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ABSTRACT

In this paper, we study a novel way to compensate speech features
to counter the effects of speaker variations and environment distor-
tions in speech recognition. For each homogeneous cluster of speech
data, e.g. a specific speaker and environment combination, a set of
correction vectors are learnt. A correction vector measures the devi-
ation of features in a small region of feature space due to the speaker
and environment effects. From a heterogenous training set, dozens
of sets of correction vectors are learnt, each from a homogenous
subset of the data. During testing, those correction vector sets are
linearly combined to compensate test feature vectors. The combi-
nation weights are estimated by maximizing the likelihood (ML) of
the compensated features with respect to a reference model, which
is a simplified version of the acoustic model used for speech recog-
nition. In addition, variance compensation is applied to condition
the variances of the compensated features during weight estimation.
Experimental results on Aurora-4 multi-condition training task show
that the proposed correction vector combination method reduces the
word error rate (WER) to 14.97% from mean and variance normal-
ization baseline (16.32%) for noisy test sets 2-7. In addition, the
proposed ML weight estimation consistently outperforms the pos-
terior weights used in previous studies, such as multi-environment
SPLICE.

Index Terms— feature compensation, environment combina-
tion, correction vectors, Aurora-4, robust speech recognition.

1. INTRODUCTION

Speech recognition performance degrades significantly when the test
acoustic condition is different from the training acoustic condition
[1]. The mismatch could be due to many factors, e.g. speaker charac-
teristics, background noises, and transmission channels. Generally
speaking, we can improve the speech recognition performance by
either compensating/normalizing the features [2—7] or adapting the
acoustic model [5, 8—10], or both. In addition, these two approaches
could be used together with multi-condition training, i.e. use speech
data collected from various acoustic conditions to train the acoustic
model, to further improve the system robustness [11, 12].

Reference speaker weighting (RSW) [13,14] and eigenvoice
[15] are fast model adaptation methods that are effective even with
several seconds of adaptation data. In RSW, a set of speaker-
dependent acoustic models are trained. Only the mean vectors are
updated and the covariance matrices are shared among all speaker
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models. From each speaker model, a mean supervector is con-
structed by concatenating all the mean vectors. In testing phase,
the mean supervectors are linearly combined to form the mean su-
pervector of the adapted acoustic model using maximum likelihood
(ML) criterion. As the parameter of RSW is the weights of speaker
dependent supervectors, which is usually less than 100, very few
data is required for RSW to be effective. Recently, this concept is
extended to also performing simultaneous environment selection by
using an L1 norm regularizer [16]. Eigenvoice [15] is similar to
RSW, except that a small number of principal components are learnt
from the speaker-dependent supervectors and used during test.

Compared to model adaptation, processing features has some
advantages. For example, we usually do not need to use the complex
acoustic model for feature compensation and there is no need to do
multi-pass decoding. More importantly, the adapted features can be
used with any acoustic models, e.g. deep neural network (DNN)
based acoustic model [17].

In this paper, we apply the concept of RSW to feature compensa-
tion. The basic idea is to compensate test feature vectors using linear
combination of correction vector sets, each set representing feature
distortion in a specific speaker and environment combination. This
is conceptually similar to, but fundamentally different from RSW,
in which the acoustic models are adapted. We use the ML criterion
to estimating the linear combination weights, with a variance com-
pensation term to prevent the variances of the compensated features
from shrinking significantly. The proposed method has some com-
mon characteristics with the popular SPLICE feature compensation
method [4], e.g. both using region-dependent correction vectors, but
without the need of stereo training data. We will discuss the differ-
ences between the two in details in the paper.

The rest of this paper is organized as follows. In section 2, we
will describe the proposed feature compensation method, and also
discuss its relationship to RSW and SPLICE. In section 3, the pro-
posed method is evaluated on the Aurora-4 multi-condition training
task. Finally, we will conclude in section 4.

2. FEATURE COMPENSATION WITH PRETRAINED
CORRECTION VECTORS

Suppose we have a heterogenous training set which contains speech
data recorded from various acoustic conditions. One question is how
to make use of this training set to compensate test features such that
the mismatch between the acoustic model, either trained from the
heterogenous training set or a clean training set, and the noisy test
set are reduced. In this study, we study the approach of using sets



of pretrained correction vectors, each trained from a homogenous
acoustic condition, to compensate the noisy features.

2.1. Characterizing Feature Distortions by Region-Dependent
Correction Vectors

For a homogenous acoustic condition, e.g. a specific speaker and
noise combination, it is reasonable to assume that for a small re-
gion in the feature space, the effects of speaker and noise can be
approximated by a shift of feature vectors in the region. Such con-
cept is widely used in previous studies. For example, in SPLICE [4],
a region dependent correction vector is usually trained with stereo
data to approximate the distortions caused by noise. In model adap-
tation methods [8], among all the model parameters, it is the most
important to adapt the mean vectors of the Gaussians, in which the
difference between the adapted and original mean vectors can be
considered as a shift of feature space. From another point of view,
region dependent correction vectors in cepstral domain is similar to
filtering of speech spectrum using a set of predefined filters in fre-
quency domain, where the filter’s frequency response is determined
by the correction vectors. Therefore, simply using correction vectors
can be very powerful, if the feature space is divided into sufficiently
large number of regions and the region selection is accurate.

There are several ways to obtain the region-dependent correc-
tion vectors. One way is to use stereo data which can be obtained by
adding recorded noise to clean speech, or by simultaneously record-
ing speech using both close-talk and far-talk microphones. Either
ML or minimum mean square error (MMSE) criterion can be used
to find correction vectors from stereo data [18]. A limitation of this
approach is that stereo data is not always available, e.g. in the broad-
cast news transcription task.

The correction vectors used in this study are obtained by using
model adaptation method. First, we train a universal GMM from a
heterogenous training set, in which each Gaussian represents a re-
gion of the feature space. Then we adapt the universal GMM to
each homogenous subset of the training set. The adaptation could be
done by conventional model adaptation methods, such as MLLR [8]
or MAP [9] mean adaptation. After that, the correction vector for
the m*" region of the ' acoustic condition is obtained by
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where 1™ and p™ are the mean vectors of the m'" Gaussian in

the universal and 7" adapted GMM’s, respectively. The correction
vector represents the average shift of feature vectors in a region due
to different acoustic conditions in the universal and adapted GMM’s.
The advantage of using model adaptation method to find correc-
tion vectors is that there is no requirement to have stereo data. The
only requirement is to cluster the heterogenous training data into ho-
mogenous subsets, which can be achieved with plenty of methods.

2.2. Feature Compensation by Combined Correction Vectors

For a homogenous acoustic condition, we use a correction vector to
compensate the feature vectors in a small region in feature space:

o = o —r" )

where o, is the noisy feature vector, and 0, is the compensated fea-
ture vector by using the correction vectors from the i*" environment.
In (2), we assume that a feature vector is solely belonging to the m*"
region. However, in practice, such hard mapping of feature vectors

to regions is not optimal. We can use the universal GMM to partition
the feature space into M regions and use soft-decision mapping:
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where P(m/|o;) is the posterior probability of region m after ob-
serving the noisy feature 0:. cpm, u<m), and ™ are the prior
weight, mean vector, and covariance matrix of the mt"* Gaussian
in the GMM, respectively. In (3), r; = S0 _, P(m|0t)r£m> is the
overall correction vector from environment ¢ and is time dependent.
In test phase, assume that we have correction vectors for I
acoustic conditions. Given a test utterance without speaker or envi-
ronment information, we can choose a condition that is the closest
to the test utterance in some sense and use its correction vectors to
compensate the test features. However, as it is hard to guarantee that
the test utterance matches exactly a single training condition, it’s
better to combine correction vectors from different conditions:
T
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where 0. is the final compensated feature vector for frame ¢ and w;
is the weight of correction vectors from the it? environment. R; =
[re1, ..., Te7] is the matrix of correction vectors of all environments
for time ¢, and w = [w1, ..., wy] is the vector of weights.

The feature compensation method shown in (5) is characterized
by a time dependent correction matrix R; which is built from I en-
vironment dependent corrector vector sets via the posterior proba-
bilities of the regions and a time-independent weight vector w. As
the number of environments is relatively small, e.g. 100, the weights
could be reliably estimated even from a short utterance.

2.3. Estimation of Linear Combination Weights

There are several ways to find the linear combination weights in (5).
One possible way is to set the weights of the ‘" set to its posterior
probability given the observed features:

p(o:[9) P(i)
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where P(3) is the prior probability of acoustic condition 7 which is
usually ignored, and p(o¢|3) is the likelihood of features in condi-
tion ¢ and could be represented by the acoustic condition dependent
GMM. The posterior in (6) is noisy and could be smoothed along
time or averaged over the whole test utterance. We call this way of
weight estimation the posterior method [19].

Although using posteriors of environments as weights are intu-
itive for combining the correction vector sets, it may not produce
compensated features that fit the acoustic model. To address this
issue, we propose to find the linear combination weights by maxi-
mizing the likelihood of the compensated features w.r.t. the speech
recognition system’s acoustic model. As the acoustic model usu-
ally contains a large number of Gaussians, we can also maximize
the likelihood on a simpler reference model for less computational
cost, e.g. a GMM that is trained from the same training data as the
acoustic model. In this study, we assume the acoustic model and the
region-partitioning universal GMM are trained from the same het-
erogenous training set, hence, it is reasonable to use the universal
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GMM as the reference GMM. Then the weights will be obtained by
solving the following problem:

T
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where A = {cm, p(™, 2™ |m = 1,..., M} is the parameters of
the reference/universal GMM. Note that there is also an L2 norm
regularization term in the objective function for robust estimation of
weights, especially when the test utterance is short. The parameter
«a is used to control how much regularization we want to impose and
is empirically tuned.

To solve the weight estimation problem, we can use the Expec-
tation Maximization (EM) algorithm [20]. The auxiliary function
is
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where v, (t) = p(mlo;) and K is a constant not dependent on w.
The weight estimation in (8) is a ridge regression problem [21]
and the closed form solution can be easily found by

W o= (G+aD)'p (11)

where I is the identity matrix.

2.4. Variances Compensation for ML Estimation

Although the solution in (11) can improve the match between the
compensated features and the reference model, it tends to reduce
the variance of the compensated features. In our preliminary exper-
iments, we found that the shrinking variance results in significantly
more deletion errors and high overall WER. This is because the solu-
tion in (11) tries to map the feature vectors to the mean vectors of the
reference model. Similar problem is also observed in voice conver-
sion [22] and feature normalization [6, 23]. To address this problem,
we introduce a term to encourage the increasing of log determinant
of the covariance matrix of the compensated features as follows:

Q2 = —Lw'Gwrwp— AwiP+ Dioglel (2)
where C = T ZtT:l (6:—f)(0:— o) and fr = L Zthl 0, are the
sample covariance matrix and sample mean of the compensated fea-
ture vectors estimated over the current test utterance. Note that the
variance compensation in (12) is the same as the Jacobian compensa-
tion for vocal tract length normalization (VTLN) [24]. As only offset
vectors are used and no linear transform is used in the proposed fea-
ture compensation, there is no well-defined Jacobian. Hence, the
weight of variance compensation is not necessarily equal to the the-
oretical value of 1 and will be empirically determined.

The maximization of (12) is complicated, so we use gradient-

based method such as L-BFGS [25] to find the solution of the

weights iteratively. Due to page limitation, we skip the derivation of
the gradients and directly present the gradients as follows.
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where A = 37 (6; — f1)F7,;. Tr(-) is the trace of a matrix. Tv,; is

the i*" column of matrix R, = R — Ry, where R = % >R

2.5. Relationship to RSW and SPLICE

The proposed feature compensation method is motivated by the
RSW model adaptation method. In RSW, the acoustic condition-
dependent mean supervectors are linearly combined to adapt the
mean of the acoustic model to fit the test data. In the proposed
method, the acoustic condition dependent correction supervectors
are linearly combined to compensate the features to match the origi-
nal acoustic model. From (1), it can be easily seen that the acoustic
condition dependent correction supervector is just the difference
between the reference model’s mean supervector and the condition
dependent mean supervector. Despite this relationship, our proposed
feature compensation method is different from RSW model adapta-
tion, which is obvious when we compare the auxiliary function in
(12) and that of RSW. In addition, our feature compensation method
has frame-dependent correction vectors as shown in (5), while RSW
has Gaussian dependent correction vectors.

The proposed feature compensation method shares some com-
mon spirit with the SPLICE method. For example, both use region
dependent correction vectors and acoustic condition dependent cor-
rections. However, there are several difference between these two
methods. First, we used ML criterion to estimate the linear combi-
nation weights to ensure that the compensated features will match
the acoustic model well. Second, we introduced the variance com-
pensation term to prevent the compensated features from having too
small variances. Third, the proposed method doesn’t require stereo
training data to obtain the correction vectors.

3. EXPERIMENTS

3.1. Experimental Settings

We evaluate the proposed feature compensation method on the
Aurora-4 multi-condition training task [26]. The acoustic model is
trained from 7138 clean and noisy utterances defined in Aurora-4.
There are about 3000 tied states in the acoustic model and the emis-
sion probability of each tied state is a GMM containing 8 Gaussians.

The speech data is sampled at 16kHz sampling rate. Mel-
frequency cepstral coefficients (MFCC) are used as the acoustic
features. The feature vectors are 39-dimensional, containing CO
to C12 and their delta and acceleration versions. The training and
testing features are both processed by utterancewise MVN [3].

The reference model used for partitioning the feature space into
regions and also used as target model for ML weight estimation is
built by pooling a monophone acoustic model trained from the 7138
multi-condition training utterances. There are totally 984 Gaussians
in the reference model, which means that we partition the feature
space into 984 regions. To obtain acoustic condition dependent
correction supervectors, we adapt the monophone acoustic model to
each speaker and noise combination in the training set, and obtained
581 acoustic conditions (83 speakers and 7 environment conditions).



Table 1. Recognition WER (%) on Aurora-4 task. Test case 1 is
clean test, while 2-7 are 6 noisy test cases. ‘“2-7” refers to the aver-
age WER of cases 2-7. “Posterior”, “ML”, and “ML+Var” are the 3
weights estimation methods described in section 2.

Methods Test Cases
1 2 3 4 5 6 7 2-7

MVN 10.1 11.8 | 151 | 187 | 173 | 154 | 19.6 || 16.32

Feature Compensation
Posterior | 10.4 10.7 | 144 | 18.1 | 169 | 148 | 18.6 15.58
ML 9.6 10.6 | 14.0 | 185 | 17.0 | 14.0 | 184 || 1542
ML+Var 9.6 103 | 135 | 17.7 | 16,5 | 13.7 | 182 14.97

Model Adaptation

RSW [ 95 [[ 100 [ 130 [ 170 [ 154 [ 127 [ 171 [| 1423

The adaptation is achieved by using 4 class-based MLLR mean
transforms [8]. The speaker information is given by the corpus,
while the noise type information of each training utterance is tagged
manually. Note that each speaker/noise combination is not com-
pletely homogenous as the signal-to-noise ratio (SNR) of training
utterance ranges from 10-20dB. Due to computational considera-
tions, we only used 117 conditions randomly selected from the 581
training conditions in our feature compensation method. The weight
of the L2 norm in (8) and (12) and the weight of the variance com-
pensation in (12) are empirically set to 400 and 0.3, respectively.
The maximum L-BFGS iterations allowed is set to 100.

For RSW, we obtain the acoustic condition dependent mean su-
pervectors by adapting the multi-condition triphone acoustic mod-
els to each speaker/environment combination using 4 class-based
MLLR mean transforms [8]. Due to computational issues, we only
used 256 mean supervectors. We also used an L2 norm in the RSW
to regularize the estimation of weights and found it improves per-
formance significantly. All acoustic model training, adaptation, and
speech recognition are implemented by using the HTK toolkit [27].

3.2. Performance of Feature Compensation

The performance of the proposed feature compensation method is
summarized in Table 1. Three ways of estimating the environment
combination weights are compared, i.e. the posterior method (“Pos-
terior”), the ML method without variance compensation (“ML”), and
ML with variance compensation (“ML+Var”). From the results, us-
ing environment posterior as weights reduces WER in all noisy test
cases, but degrades the performance in clean test case. The ML es-
timated weights are slightly better than the posterior weights. The
variance compensated ML estimation of weights performs the best
in all test cases. On average, “ML+Var” achieves 1.35% absolute
WER reduction over the MVN baseline.

When using environment posterior as weights, the proposed
method is very similar to multi-environment SPLICE. We didn’t
implement the classic SPLICE as it was shown to be ineffective for
Aurora-4 multi-condition training task. For example, in Table 9.3
of [18], using a 256 region SPLICE only reduces the WER of test
cases 2-7 from 19.3% to 19.2%. For comparison, the posterior re-
sults in Table 1 can be roughly considered as the multi-environment
SPLICE, and WER for case 2-7 is reduced from 16.32% to 15.58%.
The comparison shows that using environment combination is im-
portant for medium/large vocabulary tasks like Aurora-4 when the
acoustic model is already trained from noisy speech data..

We also compare with the model adaptation method RSW [13,

Table 2. Detailed error types and effect of variance compensation
for ML weight estimation. Insertion penalty is set to -10 in all tests.

Methods Error Types (%)
Deletion | Substitution | Insertion | Total (WER)
MVN 3.03 11.60 1.69 16.32
Feature Compensation
Posterior 2.90 11.02 1.66 15.58
ML 34 10.67 1.34 15.42
ML+Var 2.95 10.53 1.49 14.97
Model Adaptation
RSW 2.53 10.20 1.50 14.23

14]. Results in Table 1 show that RSW outperforms all feature com-
pensation methods. There are several reasons for this observation.
First, RSW uses HMM rather than GMM as reference model. Sec-
ond, in RSW, two-pass decoding is used, so the Gaussian occupation
probabilities used in RSW are expected to be more accurate than
that used in the feature compensation methods. Third, we argue that
model adaptation methods are generally more flexible than feature
compensation methods. For example, in RSW, the Gaussians have
new mean vectors after adaptation. This is equivalent to having a
large number (/24,000) of Guassian dependent correction vectors.
However, for feature compensation, we only have 1 correction vector
for each frame. Despite the better performance of RSW, feature com-
pensation methods also enjoy some advantages. For example, there
is no requirement for 2-pass decoding and the compensated features
can be used with other acoustic models, such as HMM/DNN.

3.3. Effect of Variance Compensation

The results in Table 1 shows that variance compensation is impor-
tant for good performance of ML-based weight estimation. In Ta-
ble 2, we investigate the detailed error types of each method. It can
be found that while the rest of methods do not change the inser-
tion/deletion ratio significantly, the ML method increases the dele-
tion error significantly, and at the same time reduces the insertion er-
ror. This is due to that the compensated features using ML-estimated
weight have significantly smaller variances than the input MVN fea-
tures. When variance compensation is used with ML estimation, the
compensated features have roughly comparable variances as the in-
put features. Hence, the insertion/deletion ratio also becomes more
normal. The analysis shows that the variance compensation is im-
portant for the ML-based weight estimation.

4. CONCLUSIONS

In this paper, we studied a feature compensation method which lin-
early combines sets of pretrained acoustic condition-dependent cor-
rection vectors to optimally compensate noisy features in the ML
sense. We also introduced a variance term to the objective function
of the feature compensation method to prevent the compensated fea-
tures from having very small variances. Results on Aurora-4 task
using multi-condition trained acoustic model show that using ML
criterion and variance compensation to estimate the linear weights
for combining pretrained correction vectors provides better results
than the previous methods.
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