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ABSTRACT 

 
In this paper, we propose a novel method to adapt context-

dependent deep neural network hidden Markov model (CD-DNN-

HMM) with only limited number of parameters by taking into 

account the underlying factors that contribute to the distorted 

speech signal. We derive this factorized adaptation method from 

the perspectives of joint factor analysis and vector Taylor series 

expansion, respectively. Evaluated on Aurora 4, the proposed 

method can get 19.0% and 10.6% relative word error rate reduction 

on test set B and D with only 20 adaptation utterances, and can 

have decent improvement with as few as two adaptation utterances. 

We also show that the proposed method is better than feature 

discriminative linear regression (fDLR), an existing DNN 

adaptation method. Its small number of parameters and short 

training time offer an attractive solution to low-footprint speech 

applications. 

 

Index Terms— deep neural network, factorized adaptation, 

joint factor analysis, vector Taylor series 

 

1. INTRODUCTION 

 
Recently, a new acoustic model, referred to as the context-

dependent deep neural network hidden Markov model (CD-DNN-

HMM), has been developed. It has been shown, by many groups 

[1][2][3][4][5][6], to outperform the conventional GMM-HMMs in 

many automatic speech recognition (ASR) tasks. Although popular 

now in general ASR tasks, there are only very few works to 

investigate the effectiveness of CD-DNN-HMM on noise-robust 

ASR tasks [7][8][9][10]. With the excellent modeling power of 

DNN, in [7] it is shown that the DNN-based acoustic models can 

easily match state-of-the-art performance of GMM systems 

without any explicit noise compensation. This is because its layer-

by-layer setup provides a feature extraction strategy that 

automatically derives powerful noise-resistant features from 

primitive raw data for senone classification. In [8][9][10] robust 

front-end is investigated to see whether it is still helpful to CD-

DNN-HMM.  

In contrast to the above works which study the applicability of 

noise-robust front-end technologies to CD-DNN-HMM, we 

investigate the effectiveness of DNN adaptation methods in this 

paper. Specifically, we are interested in small foot-print adaption, 

in which a relatively small number of parameters are used to adjust 

the existing DNN to fit new environments. This is closely related 

to our real-world application requirements: we have data from 

large amount of environments, and we want to build specific 

models for these environments. It is not realistic to build and store 

a specific DNN with huge number of parameters for each 

environment. Instead, low-footprint environment-specific models 

are acceptable. 

There are several types of methods to adapt neural networks. 

The first type of method, linear input network (LIN) [11][12], 

applies affine transforms to the input of a neural network to map 

the speaker-dependent input feature to the speaker-independent 

feature. Similarly, the linear output network (LON) adds a linear 

layer at the output layer of the neural network, right before the 

softmax functions are applied. However, LON is reported to give 

worse results than the baseline neural network [12]. In the context 

of DNN, feature discriminative linear regression (fDLR) [13], an 

example of LIN, is proposed to adapt a DNN with decent gains. 

The second type of method, linear hidden layer (LHN) [14], adds a 

linear transform network before the output layer. The rationale 

behind LHN is that the added linear layer generates discriminative 

features of the input pattern suitable for the classification 

performed at the output of the neural network. This LHN method is 

used in [15] as the output-feature discriminative linear regression 

(oDLR) method to adapt a DNN by transforming the outputs of the 

final hidden layer of a DNN, but with worse performance than 

fDLR. The third type of method [16][17] changes the shape of the 

hidden activation function instead of the network weights to better 

fit the speaker-specific features. The fourth type of method adds 

some regularization terms to the objective function to prevent the 

network weights from moving too far away from the baseline 

model. In [18], L2 regularization on network weights is used, while 

Kullback–Leibler divergence (KLD) on output probabilities is used 

in [19][20] as the regularization term for DNN adaptation. Finally, 

in [21] a method called speaker code is proposed to adapt a DNN 

by putting all the speakers together to train individual speaker 

codes and several adaptation DNN layers which transform speaker-

dependent features into speaker-independent ones before feeding 

them into the original DNN.  

All the above-mentioned methods could be applied to noise-

robust ASR tasks. However, these methods except the speaker 

code method only adapt or add the network weights without 

differentiating the underlying factors that cause the mismatch 

between training and testing. In the literature of noise-robust ASR 

[22], there are acoustic factorization methods [23][24][25] which 

separate the clean speech feature/model from the multiple speaker 

and environment factors irrelevant to the phonetic classification. In 

this paper, we propose a novel DNN adaptation method by taking 

into account the underlying factors that contribute to the distorted 

speech signal.  

The rest of this paper is organized as follows. We will first 

briefly introduce CD-DNN-HMM in Section 2. Then, in Section  3, 

we propose the factorized adaptation method with small amount of 

parameters and link this method with well-established technologies 

such as joint factor analysis (JFA) [26] and vector Taylor series 

(VTS) expansion [27][28]. In Section 4, we show that the proposed 

method can get up to 19.0% and 10.6% relative word error rate 

reduction on test set B and D of Aurora 4 [29] with only 20 

adaptation utterances, and can beat fDLR in most cases when using 

different number of adaptation utterances. We discuss the relation 



to prior work in Section 5, and then conclude the study and 

propose the future research direction in Section 6.  

 

2. CD-DNN-HMM 

 
A deep neural network (DNN) can be considered as a conventional 

multi-layer perceptron (MLP) with many hidden layers (thus deep) 

as illustrated in the left side of Figure 1, in which the input and 

output of the DNN are denoted as   and  , respectively. The three 

major components contributing to the excellent performance of 

CD-DNN-HMM are: modeling senones directly even though there 

might be thousands or even tens of thousands of senones; using 

DNNs instead of shallow MLPs; and using a long context window 

of frames as the input. 

 

Denote the input vector at layer l as    (with      , the 

weight matrix as   , and bias vector as   . Then for a DNN with L 

hidden layers, the output of the l-th hidden layer is 

      ( (  ))        (1) 

where  (  )          and  (    (     ⁄  is the sigmoid 

function applied element-wise. The posterior probability is  

    (              ( (      (2) 

where   is the tied triphone states (also known as senones).  

We compute the HMM’s state emission probability density 

function     (       by converting the state posterior 

probability     (       to 

    (       
    (      

  (    
  (    (3) 

where   (     is the prior probability of state  , and  (   is 

independent of state and can be dropped during evaluation. 
 

 

3. ACOUSTIC FACTORIZATION FOR DNN 

 
Denote    (    as the output vector right before the softmax 

activation in Eq-(2). Now we consider the case that the input 

feature, x, has been distorted by environment factors to become y. 

Merging the layer-by-layer z and   functions, we can denote  

   (   , where  (    represents the overall nonlinear function in 

a DNN. In this study, to adapt an existing DNN to a new 

environment, we propose to compensate the vector   by removing 

those unwanted parts in the network outputs caused by acoustic 

factors, as shown in Figure 1. Specifically, the modified vector   is 

obtained by 

    (   ∑      

 

   

 (4) 

where    is the underlying n-th acoustic factor and    is the 

corresponding loading matrix. Then    is used to calculate the 

posterior probability as  

    (              (     (5) 

When adapting the existing DNN to a new environment, we extract 

the factors           from adaptation utterances, and then train 

the loading matrixes           using standard back-

propagation. Then this adapted DNN can be used to decode the 

utterance from the same environment. 

In the following, we examine what acoustic factors should be 

used for adaption and link our proposed method with well-

established technologies from different perspectives.   
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Figure 1. The flow chart of factorized adaptation for a DNN. 

 

3.1. From the view of joint factor analysis 

 
Joint factor analysis (JFA) [26] is a very successful technology in 

speaker recognition by denoting speaker-dependent mean 

supervector M as 

            , (6) 

where m is the speaker- and session-independent mean 

supervector, A and C define a speaker subspace (eigenvoice matrix 

and diagonal residual, respectively), and B defines a session 

subspace (eigenchannel matrix). The speaker, speaker-specific 

residual and session factors are a, c, and b, respectively.  

 

Similarly, when considering nuisance factors that affect DNN’s 

prediction, we can use noise, channel, and speaker as factors in Eq-

(4), and relate the factor-independent    and dependent vectors 

R(y) in Eq-(4) to the speaker/session- independent and dependent 

mean supervectors m and M, respectively. While sharing the 

concept of decomposing speech into several factors with JFA, our 

method takes a fundamentally different approach for the purpose of 

acoustic model adaptation. This study focuses on estimating the 

“compensation” matrix using the discriminative training criterion 

given the pre-determined acoustic factors, whereas JFA jointly 

estimates the JFA matrices and the speaker/session factors. In our 

experiments, we refer to the factorized adaptation method 

considering any environment-related factors (noise, channel, or 

speaker) as JFA-style adaption. We next introduce a second 

method that considers additional inputs which are derived from the 

view of vector Taylor series expansion. 

 

3.2. From the view of vector Taylor series expansion 

 
Vector Taylor series (VTS) expansion is a very successful noise 

robust method [27][28] which uses a parsimonious nonlinear 

physical model to describe the environmental distortion and uses 

the VTS approximation technique to find closed-form HMM 



adaptation and noise/channel parameter estimation formulas. We 

can relate our proposed adaption method to VTS technologies by 

the following derivation.  

Suppose clean speech x, distorted speech y, and noise n are in 

the log filter-bank domain, which has been proved to be better than 

MFCC as the input of a DNN [30][31].  They have the following 

relationship,  

       (     (      (7) 

and can be expanded with first-order VTS at (       as 

       (     (         (       (     , (8) 

where 
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Then,  (   can also be expanded with first-order VTS as 
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If we make a rather imprecise assumption that     ⁄  is 

constant, Eq-(9) can be simplified as  

 (    (                (10) 

Eq-(10) is closely related to Eq-(4) and shows that in addition to 

using the noise n as a factor, we should also use the distorted input 

feature y as a factor to adjust  (  . Similar VTS-type inference 

can also be made by introducing additional factors such as channel, 

and can be done in other domains such as MFCC. In our 

experiments, we refer to the factorized adaptation method 

considering not only environment factors but also distorted input 

features as VTS-style adaptation. 

 

4. EXPERIMENTS 

 
We evaluate the effectiveness of our proposed methods with 

Aurora 4 [29], a noise-robust medium-vocabulary task based on 

Wall Street Journal corpus (WSJ0). The 16kHz clean-condition 

training set consists of 7138 utterances recorded with the 

Sennheiser microphone, corresponding to 14 hours of speech data.  

There are totally 14 evaluation sets. Two clean evaluation sets 

(A and C) are recorded with the Sennheiser microphone and the 

secondary microphone, respectively. The remaining 12 subsets are 

divided into two groups (B and D), recorded with two types of 

microphone respectively. Inside each group, 6 types of noise (car, 

babble, restaurant, street, airport, and train) are added with 

randomly chosen SNRs between 5 and 15 dB for each of the 

microphone types. There is also a multi-condition training set of 

Aurora 4 with 14 subsets, each with the same types of noise and 

microphone as the sub test sets, but with added SNR between 10 

and 20 dB.  

The baseline GMM-HMM system has 1206 senones, each 

with 16 Gaussians trained using maximum likelihood estimation 

criterion on the clean training set. The GMM-HMM system is used 

to align the training data to get the forced alignment for training 

the DNN-HMM system. Decoding is performed with the task-

standard WSJ0 bigram language model.  

The clean-trained DNN is trained with 24-dimensional log 

Mel filter-bank features and their first- and second-order derivative 

features. The input layer is formed from a context window of 11 

frames, which means the dimension of input layer is 792. The 

DNN has 5 hidden layers with 2048 hidden units in each layer and 

the final soft-max output layer has 1206 units, corresponding to the 

senones of the HMM system. The network is initialized with pre-

training and then fine-tuned using 25 iterations of back propagation. 

This DNN obtains 4.4% word error rate (WER) on test set A, the 

matched test set. On the mismatched test sets B, C, and D, it gets 

24.3%, 20.7%, and 41.3% WER, respectively. 

In this study, we use the noise-distorted test sets B and D to 

evaluate the method to adapt the clean-trained DNN to noise 

environments. The only difference between B and D is the type of 

microphone used; B uses the same microphone as the clean 

training set, while D uses a secondary one. We randomly sample 2, 

5, 10, and 20 utterances from each noise-distorted sub training set 

to adapt the clean DNN, and then evaluate on the corresponding 

test set.  

For JFA-style adaptation, we extract the 72-dimension noise 

factor by averaging the first and last 20 frames of each utterance, 

which means we use the same noise factor for every frame within 

an utterance. For VTS-style adaptation, in addition to the noise 

factor used in the JFA-style adaptation, we also use the noise-

distorted input y whose dimension is 72. This means for every 

frame, we have a frame-invariant noise factor n and a frame-

variant factor y within an utterance. Since we are interested in 

limited-footprint adaptation, either fDLR [13] or oDLR [15] is also 

a possible solution for using limited number of parameters for 

adaptation. As fDLR has been reported to be better than oDLR 

[15], we include the results of the fDLR approach as a comparison. 

Figure 2 (a) and Figure 2(b) show the averaged WER across 

all six types of noises versus the number of adaptation utterances 

for test set B and test set D, respectively. We plot the WERs of the 

JFA- and VTS-style adaptation methods together with fDLR. 

Overall, the VTS-style method performs the best. In test set B, it 

gets 19.0%, 15.8%, 12.3%, and 3.4% relative WER reduction 

(WERR) with 20, 10, 5, and 2 adaptation utterances, respectively. 

In test set D, the WERRs are 10.6%, 4.4%, 4.0%, and 3.3%, 

respectively. For test set B, the VTS-style approach is better than 

fDLR and the JFA-style approach regardless of the number of 

adaptation utterances. It shows that when the noise is the main 

source of variability in speech, the VTS-style adaptation can 

effectively learn the necessary modification to noisy features for 

more accurate DNN outputs. For test set D where 

microphone/channel mismatch occurs, the VTS-style  adaptation is 

slightly worse than fDLR when the number of adaptation 

utterances is ten or larger. We think that it is possible to further 

improve the VTS-style adaptation if we could add some estimated 

channel factors for the adaptation framework, besides the noise and 

the raw feature factor. 

For both cases, the JFA-style method always reaches its 

plateau much earlier than the other two. It suggests that the “noise” 

factor extracted in the current experiments hardly captures any 

further useful information after more adaptation utterances are 

available. Indeed, currently we just use the noise-mean vector, 

which does not change much after more utterances are collected. 

The factorization approach also possesses an advantage in 

terms of the training speed. Unlike fDLR where back-propagation 

computation are conducted through every hidden layer to the input 

feature level, the factorization approach only requires one layer of 

computation on relative smaller matrices.  



  
(a) Test set B – same microphone 

   
(b) Test set D – microphone mismatch 

Figure 2. Compare JFA- and VTS-style methods with fDLR for 

DNN adaptation on Aurora 4. The averaged WERs across 6 noise 

sub test sets after adaptation for Test set B (a) and Test set D (b). 

“0” for the number of adaptation utterances means the un-adapted 

clean-trained DNN model. 

 

5. RELATION TO PRIOR WORK 

 
As discussed in the introduction section, most existing neural 

network adaptation technologies only adapt or add the network 

weights without differentiating the underlying factors that cause 

the mismatch between training and testing [11]-[20]. The proposed 

method is fundamentally different from these methods by taking 

into account the underlying factors that contribute to the distorted 

speech signal.  

The most related work to our proposed method is the speaker 

code method [21] in which the speaker factor is addressed by 

training speaker-dependent codes. However, the detail is very 

different. The speaker code method needs to add several layers to 

connect the speaker code and the input feature to the bottom 

hidden layer of the original DNN. These new layers are trained 

with all the training data and shared by all speakers, while only the 

speaker code, a vector, is speaker dependent. This somehow 

restricts the scalability when more adaptation utterances can be 

used. As shown in [21], the improvement got saturated with 7 

adaptation utterances, and there was only very small WER 

difference between using 2 and 7 adaptation utterances. Our 

method differs from the speaker code method in these aspects: 1) 

We use factor-dependent matrices, as opposed to a speaker-

dependent vector in the speaker code method; 2) We directly 

modify the weight matrixes connecting the output layer and the 

factors for every environment, while the speaker code method 

needs to train speaker-specific codes and several additional DNN 

layers connected to the bottom layer of the original network; 3) As 

shown in Figure 2, our proposed method doesn’t have the fast 

saturation issue observed with the speaker code method. 

As described in Section 3.1 and 3.2, we can view our 

proposed method from the perspectives of JFA [26] and VTS 

[27][28]. Different from JFA which works on the mean 

supervector of GMM and VTS which works on either input 

features or model parameters of GMM, our proposed method 

modifies the output vector right before the softmax function in a 

DNN by adding the impacts from multiple acoustic factors.  

It should be noted that although we are using the term of JFA- 

and VTS-style to describe our methods, it doesn’t mean we strictly 

follow the formulation of JFA or VTS in this initial study. For 

example, speaker factor in JFA is not used in JFA-style in this 

study although we plan to model speaker factor in the future. 
 

6. CONCLUSIONS AND FUTURE WORKS 

 
In this paper, we have proposed a novel factorized adaptation 

method to adapt a DNN with only limited number of parameters by 

taking into account the underlying factors that contribute to the 

distorted speech signal. The proposed has two variants of 

implementation: the JFA-style and the VTS-style adaption 

methods. In the JFA-style adaptation, only noise is used as a factor 

while both noise and distorted speech are used as factors in the 

VTS-style adaptation. Evaluated on Aurora 4 test set B where the 

speech is only distorted by noise, the VTS-style adaptation gets 

19.0%, 15.8%, 12.3%, and 3.4% relative WER reduction (WERR) 

with 20, 10, 5, and 2 adaptation utterances, respectively. It is 

consistently better than fDLR and the JFA-style approach in all 

cases. On test set D where the speech is distorted by noise and 

channel, the VTS-style approach behaves similarly as fDLR while 

the JFA-approach is best when only 2 and 5 utterances are used. 

Despite some imprecise assumption when deriving from the 

perspective of VTS, overall the VTS-style performs the best 

among the three methods, suggesting its great potential advantage 

when more precise modeling is used.  

This paper presents our initial study of factor adaption method 

for a DNN. We are now working on several ways to improve the 

proposed method. First, as shown in Section 4, the VTS-style 

adaptation method can get only 10.6% WERR with 20 adaptation 

utterances on test set D, compared to 19.0% on test set B. In 

addition to noise distortion as in test set B, there is also channel 

distortion that needs to be addressed in test set D while our current 

VTS-style method doesn’t include a channel factor. We expect to 

get further improvement by including channel factors into the 

formulation.  Second, the VTS-style adaptation in Eq-(10) is 

approximated by assuming the gradient     ⁄  is constant in Eq-

(9). While significant WER improvement has been established 

under this assumption, we expect to get better performance with  

precise modeling in Eq-(9). This can be achieved by calculating the 

gradient using back-propagation during training and testing. 

Another way to avoid the gradient term in Eq-(9) is to apply VTS-

style adaptation at the DNN input layer instead of the output layer, 

using Eq-(8) with the factor loading matrixes directly. fDLR can be 

considered as a special case that only the matrix related with the 

distorted input is used.  Last, we will examine the possibility of 

using i-vector [32] to model total variability instead of using 

individual factors.    
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