited, and the edges by which we dis-371

cover these nodes. Repeating this algorithm creates a series372

of greedy assignments.373

5 Experimental Evaluation374

We measure the performance and quality of a layout optimization375

algorithm by counting rule evaluations. For example calculating376

the cost of a specific layout for a design is |ri|, the number of377

rules in the design. Previous approaches have counted the num-378

ber of samples the algorithm performs for all objects in all itera-379

tions. However, this measure favors algorithm which perform an380

exhaustive search over limited combinations of values. Another381

measure consists of counting number of evaluations of complete382

layouts. However, this is not representative of belief-propagation383

algorithms (such as TRW-S) in which partial evaluations are com-384

bined together.385

Designs differ in the type and number of rules they contain, and386

by how constrained the solution is. These differences are reflected387

in the underlying graph structure, and in our ability to create lo-388

cally satisfiable proposals. We tested our move-making algorithm389

on a large number of different designs, of which we present a few390

archetypes here. For each design we present the results of sev-391

eral algorithm configurations, varying over the number of objects392

optimized in each step, size of candidate set and usage of locally-393

satisfiable proposals. The results demonstrate that the connectivity394

of the graph is a good indicator for tuning the move-making algo-395

rithm, and that locally-satisfiable proposals reduced the number of396

evaluations required in all scenarios. In our experiments the rules397

are geometric, and each objects in the design can be assigned po-398
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sition, rotation and scale in 2D. We apply the configurations de-399

scribed in table 1 on the following designs. In each design we ran400

each variant algorithm 30 times and took the median of the results.401

Our algorithm is currently a non-optimized single-threaded CPU402

implementation, its average run time is 2-3 seconds.403

Domino - Thirty tiles arranged in a curve i.e. each tile is at a cer-404

tain distance from the next, and facing in a similar direction. The405

design and graph structure are visualized in figure 4. The created406

graph is a chain structure which can be optimally solved by be-407

lief propagation algorithms such as TRW-S. Moreover, non-cyclic408

graphs appear to work extremely well with greedy LSP, which is409

reflected in the results (figure 7).410

Circle - In order to test a highly connected graph with cycles, we411

created a design for nine tiles arranged in a circle (non-fixed radius)412

around a central tile. The minimal angle between any two tiles is413

at least 25o. The design and resulting graph structure are shown414

in figure 5, while the experiment results are in figure 8. All rules415

in this design are ternary, and the rules enforcing a minimal angle416

between all objects create a graph with high connectivity. In this417

scenario evaluating proposals for multiple objects at once is disad-418

vantageous. We found that TRW fails to find a solution that ap-419

proximates the minimum. However, exhaustive evaluation of each420

candidate set is not realistic. Therefore we reduced the number of421

candidates as shown in the graphs, to 4 and 6 candidates, and saw422

improvement. Still, constraining the algorithm to one proposal for a423

single object in each iteration gives the best results for this scenario.424

Locally satisfiable proposals prove to be an asset in this scenario,425

achieving an x2 factor from 20000 evaluations and up until 120000426

evaluations.427

Laplacian Cycle - Finally, to challenge the candidate proposal428

process, we attempt to arrange ten tiles t1..t10 such that ti =429

(ti−1 + ti+1)/2 and d(ti, ti+1) > C. Since the rules wrap around430

t10 the cost can never be 0 and the best possible solution is a least-431

squares oval structure. The design and resulting graph structure are432

in figure 6, while the experiment results are in figure 9. We applied433

several variants of TRW on this design, starting from 2 propos-434

als for each object each iteration (one LSP, one random) and up to435

10 candidates. Additionally we tried multi-resolution random walk436

with and without LSP. We found that a small number of candidates437

over a large number of iterations produced the best result, and that438

LSP were of benefit.439

Algorithm #Obj #Cands
Random Walk 1 2
Multi-Res RW 1 2
LS MR RW 1 2
LS TRW (Greedy) n k
LS TRW (Local) n k

Table 1: Algorithms applied in our experiments. #Obj is the num-
ber of objects optimized in each iteration, #Cands is the number of
candidates assigned to each (optimizable) object in each iteration.
The TRW variants have k candidates, 50% of which are locally sat-
isfiable proposals (if applicable).

5.1 Furniture Arrangement440

We recreated the design rules described in [Merrell et al. 2011],441

rewriting them to be locally satisfiable. We then used our algorithm442

to find furniture layout in several room configurations (figure 10).443

Our approach produced comparable results in 50000 evaluations,444

0
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15000

20000

25000

30000

0 20000 40000 60000 80000 100000 120000 140000 160000

Domino - 30 Tiles

LS TRW (Greedy)

LS TRW (Local)

Random Walk

MultiRes RW

LS MultiRes RW

Figure 7: Domino: The chain-like structure of the graph works op-
timally for belief propagation algorithms such as TRW. Combining
TRW with greedy LSP converges on a solution quickly.

compared to 5M − 10M evaluations (extrapolated from figure 7 in445

their paper). Note that while we produce a single feasible solution446

in each run, they attempt to produce a variety of solutions.447

5.2 Photo Overlay448

When reviewing a large collection of photographs, it is often useful449

to see the corresponding meta-data (title, date, exposure informa-450

tion, geo-tags and user supplied tags) alongside the original image.451

In smaller form-factors, there is not enough screen real estate to452

display the image alongside the information. We present an appli-453

cation to overlay textual and visual information on an image, based454

on geometrical and aesthetic design rules.455

Given an image, we extract textual meta-data from its EXIF such456

as title, camera and lens model, aperture, shutter speed as well457

as calculate a luminance histogram. We then calculate a saliency458

map [Perazzi et al. 2012], run an edge detection filter and extract459

the color palette of the image [Morse et al. 2007] to which we add460

black and white (Figure 11. We define our design such that the su-461

perimposed elements are positioned on the non-salient regions in462

the image and their colors are taken from the image extended color463

palette. Additionally, the title is larger than the exposure informa-464

tion, and the exposure information elements are ordered vertically465

and attempt to align (left or right depending on their position within466

the image). The results of our design can be seen in figure 12 and467

figure 13.468

6 Conclusions469

We presented a new algorithm for rule-based design layout prob-470

lems. Our approach unifies and expands on previously proposed471

local search based methods in the sense that it adaptively deter-472

mines the search neighborhood according to the underlying graph473

structure. We introduced the concept of locally satisfiable proposals474

and demonstrated that their use dramatically reduces the number of475

evaluations required for finding a rule-consistent layout. In cases476

where LSP fails, our algorithm degrades to a random sampling ap-477

proach.478

While the efficacy of our method was demonstrated on a 2D layout479

problem, our solution generalizes to a wide range of layout prob-480
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Figure 12: Applying our design rules to various images produces pleasing results automatically and in real time, allowing a user to bring up
information about an image without interrupting the flow of images.
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Figure 8: Circle: The highly connected graph is a hindrance when
using a large number of candidates. In this scenario increasing the
number of optimizable objects in each iteration, and the size of the
candidate set did not prove beneficial. The best performing variant
was a multi-res random walk approach, in which the candidates
were LSP.

lems in two or higher dimensions. In future work we seek to apply481

our algorithm on layout synthesis in 2.5D (such as placing objects482

on a topographical map) and in 3D. Moreover, we are working to-483

wards a massively parallel implementation of our approach that we484

hope would be beneficial for the graphics community.485
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