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Abstract. This paper introduces image quality transfer. The aim is to
learn the fine structural detail of medical images from high quality data
sets acquired with long acquisition times or from bespoke devices and
transfer that information to enhance lower quality data sets from stan-
dard acquisitions. We propose a framework for solving this problem using
random forest regression to relate patches in the low-quality data set to
voxel values in the high quality data set. Two examples in diffusion MRI
demonstrate the idea. In both cases, we learn from the Human Connec-
tome Project (HCP) data set, which uses an hour of acquisition time per
subject, just for diffusion imaging, using custom built scanner hardware
and rapid imaging techniques. The first example, super-resolution of dif-
fusion tensor images (DTIs), enhances spatial resolution of standard data
sets with information from the high-resolution HCP data. The second,
parameter mapping, constructs neurite orientation density and disper-
sion imaging (NODDI) parameter maps, which usually require special-
ist data sets with two b-values, from standard single-shell high angular
resolution diffusion imaging (HARDI) data sets with b = 1000s mm 2.
Experiments quantify the improvement against alternative image recon-
structions in comparison to ground truth from the HCP data set in both
examples and demonstrate efficacy on a standard data set.

1 Introduction

Bespoke MRI scanners and imaging protocols can produce very high quality
data uniquely informative about anatomy and function. However, the imaging
techniques that underpin such data sets are often impossible or impractical on
standard devices or in clinical imaging scenarios. For example, small-animal
scanners often have higher field and gradient strength and smaller bore than hu-
man scanners, enhancing signal to noise, image resolution and, in diffusion MRI,
sensitivity to small structures. Such platforms can provide exquisitely high reso-
lution images revealing fine structural detail and providing strong sensitivity to
anatomical features or pathology. Although such measurements highlight the po-
tential of future human imaging devices, they provide little direct benefit to cur-
rent clinic practice. Similarly, the HCP designed bespoke MRI scanners equipped



with 100mTm™! and 300 mT m~! gradient coils (several times more powerful
than standard clinical scanners) and exploit several imaging and image recon-
struction innovations to speed up acquisition and improve data quality [1]. The
bespoke imaging system combined with a lengthy acquisition protocol leads to
unique data sets with unprecedented image resolution and noise levels. However,
the techniques extend only partially to clinical imaging with modest hardware
and much more limited imaging times.

In this paper, we propose to exploit the information in expensive high quality
data sets to improve images reconstructed from more modest data acquisitions.
We call this process image quality transfer. We learn fine image structure from
high quality data sets and use it to enhance lower quality data. We present a
framework for solving this general problem using a patch-based image represen-
tation and random forest regression.

Two distinct applications demonstrate the framework by exploiting the HCP
in-vivo human diffusion MRI data, which has uniquely high quality. The first
application is super-resolution of DTIs. The HCP diffusion data have voxel sizes
of 1.25% mm? rather than typical sizes around 23 mm? in standard data sets. Im-
age quality transfer provides a mechanism to reconstruct high resolution DTITs
from low-resolution acquisitions. The second application is quantitative param-
eter mapping. The HCP provides three HARDI shells of data with diffusion
weighting factor b == 1000, 2000, and 3000 s mm~2, which supports estimation of
more informative parameters than standard data sets with a single HARDI shell
at b = 1000s mm~2. For example, NODDI [2] provides more specific information
than DTI, such as maps of the density and dispersion of neurites (axons and
dendrites), by fitting a more informative model in each voxel. It has become
popular for clinical studies, because it requires as little as 15 minutes acquisition
time. However, NODDI requires at least two HARDI shells with distinct b and
fitting the NODDI model fails with only a single HARDI shell [2]. This prevents
its use on the large variety of historical standard data sets. Image quality trans-
fer provides a mechanism to recover NODDI parameter maps from single b-value
data sets, which potentially enables NODDI analysis of historical data.

Prior literature on super-resolution is extensive. In medical imaging, [3] uses
example patches from high resolution images to super-resolve scalar MR images
and [4] use dictionaries from a database of similar images. Several authors pro-
pose super-resolution techniques specifically for diffusion images. The closest to
our work is [5], which enhances the resolution of each diffusion weighted image
(DWI) through patch examples before fitting the DT or other models; the dis-
cussion compares this approach to ours in more detail. Image quality transfer for
parameter mapping from rarefied data sets holds greater novelty, although sim-
ilar in spirit to modality transfer [6], which predicts T2 and FA images from T1
scans via patch-based label propagation. Our framework solves both problems.



2 Methods

Our implementation of image quality transfer learns a mapping from each neigh-
bourhood of Nj voxels in the low-quality data set to a corresponding neigh-
bourhood of N5 voxels in the high-quality data set. Input and output voxels
are vector-valued containing p; and ps values, respectively. Construction of the
mapping is thus a regression problem. It requires a training set of patch pairs
T = {xi, yi}gll, where each x; has dimension p; N1 and y; dimension ps Ns.

2.1 Regression models

We consider a hierarchy of three types of mapping, where each generalises the
previous: global linear; regression trees; and regression forests.

For global linear regression, we compute the linear transformation matrix
G =Y X', where Y has columns y;, X has columns x;, and X' is an appropriate
pseudo inverse of X so that, in matlab, G = X\Y. For input patch x, the estimate
of the corresponding output patch is Gx.

The regression tree implements a piecewise linear regression over the space
of input data points [7,8]. Each internal node in the tree sends data points into
left or right subtrees by thresholding one of J scalar functions of x, or features,
Fi,---, Fj. The choice of features is application dependent and we define ours
later. Each leaf node contains a linear transformation with the same structure as
the global linear transformation G defined in the previous section. Thus, for input
data point x, the output estimate is G;x where G, is the linear transformation of
the leaf node at which the data point arrives after traversing the tree. Training
uses a standard greedy search strategy similar to [8]. To control for overfitting,
we use a validation set V' with similar size to T and accept only splits that reduce
the residual error of V.

Regression forests use multiple regression trees
constructed from different training sets. Outputs are
element by element averages of the prediction from
each tree weighted by the error covariance of the lin- oloeleleole
ear transformation Gy, estimated during training.
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For DTI super-resolution, the mapping takes a (2n +
1) x (2n 4+ 1) x (2n + 1) cubic patch of DTs, so that eleje|e e
Ny = (2n +1)® and p; = 6, as input, and outputs an ——
m X m X m cubic patch of voxels, each also containing
a DT, so that N = m3 and p, = 6. The output patch
is a cubic array of subvoxels that super-resolves the Fig. 1. 2D illustration of
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and m = 2, each input x contains the 6 independent put (red) patch structure
elements of the DT in each voxel of a 5 x 5 x 5 low- for n =2 and m = 2.
resolution patch and each output y the elements of




each DT in the 2 x 2 x 2 high resolution patch (see
figure 1); the mapping is thus from R™° to R*.
For Fy,---, Fy, we use the following features of x:

The three eigenvalues of the DT in the central voxel.

— The orientation of the principal eigenvector of the DT in the central voxel.

— The means of each eigenvalue over the central 3 x 3 x 3 cube and those over
the whole (2n + 1)3 cube.

— The mean principal orientation over the central 3% and the whole cubes.

— The orientational variance over the central 3% and the whole cubes.

Unless otherwise stated, training data comes from 8 randomly selected HCP
data sets www.humanconnectome.org. A separate test set contains a different 8
HCP data sets. Each data set contains 288 DWIs including 18 with b ~ 0 and
three HARDI shells of 90 directions with b ~ 1000, 2000, and 3000 s mm™2; the
precise values vary spatially, as described in [1]. This application uses only the
b~ 0 and b ~ 1000 s mm~2 measurements to reflect standard data sets. Training
pairs come from downsampling each DWI by a factor of m in each dimension,
fitting the DT in each voxel of both the downsampled and full resolution image
using weighted linear least squares accounting for the spatially varying b and
gradient directions, and associating (2n+1)3 patches in the downsampled image
with the m? patch in the full resolution image corresponding to the central voxel
of the low-resolution patch.

Each data set contains around 7.5 x 10° brain voxels. We randomly subsample
the set of patches from the full training set to meet memory limitations.

2.3 Application 2: Parameter mapping

This application aims to estimate maps of NODDI parameters from standard
data sets including only b ~ 0 and b ~ 1000smm 2 measurements. Thus the
mapping takes as input a (2n+1)3 cubic patch of DTs fitted to a b ~ 1000 s mm ™2
HARDI shell, so that N; = (2n + 1)2 and p; = 6. The mapping outputs the
NODDI parameters, intra-cellular volume fraction ficyr, free-water volume frac-
tion fiso, orientation dispersion index (ODI), and the mean fibre orientation
(0, ¢), at the central voxel of the input patch; No = 1 and pa = 5.

The features, Fi,---, Fy, training, and test data sets are as in DTI super-
resolution. The ground truth NODDI output for the training set comes from
fitting the NODDI model to all three HARDI shells in each image voxel.

3 Results

Figure 2 shows qualitative results from both applications on one of the test data
sets (not used in training). The left panel compares various super-resolution
reconstructions, obtained with m = 4, after downsampling by a factor of 4
in each dimension. The right panel of figure 2 compares various reconstructed
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Fig. 2. Left: Direction-encoded colour FA maps for various reconstructed DTIs from a
downsampled image (bottom left) compared to ground truth (top left) from the original
full resolution data set. Right: Comparison of ground truth NODDI parameter maps
(left) with standard fitting to just the b ~ 1000s mm™? shell (left middle), global linear
(right middle) and random forest (right) regression.

NODDI maps with ground truth. In both examples, n = 2, the training set T’
contains about 1.5M data points, and the forest uses 8 trees.

For super-resolution, clarity in both the global linear and forest reconstruc-
tions compare favourably to standard interpolation techniques. The global linear
and forest reconstructions appear quite similar, although the latter avoids some
glitches visible in the former. As [2] predicts, the standard voxel-by-voxel NODDI
parameter estimation fails, strongly disrupting the neurite density parameter,
ficve, in particular. The global linear transformation also performs poorly and
fails to recover the structure of the ficvr and ODI maps, although it does pro-
duce a reasonable reconstruction of figo. The improvement of the forest over the
global linear transformation is striking and the output is visually much closer to
the ground truth, although some differences are still clearly discernible.

Figure 3 quantifies the comparison of high resolution (left) and NODDI pa-
rameter (right) reconstructions as a function of training set size. The metric of
reconstruction error is the mean (over the 8 test subjects) median (over brain
voxels) root-mean-squared parameter error (i.e. of the six independent DT el-
ements or 3 scalar NODDI parameters). All regression techniques improve on
standard interpolation methods for super-resolution. Trees and forests improve
on global linear transformations increasingly as the training set size increases,
because they exploit additional training data by increasing the complexity of the
mapping model. Averaging over the output of multiple trees (the forest) shows
benefit over single trees. The advantage comes in part because the forests see
more training data than single trees, as each component tree uses a different
random training set, although they also mitigate the greedy search that trains



individual trees. Available computer memory limits the amount of training data
a single tree can use, so the forests offer genuine advantages by enabling ex-
ploitation of more training data.

Between subject standard deviation is consistent among the different algo-
rithms suggesting that the error score depends on individual anatomical features,
such as the size of the ventricles where the error scores tend to be largest for
all algorithms. Other DT metrics, such as orientational difference, show similar
trends. The standard deviation over training set randomisation is more meaning-
ful than over subjects for evaluating the significance of differences in error score.
That standard deviation is 3 or 4 orders of magnitude smaller than the error
itself in most cases, which suggests that (a) the results are highly reproducible
over different training sets; and (b) the differences in error scores between, e.g.
trees and forests, are highly significant (around 60 standard deviations).
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Fig. 3. Left: reconstruction errors against ground truth for various reconstructed DT
maps, after downsampling by a factor of 2 and reconstructing with m = 2, as a function
of training set size. Right: reconstruction errors for NODDI parameter reconstructions.
In both cases, n = 2, and the error bars show standard deviation over subjects.

Figure 4 shows qualitative results of both image quality transfer applications
using mappings learned from HCP data to enhance a non-HCP data set. The
data set comes from a standard 3T clinical scanner. It has a single HARDI
shell with b = 1000smm ™2 and 30 gradient directions. The voxel size is 23 mm?3.
Image quality transfer sharpens weak structures in super-resolution and produces

plausible NODDI parameter maps.

4 Discussion

The super-resolution results show that patches in low resolution diffusion im-
ages contain a significant amount of information about the subvoxel content at
the centre of the patch. Thus, with a transformation of sufficient complexity, we
can predict high resolution images with much greater accuracy than standard
interpolation techniques. Further work is required to make a formal performance
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Fig. 4. Image quality transfer to a non-HCP data set. From left to right: (i) Colour
FA map of original data; (ii) zoomed in view of boxed area; (iii) and (iv) forest up
sampling with m = 2 and m = 3; (v)-(vii) reconstructed NODDI parameter maps.

comparison with other super-resolution techniques, in particular [5], but a key
novelty of our implementation is to use DT patches as input rather than DWI
patches and to output patches of parameter estimates rather than raw DWIs. An
advantage of outputting fitted model patches is to constrain the output image
structure to realistic local configurations. Moreover, treating each DWI sepa-
rately, as in [5], fails to exploit the strong correlation among DWIs, which is
highly informative. For example, enhancing the raw DWIs and then fitting the
NODDI model fails because it still fits to only a single b; it is the neighbourhood
structure of the fitted DTs that informs on the parameters. One might consider
using patches of the full collection of raw DWIs as input or output. However,
this has two practical problems: i) it complicates transfer to sparser data sets
where the set of input DWIs is, by definition, different to that of the high quality
training data; ii) the memory requirements for training become orders of mag-
nitude larger, as, in the super-resolution example, p; increases from 6 to 288.
However, input patches of parameters of more complex models than the DT,
such as higher-order spherical harmonic coefficients, may improve performance.

Random-forest regression shows a dramatic improvement over both standard
parameter estimation and global linear regression in recovering NODDI param-
eter maps from single-shell HARDI data sets and produces plausible maps of all
three important parameters.

Training times can be considerable for regression trees (around 1 day of pro-
cessor time for the largest training sets in figure 3 with unoptimised matlab
code), but reconstruction times are small (a few minutes for a full volume), as
they require just a linear transformation in each voxel. This is much quicker in
fact than direct NODDI fitting, which is non-linear and requires several hours
of processor time per image volume. The method extends naturally to predict
parameters of other models, such muti-fibre models [9], where computational ad-
vantages again are potentially significant. More broadly, the framework extends
naturally beyond diffusion imaging to any scalar or vector valued images.

Imperfections remain in reconstructed images in both applications. Various
refinements of the random forest regression may improve performance. Recon-
struction error reduces rapidly as the number of trees increases from 1 to 3, but
stabilises above 4 so that the 8 trees we use here is sufficient. For fixed training



set size, little improvement arises from using more than 2 source images, so our
collection of 8 seems sufficient. Performance increases with n for a fixed number
of data points in the training set, suggesting that neighbourhoods are infor-
mative even several steps from the output voxel. However, the data points are
larger at higher n, so memory limits occur at fewer data points; n = 2 is a good
compromise with the current implementation. Choice of features affects perfor-
mance. From our set, features based on the largest and smallest DT eigenvalues
dominate near the tree root; the second eigenvalue rarely appears. Orientational
features are important for finer partitions nearer leaf nodes. Smaller n leads
to more complex trees, because each linear transformation has less parameters.
Other high dimensional regression techniques may improve results. Moreover,
constraining the mapping with a data fitting term would be beneficial, but leads
to non-linear reconstruction increasing computation times.

In summary, this initial formulation and demonstration of image quality
transfer shows compelling results from a simple implementation that improves
significantly on standard interpolation and estimation techniques. Further work
must establish sufficiency of reliability to make downstream improvements in
practical applications such as tractography and image-based biomarker studies.
Both random-forest regression and the local patch-based image representation
lend themselves well to generalizability in the presence of pathology or other ef-
fects not represented in the training set at least for diffuse or macroscopic effects.
However, further work needs to evaluate performance in such situations.
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