
Tabular: A Schema-Driven
Probabilistic Programming Language

Andrew D. Gordon
Microsoft Research and University of

Edinburgh

Thore Graepel
Microsoft Research

Nicolas Rolland
Microsoft Research

Claudio Russo
Microsoft Research

Johannes Borgström
Uppsala University

John Guiver
Microsoft Research

Abstract
We propose a new kind of probabilistic programming language for
machine learning. We write programs simply by annotating exist-
ing relational schemas with probabilistic model expressions. We
describe a detailed design of our language, Tabular, complete with
formal semantics and type system. A rich series of examples illus-
trates the expressiveness of Tabular. We report an implementation,
and show evidence of the succinctness of our notation relative to
current best practice. Finally, we describe and verify a transforma-
tion of Tabular schemas so as to predict missing values in a concrete
database. The ability to query for missing values provides a uni-
form interface to a wide variety of tasks, including classification,
clustering, recommendation, and ranking.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages; I.2.6 [Artificial Intelligence]: Learning—Parameter Learn-
ing

Keywords Bayesian reasoning; machine learning; model-learner
pattern; probabilistic programming; relational data

1. Introduction
The core idea of this paper is to write probabilistic models by
annotating relational schemas. We illustrate this idea on a database
for recording outcomes of a two-player game without draws.

Players
Name string

Matches
Player1 link(Players)
Player2 link(Players)
Win1 bool

In this concrete schema, we have a Players table with column
Name, and a Matches table, with columns Player1, Player2, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright c© 2014 ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535850

Win1 (“Player 1 wins”). As well as scalar types such as bool or
string, a column may have a type such as link(Players), which
means the column holds integer foreign keys to the Players table.
(For simplicity, we assume that every table has a single-column
primary key ID, a common case in practice. We also assume that
in a table with n rows the keys are integers normalized to lie in
the range 0..n− 1; thus, we omit the primary key column from
schemas.)

To illustrate some of the key ideas of Tabular, we consider
the TrueSkill model (Herbrich et al. 2006), which is deployed at
cloud-scale to make selections of players of roughly equal skill
as opponents in online gaming. In this model, each player has an
underlying numeric skill Skill, players’ performances in a match
are noisy copies of their skills, and each match is won by the player
with the greater performance.

Players
Name string input
Skill real latent Gaussian(25.0,0.01)

Matches
Player1 link(Players) input
Player2 link(Players) input
Perf1 real latent Gaussian(Player1.Skill,1.0)
Perf2 real latent Gaussian(Player2.Skill,1.0)
Win1 bool output Perf1 > Perf2

Although its starting point is the underlying concrete schema, a
Tabular schema may contain additional latent columns, which con-
tain random variables to help model concrete data. In our example,
the Players table has a latent column Skill, containing a numeric
skill for each player, while the Matches table has latent columns
Perf1 and Perf2, containing the performances of the two players in
the match.

So that a schema defines a probability distribution over database
instances, we annotate columns with probabilistic model expres-
sions, which define distributions over entries in the column. Model
expressions allow predictions to be made for the values of associ-
ated columns. Our example shows three sorts of annotated column:

(1) A concrete column marked as an output has a model expression
that predicts values of the column. For example, the Win1 col-
umn is an output; its model expression indicates the winner is
the player with the greater performance. The model expression
can be applied to predict a future match outcome based on skills
learnt from training data.

321

(2) A concrete column marked as an input is used to condition the
probabilistic model, but has no model expression and cannot be
predicted by the model. For example, the Player1 column in the
Matches table is an input; it is used to characterize a match but
is not considered to be uncertain.

(3) Finally, a column marked as latent is an auxiliary column, not
present in the concrete database, whose model expression forms
part of the model, and can be predicted. For example, the Skill
column has a model expression indicating each entry is drawn
from a Gaussian distribution with mean 25 and precision 0.01.

A Tabular program divides the columns of the concrete database
into input and output columns, and determines a probabilistic
model that predicts the output columns given the input columns.
If all the cells in a concrete column have values we say the column
is observed, but otherwise, when there are missing values, we say
it is observable.

We consider two forms of inference. In both forms, input
columns are observed. In query-by-latent-column, we assume that
output columns are observed—we have data for each cell in the
column—and the task is to predict the latent columns. Towards the
end of the paper, in Section 7, we also consider query-by-missing-
value, where output columns are observable, and the task is to
predict the missing values in output columns.

Query-by-Latent-Column Given a table of players and a table
listing the outcomes of matches between those players, TrueSkill
infers a numeric skill for each player, used for matchmaking. Con-
sider the following tables of players and matches.

Players
ID Name
0 "Alice"
1 "Bob"
2 "Cynthia"

Matches
ID Player1 Player2 Win1
0 0 1 false
1 1 2 false

Initially, TrueSkill assigns the same uncertain skill prior to each
player. Given data showing that player 0 has been beaten by
player 1, who in turn has been beaten by player 2, TrueSkill infers
posterior skill distributions reflecting the likely ranking player 0 <
player 1 < player 2.

The query-by-latent-column problem for Tabular is to deter-
mine the probability distribution over latent databases for a given
schema, given a concrete database. In theory, the latent database
is a joint distribution over all latent columns of the database. In a
practical implementation, we consider only the marginals (projec-
tions) of each of the variables in the latent database. In particu-
lar, for the TrueSkill schema, conditioned on the concrete database
above, the marginal representation of the distribution over latent
databases consists of the following tables.

PlayersLatent
ID Skill
0 Gaussian(22.51, 1.45)
1 Gaussian(25.22, 1.53)
2 Gaussian(27.93, 1.45)

MatchesLatent
ID Perf1 Perf2
0 Gaussian(22.49, 1.11) Gaussian(25.25, 1.14)
1 Gaussian(25.25, 1.14) Gaussian(27.96, 1.11)

The distribution over the latent database can be stored in the same
relational store as the original concrete database, joined with the
concrete tables. While Tabular is specific to the domain of specify-
ing probabilistic models for relational data, users are free to deploy
whatever programming or query notation is appropriate to prepro-

cess the data into relational form and to postprocess the results of
inference.

Query-by-Missing-Value In this mode, we use tables with miss-
ing values in observed columns as queries. For example, the follow-
ing amounts to a query asking how likely it is that player 2 would
beat player 0, to help decide on placing a bet.

Matches
ID Player1 Player2 Win1
3 2 0 ?

The result of such a query might be the following, indicating there
is an 85% chance player 2 will beat player 0.

MatchesQueryLatent
ID Win1
3 Bernoulli(0.85)

A Schema-Driven Recipe for Probabilistic Modelling In design-
ing Tabular, we have in mind data enthusiasts (Hanrahan 2012),
the large class of end users who wish to model and learn from their
data, who have some knowledge of probability distributions and
database schemas, but who are not necessarily professional pro-
grammers.

Tabular supports the following recipe for modelling data.

(1) Start with the schema (such as the Players and Matches tables).

(2) Add latent columns (Skill, Perf1 and Perf2).

(3) Write probabilistic models for latent and observed columns
(skills have a prior, performances are noisy copies of skills, the
player with the highest performance wins).

(4a) Learn latent columns and table parameters from complete data
(we learn players’ skills from a dataset of match outcomes).

(4b) Or predict missing values from partially-observed data
(we predict a future match outcome based on a row (p1,p2,?)).

There is more to the whole cycle of learning from data—such as
gathering and preprocessing data, and visualizing and interpreting
results—but the recipe above addresses a crucial component.

Models as Factor Graphs Factor graphs are a standard class
of probabilistic graphical models of data, with many applications
(Koller and Friedman 2009). Having modelled data with a factor
graph, one can apply a range of inference algorithms to infer prop-
erties of the data or make predictions. The TrueSkill model was
originally expressed as a factor graph such as the one below, in
typical “plates and gates” notation.

The circular nodes of the graph represent random variables, and the
black squares are factors relating random variables. The large en-
closing boxes labelled “Players i” and “Matches m” are known as
plates, and indicate that the enclosed subgraphs are to be replicated.
The two dotted boxes are known as gates (Minka and Winn 2008),
and indicate choices governed by an incoming edge. The nodes for
some random variables are shaded to indicate they are observed,

322

while unshaded variables are latent. Together with exact factor an-
notations, factor graphs represent joint probability distributions.

Like many visual notations, factor graphs become awkward as
models become complex. Instead, we turn to probabilistic program-
ming languages, where models are code, random variables are pro-
gram variables, factors are primitive operations, plates are loops,
and gates are conditionals or switches. BUGS (Gilks et al. 1994) is
the most popular example, and there is much current interest, wit-
ness the wiki probabilistic-programming.org. In this paper,
we create models with a direct interpretation as factor graphs by
writing schema annotations in a high-level probabilistic language.

Innovations in the Design of Tabular By using the relational
modelling of the data encoded in the concrete schema, we write
models succinctly because each table description implicitly defines
a loop (a plate) over its rows. Moreover, we save our user the trou-
ble of writing code to transfer data and results between language
and database. The main conceptual innovations in Tabular are:

(1) Annotations on a relational schema so as to construct a graphi-
cal model, with input, output, and latent columns.

(2) A grammar of model expressions to stipulate the models for
latent and output columns, with the semantics of tables and
schemas given as models assembled compositionally from the
models for individual columns.

(3) Query-by-latent-column: infer latent columns from the con-
crete database, given input columns and fully-observed output
columns.

(4) Query-by-missing-value: infer missing values in output columns,
given input columns and partially-observed output columns.

Technical Contributions and Evaluations We present the de-
tailed syntax and type system of Tabular, and semantics by trans-
lation to a core probabilistic calculus, Fun. Theorem 1 (Transla-
tion Preserves Typing) asserts that the semantics respects the Tab-
ular type system. Theorem 2 asserts that a certain factor graph, ex-
pressed in Fun, correctly implements query-by-latent-column.

We describe an implementation of Tabular using Infer.NET,
based on our semantics. To test Tabular in practice, we reimple-
ment a series of factor-graph models for psychometric data first
performed using Infer.NET directly (Bachrach et al. 2012), with es-
sentially the same results. Theorem 3 justifies a transformation on
Tabular schemas that implements query-by-missing-value in terms
of query-by-latent-column.

An extended version of this paper, with additional examples and
screenshots, appears as a technical report (Gordon et al. 2013b).

2. Fun and the Model-Learner Pattern
Fun, Probabilistic Programming for Factor Graphs We use a
version of the core calculus Fun (Borgström et al. 2011) with
arrays of deterministic size, but without a conditioning operation
(observe) within expressions. This version of Fun can be seen as
a first-order subset of the stochastic lambda-calculus (Ramsey and
Pfeffer 2002); it is akin also to HANSEI (Kiselyov and Shan 2009).
Fun expressions have a semantics in the probability monad, but also
have a direct interpretation using factor graphs.

We have scalar types bool, int, and real, record types (that are
constructed from field typings), and array types. Let string= int[]
and vector = real[] and matrix = vector[]. Let c range over the
field names, s range over constants of base type, and let ty(s) = T
mean that constant s has type T .

Types and Values (Scalars, Records, Arrays): T, V

S ::= bool | int | real scalar type
T,U ::= S | {RT} | T [] type

RT ::=∅ | c : T ;RT field typings
V ::= s | {c1 =V1; . . . ;cn =Vn} | [V1, . . . ,Vn]

Expressions of Fun: E

E,F ::= expression
x | s variable, constant
if E then F1 else F2 if-then-else
{R} | E.c record literal, projection
[E1, . . . ,En] | E[F] array literal, lookup
[for x < E→ F] for-loop (scope of index x is F)
let x = E in F let (scope of x is F)
g(E1, . . . ,En) primitive g with arity n
D(E1, . . . ,En) distribution D with arity n

R ::=∅ | c = E;R field bindings

We write fv(φ) for the set of variables occurring free in a phrase
of syntax φ , such as an expression E, and identify syntax up to
consistent renaming of bound variables. We sometimes use tuples
(E1, . . . ,En) and tuple types T1 ∗ · · · ∗Tn below: they stand for the
corresponding records and record types with numeric field names
1, 2, . . . , n. We write fst E for E.1 and snd E for E.2. The empty
record {} represents a void or unit value. We write {c1 : T1; . . . ;cn :
Tn} for a concrete record type, and thus {} for the empty record
type; {c1 = E1; . . . ;cn = En}, for a concrete record term; and use
the comprehension syntax {ci : Ti}i∈1..n and {ci =Ei}i∈1..n to index
the components of a record type or term (when ordering matters)
or {c : Tc}c∈C and {c = Ec}c∈C (where C is a set of field names)
when ordering is irrelevant. Field typings and field bindings are
just association lists; we sometimes use RT1;RT2 to denote the con-
catenation of field typings RT1 and RT2, and R1;R2 for the con-
catenation of field bindings. We implicitly identify record types up
to re-ordering of field typings. We assume a collection of total de-
terministic functions g, including arithmetic and logical operators.
We also assume families D of standard probability distributions,
including, for example, the following. (A Gaussian takes a pre-
cision parameter precision; the standard deviation σ follows from
the identity σ2 = 1/precision.)

Distributions: D : (x1 : T1; . . . ;xn : Tn)→ T

Bernoulli : (bias : real)→ bool
Gaussian : (mean : real,precision : real)→ real
Beta : (a : real,b : real)→ real
Gamma : (shape : real,scale : real)→ real
DirichletSymmetric : (length : int,alpha : real)→ vector
Discrete : (probs : vector)→ int
DiscreteUniform : (range : int)→ int

Semi-Observed Models We explain the semantics of Tabular by
translating to Bayesian models encoded using Fun expressions. We
consider a Bayesian model to be a probabilistic function, from
some input to some output, that is governed by a parameter, it-
self generated probabilistically from a deterministic hyperparame-
ter. Our semantics is compositional: the model of a whole schema
is assembled from models of tables, which themselves are com-
posed from models of rows, assembled from models of individual
cells. This formulation follows Gordon et al. (2013a), with two re-
finements. First, when we apply a model to data, the model out-
put is semi-observed, that is, each output is a pair consisting of
an observed component (like a game outcome in TrueSkill) plus
an unobserved latent component (like a performance in TrueSkill).
Second, the hyperparameter is passed to the sampling distribution
Gen(h,w,x) as well as to the parameter distribution Prior(h) for
convenient model building.

323

Notation for Bayesian Models:
Hyper Eh default hyperparameter (Eh deterministic)
Prior(h) Ew distribution over parameter (given h)
Gen(h,w,x) Eyz distribution over output (given h, w, and x)

(Hyperparameters and parameters both determine the distribution
of outputs given an input; the difference is that we specify our
uncertain knowledge of parameters (but not hyperparameters) using
the prior distribution, so that our uncertainty about parameters (but
not hyperparameters) is reduced by conditioning on data.)

For example, here is a model for linear regression, that is, the
task of fitting a straight line to data points. This example illustrates
the informal notation for Fun expressions used in Section 3. For
instance, we write a ∼ Gaussian(h.µA,1) to mean that random
variable a is distributed according to Gaussian(h.µA,1). We write
x := E to indicate that x is the value of deterministic expression E.

Linear Regression: (Illustrative of informal notation for Fun)
Hyper The record {µA = 0; µB = 0}.
Prior(h) The record {A = a;B = b} where

a∼ Gaussian(h.µA,1) and b∼ Gaussian(h.µB,1).
Gen(h,w,x) The pair (y,z) where

z := (w.A)∗ x+w.B and y∼ Gaussian(z,1).

In our formal semantics for Tabular, we use a compact notation
P ::= 〈Eh,(h)Ew,(h,w,x)Eyz〉 for a model. Our regression example
is written in compact notation as follows.

〈{µA = 0; µB = 0},
(h)let a = Gaussian(h.µA,1) in

let b = Gaussian(h.µB,1) in {A = a;B = b},
(h,w,x)let z = (w.A)∗ x+w.B in let y = Gaussian(z,1) in (y,z)〉

We use variable x for the input, y for the observed output, z for
the latent output, w for the parameter, and h for the hyperparameter.

Databases as Fun Values We view a database as a record {t1 =
B1; . . . ; tn = Bn} holding (relational) tables B1, . . . , Bn named t1,
. . . , tn. A table B is an array [r1, . . . ,rm] of rows, where each row
is a record ri = {c1 = V1; . . . ;cn = Vn}, where c1, . . . , cn are the
columns of the table, and V1, . . . , Vn are the items in the column
for that row. (We view a table as an array so that a primary key is
simply an index into the array, and omit primary keys from rows.)

The column annotations in a Tabular schema partition a whole
database into a pair d =(dx,dy) where dx is the input database, with
the input columns of each table, and dy is the observed database,
with the observed columns of each table. (For each table, the
numbers of rows in the input and observed databases must match.)

The latent database dz is a database with just the latent columns
of the schema, and the database parameter Vw is a record holding
parameters for each table.

The purpose of query-by-latent-column is to predict the database
parameter and latent database from the input and observed databases.

Distributions Induced by a Semi-Observed Model In later sec-
tions, we define the semantics of a Tabular schema as a model P. In
general, a model P defines several probability distributions:

• Prior p(w | h) is w∼ P.Prior(h).
• Full sampling p(y,z | h,w,x) is y,z∼ P.Gen(h,w,x).
• Sampling distribution p(y | h,w,x) is

∫
p(y,z | h,w,x)dz.

• Predictive distribution p(y | x,h) is
∫

p(y | h,w,x)p(w | h)dw.

Training data for a model consists of a pair d = (dx,dy) where
dy is the observed output given input dx. In our case, dx is the input
database and dy is the observed database. Conditioned on such data
d = (dx,dy) we obtain posterior distributions:

• Posterior p(w | d,h) = p(dy|h,w,dx)p(w|h)
p(dy|dx,h)

.

• Posterior latent p(z | d,h) =
∫ p(dy,z|h,w,dx)

p(dy|h,w,dx)
p(w | d,h)dw.

(The term p(dy | dx,h) is known as the evidence for the model, used
later in our comparison of different models on the same dataset).

Given d = (dx,dy), the semantics of query-by-latent-column is
to compute the posterior p(w | d,h) on the database parameter, and
the posterior latent distribution p(z | d,h) on the latent database.

3. Tabular, By Example
3.1 Tabular and the Generative Process for Tables
A schema S is an ordered list of tables, named t1, . . . , tn, each
of which has a table descriptor T, that is itself an ordered list of
typed columns, named c1, . . . , cn. The key concept of Tabular is to
place an annotation A on each column so as to define a probabilistic
model for the relational schema.

We present first a core version of Tabular, where the model
expressions M on columns are simply Fun expressions E.

Tabular Schemas, Tables and Annotations: S, T, A

S ::=∅ | (t 7→ T)S (database) schema
T ::=∅ | (c 7→ A : T)T table descriptor
A ::= annotation

hyper(E) hyperparameter
param(M) parameter
input input
output(M) output
latent(M) latent

M ::= E (to be completed) model expression

The types T on concrete columns are typically scalars, but our
semantics allows these types to be arbitrary. The Tabular syntax
for types and expressions slightly extends Fun syntax with features
to find the sizes of tables and to dereference foreign keys.

Additional Types and Expressions of Tabular Fun: T, E

T ::= · · · | link(t) type
E ::= · · · | sizeof(t) | (E : link(t)).c expression

The expression sizeof(t) returns the number of rows in table t. The
expression (E : link(t)).c returns the item in column c of the row
in table t keyed by the integer E. In the common case when E is a
column ck annotated with type link(t), we write ck.c as a shorthand
for (ck : link(t)).c. Values of type link(t) are integers serving as
foreign keys to the table t. For simplicity, our type system treats
each type link(t) as a synonym for int.

Generative Process for Tables A table descriptor T is a function
from the concrete table holding the input and output columns, to
the predictive table, which additionally holds the latent columns.
The descriptor defines a generative process to produce (1) the
hyperparameters and parameters of the table, and (2) the output and
latent columns of the table, by a loop over the rows of the table.

In step (1), outside the loop over the data, we process the
annotations in turn to define the hyperparameters and parameters,
ignoring the input, output, and latent annotations.

• c 7→ hyper(E) defines c as the deterministic expression E.
• c 7→ param(E) samples c from probabilistic expression E.

In step (2), a loop over each row of the concrete table, we
process the annotations in turn to sample independently each row
of the predictive table, with items for each of the input, output, and
latent columns.

324

• c 7→ input copies c from the input row.
• c 7→ output(E) samples c from probabilistic expression E.
• c 7→ latent(E) samples c from probabilistic expression E.

In step (2), inside the data loop, we ignore the hyperparameter
and parameter annotations, although expressions may depend on
the variables defined in step (1) outside the loop.

A schema S describes a generative process to produce (1) the
hyperparameters and parameters of each table, and (2) the predic-
tive table for each concrete table. Tables and columns are lexically
scoped in sequence, although the variables bound in step (1) cannot
refer to variables bound later in step (2).

Later on, we formalize the generative processes for tables and
schemas using our model notation; step (1) corresponds to the
Hyper and Prior parts, while step (2) corresponds to the Gen part.

Example: Conjugate Bernoulli This standard model is used to
generate random bits with a probability distribution that is itself
random; it is a key ingredient of mixture models.

CoinFlips
alpha int hyper 1
beta int hyper 1
Bias real param Beta(alpha,beta)
Coin bool output Bernoulli(Bias)

In step (1) of the generative process, we define both alpha and
beta as 1, and sample Bias from the distribution Beta(1,1), the uni-
form distribution on the unit interval. In step (2), we generate each
row of the table by sampling the Coin variable from the distribution
Bernoulli(Bias) on bool, which returns true with probability Bias.
Overall, we sample the shared parameter Bias, whereas we sample
each output Coin independently for each row.

A concrete database for this schema is simply one table with a
single column Coin containing Booleans. Inference computes the
distribution of the Bias parameter.

Distributions with Conjugate Priors In Bayesian theory, the Beta
distribution over the parameter of the Bernoulli distribution is a par-
ticular case of a conjugate prior. It is convenient for efficient infer-
ence to choose a prior that is conjugate to a sampling distribution.
Hence, we define primitive models for various standard sampling
distributions and conjugate priors.

Library of Primitive Models: P

P ::= 〈Eh,(h)Ew,(h,w,x)Ey〉 primitive model

CBernoulli , 〈{α = 1.0;β = 1.0},
(h)Beta(h.α,h.β),
(h,w,x)Bernoulli(w)〉

CGaussian , 〈{µ = 0.0;τ = 1.0;κ = 1.0;θ = 2.0},
(h){µ = Gaussian(h.µ,h.τ);

τ = Gamma(h.κ,h.θ))},
(h,w,x)Gaussian(w.µ,w.τ)〉

CDiscrete , 〈{N = 2;α = 1.0},
(h)DirichletSymmetric(h.N,h.α),
(h,w,x)Discrete(w)〉

These models are defined as primitives built from closed Fun ex-
pressions. The model CBernoulli is exactly equivalent to our pre-
vious example. The concentration α of a CDiscrete determines
whether the parameter—a probability vector of length N drawn
from the symmetric Dirichlet distribution—is uniformly distributed
(α = 1.0), biased towards sparse vectors (α < 1.0) or dense vectors
(α > 1.0). Notice that Gaussian is a distribution D that can occur
within an expression E, while CGaussian is a primitive model that
may occur as a model expression M in the full syntax of Tabular.

Completing Tabular We add primitive and indexed model ex-
pressions to enable the succinct expression of complex models.

Completing the Syntax of Model Expressions: M

M ::= model expression
E simple
P(c1 = E1, . . . ,cn = En) primitive, with hyperparameters
M[Eindex < Esize] indexed

The semantics of a model expression M for a column c is a
model P whose output explains how to generate the entry for
c in each row of a table. The model P has a restricted form
P = 〈{},(h)Ew,(h,w,x)Ey〉, with no hyperparameters, and where
h /∈ fv(Ew,Ey) and x /∈ fv(Ey). Hence, in our notations below, we
omit the bound variables h and x.

A simple model E produces its output by running E.

Model for Simple Model Expression E:
Hyper The empty record {}.
Prior() The empty record {}.
Gen(w) y where y∼ E.

A primitive model P(c = Ec
c∈C′) acts like the library model P,

except that when P.Hyper = {c = Fc
c∈C} and C′ ⊆ C, hyper-

parameter c is set to Ec if c ∈C′, and otherwise to the default Fc.

Model for P(c = Ec
c∈C′):

Hyper The empty record {}.
Prior() P.Prior({c = Ec

c∈C′ ;c = Fc
c∈C\C′}).

Gen(w) P.Gen({c = Ec
c∈C′ ;c = Fc

c∈C\C′},w,{}).

An indexed model M[Eindex < Esize] creates its parameter to be an
array of Esize instances of the parameter of M, and produces its
output like M but using the parameter instance indexed by Eindex.

Model for M[Eindex < Esize] where P is the model for M:
Hyper The empty record {}.
Prior() [w1, . . . ,wEsize] where wi ∼ P.Prior() for i≤ Esize.
Gen(w) y∼ P.Gen(wi) where i := Eindex.

Generative Process for Tables in Full Tabular In the full lan-
guage, the model expression for a column c has both a parameter
and an output; we use the variable c$ for the parameter, and the
variable c for the output.

In step (1) the generative process, we process the annotations in
turn to define the hyperparameters and parameters.

• c 7→ hyper(E) defines c as the deterministic expression E.
• c 7→ param(M) samples c$ from P.Prior() and samples c from

P.Gen(c$) where P models M.
• c 7→ input is ignored.
• c 7→ output(M) samples c$ from P.Prior() where P models M.
• c 7→ latent(M) samples c$ from P.Prior() where P models M.

In step (2), a loop over each row of the input table, we process
the annotations in turn to define each row of the predictive table.

• c 7→ hyper(E) is ignored.
• c 7→ param(M) is ignored.
• c 7→ input copies c from the input row.
• c 7→ output(M) samples c from P.Gen(c$) where P models M.
• c 7→ latent(M) samples c from P.Gen(c$) where P models M.

325

The generative process for the core language is a special case,
where the $ suffixed variables are empty records. As before, the
variables defined in step (1) are static variables defined once per
table, whereas the variables defined in step (2) are defined for each
row of the table. The $ suffixed variables help define the semantics
of Tabular, but are not directly available to Tabular programs.

3.2 Examples of Models and Queries
A mixture model is a probabilistic choice between two or more
other models. We begin with several varieties of mixture model.

Mixture of Two Gaussians Our first mixture model makes use of
the library models CBernoulli and CGaussian.

MoG1
z bool latent CBernoulli()
g1 real latent CGaussian()
g2 real latent CGaussian()
y real output if z then g1 else g2

In step (1) of the generative process, we sample parameters z$
(containing the bias) from the prior of CBernoulli(), and parameters
g1$, g2$ (each containing a mean µ and precision τ) from the prior
of CGaussian(). The empty hyperparameter lists in CBernoulli()
and CGaussian() indicate that we use the default hyperparameters
built into the models, that is, {α = 1.0;β = 1.0} and {µ = 0.0;τ =
1.0;κ = 1.0;θ = 2.0}.

In step (2), we generate each row of the table by sampling z from
the distribution Bernoulli(z$), g1 and g2 from the distributions
Gaussian(g1$.µ,g1$.τ) and Gaussian(g2$.µ,g2$.τ) and finally
defining the output y to be g1 or g2, depending on z.

Given a concrete database for this schema (a column y of ran-
dom numbers that is expected to be grouped into two clusters
around the means of the two Gaussians) inference learns the poste-
rior distributions of the parameters z$, g1$, and g2$, and also fills
in the latent columns. The inferred distribution of each z indicates
how likely each y is to have been drawn from each of the clusters.

Mixture of an Array of Gaussians To generalize to a many-way
mixture, we first decide on a number n of mixture components
(clusters); in this case we set n=5. To randomly select a cluster
we use the CDiscrete library model, which has an integer hyper-
parameter N and outputs natural numbers less than N. The default
value of N is 2; to define a mixture model with n components we
override the default as CDiscrete(N=n). A model CDiscrete(N=2)
is akin to a CBernoulli that outputs 0 or 1.

MoG2
n int hyper 5
z int latent CDiscrete(N=n)
y real output CGaussian()[z < n]

The indexed model CGaussian()[z < n] denotes a model whose
parameter is an array of n parameter records (containing mean
µ and precision τ fields) for the underlying CGaussian model.
The output of the indexed model is obtained by first picking the
parameter record at index z, and then getting an output from the
CGaussian model with those parameters.

The parameter of column z is a probability vector of length N,
an array of non-negative real numbers that sum to 1, indicating the
chance of each output value. The parameter for the y column is an
array of n parameter records for the underlying CGaussian model.

The observed output of each row is determined by first sampling
the cluster z from the discrete distribution, and then sampling from
CGaussian[z < n]. With n=2 we recover our previous mixture of
two Gaussians.

User/Movie/Rating Schema Our final mixture model is a Tabular
version of the factor graph in Figure 1 of Singh and Graepel (2012),
where it was automatically generated from a relational schema.

User
z int latent CDiscrete(N=4)
Name string input
IsMale bool output CBernoulli()[z]
Age int output CDiscrete(N=100)[z]

Movie
z int latent CDiscrete(N=4)
Title string input
Genre int output CDiscrete(N=7)[z]
Year int output CDiscrete(N=100)[z]

Rating
u link(User) input
m link(Movie) input
Score int output CDiscrete(N=5)[u.z,m.z]

The model for the Score column illustrates a couple of notations
regarding indexed models. First, a doubly-indexed model M[E1 <
F1,E2 < F2] is short for (M[E1 < F1])[E2 < F2]. Second, we write
M[E] as short for M[E < n] when we know that E is output by
CDiscrete(N=n).

Each row in the User table belongs to one of four clusters,
indexed by the latent variable z which has a CDiscrete model.
For each cluster, there is a corresponding distribution over gender
(IsMale) and Age. Similarly, each row in the Movie table is mod-
elled by a four-way mixture, indexed by z, with Genre and Year
attributes. Finally, each row in the Rating table has links to a user
u and to a movie m, and also a Score attribute that is modelled by
a discrete distribution indexed by the clusters of the user and the
movie, corresponding to a stochastic block model (Nowicki and
Snijders 2001).

Query-by-Latent-Column and TrueSkill We illustrate direct use
of query-by-latent-column with reference to TrueSkill, and also a
programming style where we introduce new query tables purely for
the purpose of formulating queries.

First, as illustrated in Section 1, given tables of players and
matches, inference computes distributions for the latent Skill col-
umn; these skills can be used to do matchmaking or to display in
leaderboards. It also infers distributions for the Perf1 and Perf2
columns, which may indicate whether a player was on form or not
on the occasion of a particular match.

Second, suppose we wish to bet on the outcomes of upcoming
matches between members p and q of the Players table. We add a
fresh query table Bets, which has the same schema as Matches
except that Win1 is latent instead of being an observed output.
We place one row in this new table, with p for Player1 and q for
Player2, and inference computes distributions for the three latent
columns, including a Bernoulli for Win1 indicating the odds of a
win. By placing multiple rows in the Bets table we can predict the
outcomes of multiple upcoming matches.

Bets
Player1 link(Players) input
Player2 link(Players) input
Perf1 real latent Gaussian(Player1.Skill,1.0)
Perf2 real latent Gaussian(Player2.Skill,1.0)
Win1 bool latent Perf1 > Perf2

Third, consider an online situation where there is a large table
of players, and a relatively small number of players qi queuing to
begin fresh online games. We may wish to select one of the qi to
play against a new player p. To do so, we add the Sim query table
below, and fill it with rows (p,qi) for each i. The latent column
Similar holds true if the two players are close in skill (less than 0.1
units apart). Inference fills this column with Bernoulli distributions
which can be used to select a partner close in skill to p. Both
the means and variances of the skills of players enter into the
marginal probability of being Similar, thus making use of the full
probabilistic formulation.

326

Sim
Player1 link(Players) input
Player2 link(Players) input
Similar bool latent abs(Player1.Skill−Player2.Skill)<0.1

4. Formal Semantics of Tabular
4.1 Semantics of Fun (Review)
We here recall the semantics of Fun without zero-probability obser-
vations (Bhat et al. 2013). We write Γ ` E : T to mean that in type
environment Γ = x1 : T1, . . . ,xn : Tn (xi distinct) expression E has
type T . Let Det(E) mean that E contains no occurrence of D(. . .).
The typing rules for Fun are standard for a first-order functional
language; some examples follow below.

Selected Typing Rules of Fun Expressions: Γ ` E : T

(FUN RANDOM)
D : (x1 : T1 ∗ · · · ∗ xn : Tn)→U
Γ ` Ei : Ti for i ∈ 1..n
Γ ` D(E1, . . . ,En) : U

(FUN ACONST)
Γ ` Ei : T for i ∈ 1..n
Γ ` [E1, . . . ,En] : T []

(FUN ITER)
Γ,x : int ` F : T Γ ` E : int Det(E)
Γ ` [for x < E→ F] : T []

(FUN INDEX)
Γ ` E : T []
Γ ` F : int
Γ ` E[F] : T

The interpretation of a type T is the Borel-measurable set VT of
closed values of type T (real numbers, integers, records, and so on)
using the standard topology. A function f : T →U is measurable
if f−1(A) ⊆ VT is measurable for all measurable A ⊆ VU ; all
continuous functions are measurable.

A finite measure µ over T is a function from (Borel-measurable)
subsets of VT to the non-negative real numbers, that is countably
additive, that is, µ(∪iAi) = Σiµ(Ai) if A1,A2, . . . are pair-wise
disjoint. The finite measure µ is called a probability measure if
µ(VT) = 1.0. If µ is a probability measure on T and f : T → U
is measurable, we let f−1µ(A) , µ(f−1(A)). In this context f is
called a random variable.

The semantics of a closed Fun expression E is a probability
measure PE over its return type. It is defined via a semantics of
open Fun expressions (Ramsey and Pfeffer 2002) in the probabil-
ity monad (Giry 1982). We write PE for the probability measure
corresponding to a closed expression E; if ∅ ` E : T then PE is a
probability measure on VT . If ` E : T1 ∗· · ·∗Tn, and for i = 1..m we
have ` Vi : Ui and Fi det and x1 : T1, . . . ,xn : Tn ` Fi : Ui, we write
PE [x1, . . . ,xn | F1 =V1∧·· ·∧Fm =Vm] for (a version of) the con-
ditional probability distribution of PE given f = (V1, . . . ,Vm) where
f (x1, . . . ,xn) = (F1, . . . ,Fm).

4.2 Semantics of Semi-Observed Models
A model is associated with four types: a hyperparameter type H, a
parameter type W , an input type X , and an output type Y .

Model Types and Typing of Models: Q, ` P : Q

Q ::= 〈H,W,X ,Y 〉 quadruple type of model

(MODEL PRIM)
∅ ` Eh : H Det(Eh) h : H ` Ew : W h : H,w : W,x : X ` Ey : Y

` 〈Eh,(h)Ew,(h,w,x)Ey〉 : 〈H,W,X ,Y 〉

In a semi-observed model, Y is a pair type, where the second
component holds the latent variables of the model. Given a semi-
observed model, the standard distributions are obtained as follows.

Proposition 1. Given a model P = 〈Eh,(h)Ew,(h,w,x)Eyz〉 such
that ` P : 〈H,W,X ,Y ∗Z〉 the following Fun expressions denote the
standard distributions:

• Prior: let h = Eh in Ew.
• Full sampling (where h =Vh, w =Vw, x =Vx):
let h =Vh in let w =Vw in let x =Vx in Eyz.

• Sampling (where h =Vh, w =Vw, x =Vx):
let h =Vh in let w =Vw in let x =Vx in fst Eyz.

• Joint posterior (where x = VX , y = Vy): PE
[
w,yz | fst yz =Vy

]
where E = let h = Eh in let w = Ew in let x =Vx in w,Eyz.

• Posterior: fst−1P where P is the joint posterior; and
• Posterior latent (snd◦ snd)−1P where P is the joint posterior.

4.3 Typing and Translation of Tabular
When typing schemas, we use binding times to track the availability
of variables. Let B be the set {h,w,xyz} of binding times ordered
such that ⊥ = h < w < xyz = >. Here h stands for the (determin-
istic) hyperparameter phase, w stands for the (non-deterministic)
parameter phase, and xyz stands for the generative phase of the
computation. We use metavariables ` and pc to range over B. In-
formally, variables declared at one time may only be used in expres-
sions typed at or above that time (the current time pc is maintained
as an additional index of the Tabular typing judgments). Binding
times are also used to prevent the mention of non-deterministic pa-
rameters in expressions used as (necessarily deterministic) hyper-
parameters, and generative data in the construction of either hyper-
parameters or parameters. When translating to Fun, binding times
ensure that the target program is well-scoped, and deterministic
where needed.

Tabular Levels and Typing Environments: `, Γ

`, pc ::= h | w | xyz binding time
Γ ::= environment

∅ empty
Γ,x :` T variable typing
Γ, t : 〈{RT}〉 predictive row type for t

Environments declare variables with their binding time and
type, and tables with their predictive row types.

Judgments of the Tabular Type System:
Γ ` � environment Γ is well-formed
Γ ` T in Γ, type T is well-formed
Γ `pc E : T in Γ at binding time pc, expr. E has type T
Γ `pc M : W,T in Γ at pc, model M has params W , returns T
Γ ` T : Q in Γ, table T has type Q
Γ ` S : Q in Γ, schema S has type Q

Formation Rules for Environments: Γ ` �
(ENV EMPTY)

∅ ` �

(ENV VAR)
Γ ` T x /∈ dom(Γ)

Γ,x :` T ` �

(ENV TABLE)
Γ ` {RT} t /∈ dom(Γ)

Γ, t : 〈{RT}〉 ` �

Formation Rules for Types: Γ ` T

(TYPE SCALAR)
Γ ` �
Γ ` S

(TYPE ARRAY)
Γ ` T

Γ ` T []

(TYPE RECORD)
Γ ` � ∀c ∈C. Γ ` Tc

Γ ` {c : Tc}c∈C

The translation of a Tabular schema to a model is performed by
four judgments. Though defined relationally, the relations are par-
tial functions on untyped terms and total functions on well-typed
Tabular terms.

327

Judgments of the Translation:
E ⇓ F Tabular expression E translates to Fun expr. F
M ⇓ 〈Ew,(w)E〉 model M translates to 〈Ew,(w)E〉
T ⇓ P marked up table T translates to prim. model P
S ⇓ P marked up schema S translates to P

Lemma 2 (Determinacy). If S ⇓ P and S ⇓ P′ then P = P′.

Theorem 1 (Translation Preserves Typing).
If ∅ ` S : Q then there exists P such that S ⇓ P and ` P : Q.

4.4 Expressions
The main subtlety when translating schemas is to support foreign
keys. We use the notation (E : link(t)).c within Fun expressions to
stand for the column c of the row in table t indexed by key E.

In particular, when constructing the model for a table t j, we
may dereference a foreign key of type link(ti) to a previous ta-
ble ti with i < j. For instance, in the TrueSkill schema, there is
a reference from t2 = Matches to t1 = Players. To translate such
foreign keys, we arrange that for each table ti there is a global
variable named ti that holds the predictive table for ti, that is, the
join of the input sub-table xi, the output sub-table yi, and the la-
tent sub-table zi, for each i. Hence, an expression (E : link(ti)).c
means ti[E].c; for example, (Player1 : link(Players)).Skill com-
piles to Players[Player1].Skill.

Typing Rules for Tabular Expressions: Γ `pc E : T

(TABULAR VAR)
Γ ` � Γ = Γ1,x :` T,Γ2 `≤ pc

Γ `pc x : T

(TABULAR SIZEOF)
Γ `pc #t : int t ∈ dom(Γ)

Γ `pc sizeof(t) : int

(TABULAR DEREF)
Γ `pc E : int xyz≤ pc Γ = Γ′, t : 〈{d : Td}d∈C〉,Γ′′ c ∈C

Γ `pc (E : link(t)).c : Tc

Rule (TABULAR VAR) allows a reference to x only if x is declared
with a binding time l ≤ pc, where pc is the current binding time.

Translation Rules for Tabular Expressions: E ⇓ F

(TRANS VAR)

x ⇓ x

(TRANS SIZEOF)

sizeof(t) ⇓ #t

(TRANS DEREF)
E ⇓ F

(E : link(t)).c ⇓ t[F].c

(the remaining rules are simple homomorphic translations)

4.5 Model Expressions
Typing Rules for Model Expressions: Γ `pc M : W,T

(MODEL SIMPLE)
Γ `pc E : T

Γ `pc E : {},T

(MODEL PRIM)
Γ ` � P = 〈{R},(h)Ew,(h,w,x)Ey〉
` P : 〈{c : Hc}c∈C,W,{},Y 〉
∀c ∈C′ ⊆C. Γ `h Ec : Hc ∧ Det(Ec)

Γ `pc P(c = Ec
c∈C′) : W,Y

(MODEL INDEXED)
Γ `pc M : W,T Γ `pc Eindex : int Γ `h Esize : int Det(Esize)

Γ `pc M[Eindex < Esize] : W [],T

Primitive models must have void input; we allow to only replace
a part C′ of their hyperparameters C. The upper bound Esize of an
indexed model has binding time h, since it must be deterministic
and the same for all rows of the table.

Translation Rules for Model Expressions: M ⇓ P

(TRANS SIMPLE) (w 6∈ fv(F))
E ⇓ F

E ⇓ 〈{},(w)F〉
(TRANS PRIM) (w 6∈ fv(Eh))
P = 〈{c = Fc}c∈C,(h)Ew,(h,w,x)Ey〉 Ec ⇓ E ′c (c ∈C′)
Êc = if c ∈ C′ then E ′c else Fc Eh = {c = Êc}c∈C

P(c = Ec
c∈C′) ⇓

〈let h = Eh in Ew,(w)let h = Eh in let x = {} in Ey〉
(TRANS INDEXED) (w 6∈ fv(Findex))
Eindex ⇓ Findex Esize ⇓ Fsize M ⇓ 〈Ew,(w)Ey〉
M[Eindex < Esize] ⇓
〈[for < Fsize→ Ew],(w)let w = w[Findex] in Ey〉

A simple model has no prior. The prior of an indexed model is an
array of Fsize independent samples of the prior of the underlying
model. In the output, we use the prior value at index Findex.

4.6 Tables
The typing and translation rules for tables are defined inductively
and determine the semantics for the shared hyperparameter, shared
parameter, and a pair of output and latent columns for a single row
of the table.

Typing Rules for Tables: Γ ` T : Q

(TABLE EMPTY)
Γ ` �
Γ `∅ : 〈{},{},{},{}∗{}〉
(TABLE HYPER) (A = hyper(E))
∅ `h E : H Det(E) Γ,c :h H ` T : 〈{RH},W,X ,Y ∗Z〉
Γ ` (c 7→ A : H)T : 〈{c : H;RH},W,X ,Y ∗Z〉
(TABLE PARAM) (A = param(M))
Γ `w M : W$,W
Γ,c :w W ` T : 〈H,{RW},X ,Y ∗Z〉 c$ 6∈ dom(Γ)∪dom(T)
Γ ` (c 7→ A : W)T : 〈H,{c$: W$;c : W ;RW},X ,Y ∗Z〉
(TABLE INPUT) (A = input)
Γ,c :xyz X ` T : 〈H,W,{RX},Y ∗Z〉
Γ ` (c 7→ A : X)T : 〈H,W,{c : X ;RX},Y ∗Z〉
(TABLE OUTPUT) (A = output(M))
Γ `xyz M : W,Y Γ,c :xyz Y ` T : 〈H,{RW},X ,Y ∗Z〉
Γ ` (c 7→ A : Y)T : 〈H,{c$: W ;RW},X ,{c : Y ;RY}∗Z〉
(TABLE LATENT) (A = latent(M))
Γ `xyz M : W,Z Γ,c :xyz Z ` T : 〈H,{RW},X ,Y ∗{RZ}〉
Γ ` (c 7→ A : Z)T : 〈H,{c$: W ;RW},X ,Y ∗{c : Z;RZ}〉

Rule (TABLE HYPER) ensures that E is deterministic and closed
and declares c at binding time h so it can be referenced at all
binding times. Rule (TABLE PARAM) ensures that M is checked
at level w (not pc) so that its generative expression has no data
dependencies and is safe to use at the parameter level. Rule (TABLE
INPUT) extends the context with c declared at xyz. Rule (TABLE
OUTPUT) extends the context with c declared at xyz and records
the types of parameter c$ and output c by extending the parameter
and output record types of the table. Rule (TABLE LATENT) is
symmetric to (TABLE OUTPUT), but instead extends the latent
record type.

328

The translation rules for tables make use of auxiliary let-
contexts, ranged over by L . These denote a spine of (Fun) let-
bindings ending in a hole [], and are defined inductively as follows.

(Core Fun) Let contexts: L

L ::= let context
[] hole
let x = E in L let binding

The operation L [E] plugs the hole of a L with a body E, produc-
ing a (Fun) expression.

[][E] = E
(let x = E ′ in L)[E] = let x = E ′ in (L [E])

Translation Rules for Tables: T ⇓ P

(TRANS EMPTY)

∅ ⇓ 〈{},(h){},(h,w,x)({},{})〉
(TRANS HYPER) (c 6∈ {h,w,x})
E ⇓ Eh T ⇓ 〈{Rh},(h)Ew,(h,w,x)E〉
(c 7→ hyper E : Tc)T ⇓

〈{c = Eh,Rh},(h)let c = h.c in Ew,(h,w,x)let c = h.c in E〉
(TRANS PARAM) (h 6∈ fv(Ew,Ec,c$,c) c 6∈ {h,w,x})
M ⇓ 〈Ew,(wc)Ec〉 T ⇓ 〈Eh,(h)Lw[{Rw}],(h,w,x)E〉
(c 7→ param M : Tc)T ⇓
〈Eh, (h)let c$ = Ew in let c = Ec in Lw[{c$ = c$;c = c;Rw}],
(h,w,x)let c = w.c in E〉

(TRANS INPUT)
T ⇓ 〈Eh,(h)Ew,(h,w,x)E〉 c 6∈ {h,w,x}
(c 7→ input : Tc)T ⇓ 〈Eh,(h)Ew,(h,w,x)let c = x.c in E〉
(TRANS OUTPUT) (h 6∈ fv(Ew) h,w,x 6∈ fv(Ec,c)))
M ⇓ 〈Ew,(wc)Ec〉 T ⇓ 〈Eh,(h)Lw[{Rw}],(h,w,x)Lo[({Ry},Ez)]〉
(c 7→ output M : Tc)T ⇓
〈Eh, (h)let c = Ew in Lw[{c$ = c,Rw}],
(h,w,x)let c = (let wc = w.c$ in Ec) in Lo[({c = c;Ry},Ez)]〉

(TRANS LATENT) (h 6∈ fv(Ew) h,w,x 6∈ fv(Ec,c))
M ⇓ 〈Ew,(wc)Ec〉 T ⇓ 〈Eh,(h)Lw[{Rw}],(h,w,x)Lo[(Ey,{Rz})]〉
(c 7→ latent M : Tc)T ⇓
〈Eh, (h)let c = Ew in Lw[{c$ = c,Rw}],
(h,w,x)let c = (let wc = w.c$ in Ec) in Lo[(Ez,{c = c;Rz})]〉

Rule (TRANS HYPER) merely extends the hyperparameter record
of the remaining table and rebinds c as the projection h.t in the
prior and gen of the model. Rule (TRANS PARAM) extends table
T’s prior with two fields for the prior and gen of M, and rebinds
parameter c as the projection w.c in the gen of the row. Rule
(TRANS INPUT) just binds c as the projection x.c of input row x in
the gen of the table (but does not export c since it is neither output
nor latent). Rule (TRANS OUTPUT) just defines c as the gen of its
model, whose parameter wc is obtained from w.c$; c is exported in
the output record of the row. Rule (TRANS LATENT) is symmetric
to (TRANS OUTPUT), but instead extends the latent record.

For example, here is a single-table schema for linear regression.

LinearRegression
muA real hyper 0
muB real hyper 0
A real param Gaussian(muA,1)
B real param Gaussian(muB,1)
X real input
Z real latent A∗X + B
Y real output Gaussian(Z,1)

The row semantics of this table is as follows. For readability, we
inline some variable definitions. Since this table only uses simple
model expressions, the $ suffixed fields for the parameters of model
expressions all contain the empty record. Modulo these redundant
fields, we recover the model from Section 2.

Model for a Row of the LinearRegression Table:
Hyper {muA = 0;muB = 0}
Prior(h) {A$ = {};A = Gaussian(h.muA,1);

A$ = {};B = Gaussian(h.muB,1);
Z$ = {};Y$ = {}}

Gen(h,w,x) let Z = w.A* x.X + w.B in
let Y = Gaussian(Z,1)} in
({Y=Y},{Z=Z})

4.7 Schemas
Typing Rules for Schemas: Γ ` S : Q

(SCHEMA EMPTY)
Γ ` �
Γ `∅ : 〈{},{},{},{}∗{}〉
(SCHEMA TABLE)
Γ ` T : 〈H,W,{RXt},{RYt}∗{RZt}〉
Γ,#t :h int, t : 〈{RXt ;RYt ;RZt}〉 `

S : 〈{RH},{RW},{RX},{RY}∗{RZ}〉
H ′ = {#t : int;RH} W ′ = {t : W ;RW} X ′ = {t : {RXt}[];RX}
Y ′ = {t : {RYt}[];RY} Z′ = {t : {RZt}[];RZ}
Γ ` (t 7→ T)S : 〈H ′,W ′,X ′,Y ′ ∗Z′〉

Rule (SCHEMA TABLE) uses the model type of the table to extend
the context with a declaration of the table’s size, #t at level h, ((#t
is used in the translation of sizeof(t)) as well as the predictive row
type of t: this is the union of its input, output, and latent fields.
The table’s default hyperparameters (of type H) are applied in the
translation of t and do not appear in the type of the schema. The rule
extends the components of the schema’s model type with additional
fields for the table size; the parameters of the table (as a nested
record); the inputs of the table (a nested array of records); and the
pair of output and latent table records extended with fields for the
output and latent arrays of records for t.

Translation Rules for Schemas: S ⇓ P

(TRANS EMPTY)

∅ ⇓ ({},(h){},(h,w,x){})
(TRANS TABLE)
T ⇓ 〈Eh,(ht)Ew,(ht ,wt ,xi)Lt [{Ry},{Rz}]〉
Rx = {c = xi.c | c ∈ inputs(T)}
S ⇓ ({Rh},(h)Lw[Rw],(h,w,x)Lyz[{Sy},{Sz}]
Et = let ht = Eh in let wt = w.t in

[for i < #t→ let xi = x.t[i] in Lt [{Rx;Ry;Rz}]]
Ey = [for i < #t→{c = t[i].c}c∈dom(Ry)]

Ez = [for i < #t→{c = t[i].c}c∈dom(Rz)]
h 6∈ fv(let ht = Eh in Ew, t,#t) h,w,x 6∈ fv(Et , t,#t)

(t 7→ T)S ⇓
〈{#t = 1,Rh},
(h)let t = let ht = Eh in Ew in let #t = h.#t in Lw[{t = t;Rw}],
(h,w,x)let #t = h.#t in let t = Et in

Lyz[({t = Ey;Ry},{t = Ez;Rz})]〉

Rule (TRANS TABLE) takes the model for the parameters and a
single row of t and constructs a model that draws once from the
prior of t then replicates t’s output distribution across an array of

329

size #t. The intermediate array, Et , contains the predictive table
for t, merging the input, output and latent sub-records of t as
single records. Expressions Ey and Ez are used to reshuffle the
array of merged records into separate arrays of output and latent
sub-records. The rule extends S’s hyperparameter record with a
default binding for #t (with arbitrary value 1); table sizes must be
consistently overriden before inference.

Translation examples To illustrate our schema translation and
our treatment of foreign keys, here is the translation of TrueSkill,
rewritten a little for readability: first, the two row models for the
two tables, followed by the model of the whole schema.

Model for a Row of Table Players: P1

Hyper {}
Prior(h) {Skill$ = {}}
Gen(h,w,x) let Skill =Gaussian(25,0.01) in

({},{Skill = Skill})

Model for a Row of Table Matches: P2

Hyper {}
Prior(h) {Perf1$ = {};Perf2$ = {};Win1$ = {}}
Gen(h,w,x) let Perf1=Gaussian(Players[x.Player1].Skill,1) in

let Perf2=Gaussian(Players[x.Player2].Skill,1) in
let Win1= Perf1 > Perf2 in
({Win1 = Win1},{Perf1 = Perf1;Perf2 = Perf2})

Model for the TrueSkill Schema:
Hyper {#Players = 1,#Matches = 1}
Prior(h) {Players = P1.Prior(P1.Hyper),

Matches = P2.Prior(P2.Hyper)}
Gen(h,w,x)
let Players = [for i <h.#Players→

let Skill = Gaussian(25,0.01) in
{Skill = Skill}]

let Matches = [for i <h.#Matches→
let Player1 = x.Matches[i].Player1 in
let Player2 = x.Matches[i].Player2 in
let Perf1=Gaussian(Players[Player1].Skill,1) in
let Perf2=Gaussian(Players[Player2].Skill,1) in
let Win1= Perf1 > Perf2 in
({Player1 = Player1;Player2 = Player2;

Win1 = Win1;Perf1 = Perf1;Perf2 = Perf2})]
({ Players = [for i < h.#Players→ {}];

Matches = [for i < h.#Matches→
{Win1 = Matches[i].Win1}]},

{ Players = [for i < h.#Players→ {Skill = Players[i].Skill}];
Matches = [for i < h.#Matches→
{Perf1 = Matches[i].Perf1;Perf2 = Matches[i].Perf2}}])

4.8 A Reference Learner for Query-by-Latent-Column
We conclude with a learner API, a programming interface for
query-by-latent-column: the API allows a user to accumulate a
dataset split into input and observed databases. To perform queries,
we bundle a database and a schema into a learner L = (d | S) where
d = (dx,dy) and dx is the input database and dy is the observed
database. (We assume the types of d and S match, as discussed in
the next section.) To pick out the sizes of tables in a database, we
let #({t1 = B1; . . . ; tn = Bn}) , {#t1 = |B1|; . . . ;#tn = |Bn|}). We
support the following functional API.

• Let L0(S) be the empty learner, that is, S plus a pair of databases
with the right table names but no table rows.

• Let train(L,(d′x,d
′
y)) be L′ = ((dx +d′x,dy +d′y) | S) where + is

concatenation of arrays in records, and L = ((dx,dy) | S).
• Let params(L) be the posterior distribution p(w | d,h) induced

by P, where L = (d | S), P models S, and h = #(dx).
• Let latents(L) be the posterior latent distribution p(z | d,h)

induced by P, where L = (d | S), P models S, and h = #(dx).

Compared to the reference learner of Gordon et al. (2013a), this
new API can learn latent outputs since it works on semi-observed
models. Our current implementation uses Infer.NET Fun to com-
pute approximate marginal forms of the posterior distributions on
the database parameter and latent database, and persists them to
the relational store. The API allows an incremental implementa-
tion, where the abstract state L is represented by a distribution
over the parameters and latent variables, computed after each call
to train. Our current implementation does not support this opti-
mization, maintains the whole dataset d, and does inference from
scratch when necessary. The incremental formulation of our learner
is consistent with the Algebraic Classifier formulation of Izbicki
(2013), which promises reductions in computational complexity for
cross-validation and enable efficient online and parallel training al-
gorithms based on the monoidal or group structure of such learners.

Now that we have schema typing and a semantics of schemas as
models, we can perform inference as follows. A learner L=(dx,dy |
S) is queryable if ` S : 〈H,W,X ,Y ∗Z〉 and ∅ ` dx : X and ∅ `
dy : Y , and for all tables ti ∈ dom(S) we have |dx.ti| = |dy.ti| ≥ 1.
In particular, the empty learner is not queryable, since it contains
empty tables. We can now implement a latent column query.

Theorem 2. If L = (dx,dy | S) is queryable, there is a closed Fun
expression E(dx) such that if µ , PE(dx)

[
w,yz | fst yz = dy

]
then

(1) params(L) = fst−1
µ; and

(2) latents(L) = (snd◦ snd)−1µ .

Proof: Assume that S ⇓ 〈Eh,(h)Ew,(h,w,x)Eyz〉, and let expres-
sion E(dx) , let h = #(dx) in let w = Ew in let x = dx in w,Eyz.
By Proposition 1, µ as above yields the sought distributions.

5. Outline of Practical Implementation
Our implementation builds on the model-learner pattern of Gordon
et al. (2013a), in which models are represented as records of type-
indexed F# quotations representing typed Fun expressions. Our ini-
tial Tabular implementation generates such strongly-typed models.
This target confers two advantages: the quotation fragments are
compact yet statically checked for type correctness; the resulting
terms are easily JIT-compiled to produce efficient sampling code.

For clarity, the semantics in Section 4 splits compilation into
type-checking followed by untyped translation. To create strongly-
typed quotations, we need to convince F#’s type checker that our
dynamically constructed quotations are composed in a statically
safe manner. The most direct way to do so is to re-structure the sep-
arate typing and translation judgments as single elaboration judg-
ments that couple type-checking with translation. The F# rendi-
tion of this idea is a triple of polymorphic functions that repre-
sent the typing contexts as a pair of (nested) tuples. Contexts are
extended as required by using polymorphic recursion in recursive
calls to elaboration. The output of elaboration is a value of existen-
tial type containing both the target type and the target translation of
the source term. Since type variables have accurate run-time repre-
sentations in .NET, we can directly compare the types of generated
sub-expressions as needed, avoiding the need to maintain separate
type representations.

330

Participants
Ability real latent Gaussian(0.0,1.0)
Questions
Answer int latent DiscreteUniform(8)
Difficulty real latent Gaussian(0.0,1.0)
Discrimination real latent Gamma(5.0,0.2)
QuestionsTrain
QuestionID link(Questions) input
Answer int output QuestionID.Answer
Responses
ParticipantID link(Participants) input
QuestionID link(Questions) input
Advantage real latent DB(ParticipantID.Ability − QuestionID.Difficulty,0.2)
Know bool latent Probit(Advantage,QuestionID.Discrimination)
Guess int latent DiscreteUniform(8)
Response int latent if Know then QuestionID.Answer else Guess
ResponsesTrain
ResponseID link(Responses) input
Response int output ResponseID.Response

Figure 1. The DARE model in Tabular and factor-graph notation. The model is implemented in annotations to the three main tables
Participants, Questions, and Responses. Tables QuestionsTrain and ResponsesTrain provide a mechanism for missing data.

6. Case Study: Intelligence Testing
Tabular has been designed to make the paradigm of model-based
machine learning (Bishop 2013) usable for practitioners who are
not machine learning experts. We describe a case study of data
analysis using Tabular based on a dataset from intelligence testing.

Our case study relies on models first published by Bachrach
et al. (2012) and data provided by the Cambridge Psychometrics
Centre, based on testing material by Pearson Assessment. We use
a dataset of responses to a standard multiple-choice intelligence
test called Raven’s Standard Progressive Matrices (SPM). The test
consists of sixty questions, each comprising a matrix of shapes
with one element missing and eight possible answers, exactly one
of which is correct. The sample consists of 121 subjects who
filled SPM for its standardization in the British market in 2006.
The factor graph for the full Difficulty-Ability-Response (DARE)
model is shown in Figure 1. Responses and true answers may or
may not be observed.

Figure 1 also depicts the full DARE model in Tabular. Each par-
ticipant is characterized by a latent Ability. Each question is char-
acterized by a (true) Answer, a Difficulty and a Discrimination
parameter. Responses depend on ParticipantID and QuestionID.
Under the model, an Advantage variable is calculated as the differ-
ence between ability of participant and difficulty of question. The
Boolean variable Know, which represents whether the participant
knows the answer or not, is modelled as a probit over Advantage
with Discrimination as the dispersion parameter. DB returns its
first argument, and is a pragma to the underlying inference algo-
rithm, to apply a damping factor for better convergence. Guess rep-
resents a random guess from a uniform distribution over all possible
responses. The participant’s Response is taken to be the question
Answer if Know is true and Guess otherwise. The model relies on
two sources of observed data: correct answers to the questions and
responses provided by students. A subset of correct answers can
be provided through the table QuestionsTrain. A subset of given
responses can be provided through the table ResponsesTrain.

Note that there are simplified versions of the full DARE model
in which a) only the student’s ability is modelled (A model) or b)
the students’ abilities and the questions’ difficulties are modelled
(DA model). The model is run once to answer two types of queries
given a subset of the true answers and a subset of given responses:
i) Infer the missing correct answers to questions and ii) Infer the
missing responses of students.

Figure 2 shows how the Tabular implementation differs from
the Infer.NET implementation on a sample run where 30% of re-

sponses and 30% of true answers are unobserved. The data con-
tained 121 participants, 60 questions, 41 training questions, 7260
responses and 5082 training responses. The inference results of In-
fer.NET and Tabular based implementations are very similar. They
differ slightly because of differences in the way our compiler trans-
lated the Tabular formulation into Infer.NET code from the direct
implementation by an expert. However, the Infer.NET code includ-
ing the necessary data transformation code is much longer than the
succinct and readable Tabular code that was added to the exist-
ing data schema to describe the same model. Tabular’s excessively
high compilation times are not due to the Tabular to Fun transla-
tion, which takes less than one second for each model, but to a
flaw in the Fun compiler: Fun inlines all data before compiling,
a convenient but unnecessary measure avoided by Infer.NET. To
demonstrate that the excessive compile times can be reduced, we
prototyped a second compiler, Tabular II, that translates Tabular
programs directly to Infer.NET. On the DARE case study Tabular
II improves compile times by two orders of magnitude, and infer-
ence time by up to one order of magnitude, yielding performance
that is more competitive with handwritten Infer.NET (Figure 2).

7. Query-by-Missing-Value
Inference of latent columns requires that all output columns con-
tain a valid value at each row. However, many real datasets contain
missing values. Query-by-missing-value infers the posterior proba-
bility of missing values in output columns, conditioned on observed
values actually present in the database. In a missing-values query,
each attribute is either known, or missing; we use ? to denote miss-
ing values.

Query-by-Missing-Value Database: d?

V ? ::= ? |V missing or known value
r? ::= {c1 =V ?

1 , . . . ,cn =V ?
n } query-by-missing-value row

R? ::= [r?
0; . . . ;r?

n] query-by-missing-value table
d? ::= {t1 = R?

1, . . . , tn = R?
n} query-by-missing-value database

Let a missing-values learner (dx,d?
y | S) be a learner where dx is a

normal value and d?
y is a query-by-missing-value database. Such a

learner can be queryable (as defined in Section 4.8), where we let
Γ ` ? : T for any T and Γ.

The result of inference on a queryable missing-values learner is
the joint posterior distribution for all the ? entries in d?

y , in addition
to the latent columns and the parameters of each table. For a formal

331

Model Language LOC LOC LOC LOC Compile Infer Model log Avg. (log) prob. Avg. (log) prob.
Data Model Inference total seconds seconds evidence test responses. test answers.

A Tabular 0 17 0 17 126 10 -7499.74 (-1.432),0.239 (-3.435),0.032
A Tabular II 0.41 1.47 -7499.74 (-1.432),0.239 (-3.424),0.033
A Infer.NET 73 45 20 138 0.32 0.38 -7499.74 (-1.432),0.239 (-3.425),0.033

DA Tabular 0 18 0 18 145 11 -5932.80 (-1.118),0.327 (-0.699),0.497
DA Tabular II 0.40 1.54 -5933.52 (-1.118),0.327 (-0.739),0.478
DA Infer.NET 73 47 21 141 0.34 0.43 -5933.25 (-1.118),0.327 (-0.724),0.485

DARE Tabular 0 19 0 19 163 16 -5823.01 (-1.119),0.327 (-0.551),0.576
DARE Tabular II 0.42 6.46 -5820.40 (-1.119),0.327 (-0.528),0.590
DARE Infer.NET 73 49 22 144 0.37 2.8 -5820.40 (-1.119),0.327 (-0.528),0.590

Figure 2. Comparison of Tabular and Infer.NET implementations of different variants of the DARE model for multiple-choice questionnaires
(machine configuration: DELL Precision T3600, Intel(R) Xeon(R) CPU E5-1620 with 16GB RAM, Windows 8 Enterprise and .NET 4.0).

definition, we need to compute the observations of d?
y , that is, the

entries in d?
y present in the database and their values.

Observations of a missing-values query: OE(·)
OE(?) , true OE(V) , E =V

OE({ci =V ?
i }i∈1..n) ,

∧
i∈1..n OE.ci(V

?
i)

OE([r?
i]

i∈0..n) ,
∧

i∈0..n OE[i](r
?
i)

OE({ti = R?
i }i∈1..n) ,

∧
i∈1..n OE.ci(R

?
i)

If L(dx,d?
y | S) is a queryable missing-values learner and

S ⇓ 〈Eh,(h)Ew,(h,w,x)Eyz〉 then the prior distribution of L is given
by PE where E = let h= #(dx) in let w = Ew in let x = dx in w,Eyz,
and the joint posterior is the conditional probability distribution
PE

[
w,yz |Ofst yz(d

?
y)
]
.

Example of Query-by-Missing-Value Inferno is an experimen-
tal embedding of probabilistic inference in a spreadsheet (http:
//research.microsoft.com/inferno/). Given a probabilistic
model for the whole spreadsheet, Inferno can fill in the missing val-
ues of empty cells, and also detect outliers: cells whose values are
far from what is predicted by the model.

An Inferno spreadsheet can be considered as a queryable
learner, where each spreadsheet column is an output but may have
missing values, and there is an additional latent column for each
row. The Tabular schema below corresponds to the Generalized
Gaussian model produced by Inferno on a three-column table. We
here consider only real-valued columns; other data types such as
Booleans and integers can also be encoded as (vectors of) real num-
bers with appropriate (probabilistically invertible) link functions.

GG
V vector latent CVectorGaussian(Ncols=3)
X0 real output V[0]
X1 real output V[1]
X2 real output V[2]

(The library model CVectorGaussian is akin to CGaussian, but
outputs vectors from a multivariate Gaussian distribution with
Gaussian and Wishart priors.)

The query is a table GG containing the spreadsheet data, with
empty cells replaced by ?, such as the following.

GG
ID X0 X1 X2
0 1.0 2.1 2.9
1 2.1 ? 6.3
2 ? 2.7 3.5

Here Oy(GG) = y[0].X0 = 1.0∧ y[0].X1 = 2.1∧ ·· · ∧ y[2].X1 =
2.7∧ y[2].X2 = 3.5.

Translating Query-by-Missing-Value to Query-by-Latent-Column
Missing-values queries can be answered by translating them to a
latent column query and performing inference on the latter. The
key idea is to create a new table for each output column of the
original table, that contains just the known values in that column.
In the translation of the orginal table, each output column is simply
turned into a latent column. For example, the Inferno GG model
translates to the following tables.

GG’
V vector latent CVectorGaussian(Ncols=3)
X0 real latent V[0]
X1 real latent V[1]
X2 real latent V[2]

X0
R link(GG’) input
V real output R.X0

X1
R link(GG’) input
V real output R.X1

X2
R link(GG’) input
V real output R.X2

Above, the query tables (X0, X1, and X2) each contain a value col-
umn V and a reference column R, which denotes the row from
which the value came. Since the GG’ table contains no input
columns, all the data is in the query tables.

X0 X1 X2
ID R V R V R V

0 0 1.0 0 0 2.1 0 0 2.9
1 1 2.1 1 2 2.7 1 1 6.3

2 2 3.5

Formal Translation We fix a queryable missing-values learner
(dx,d?

y | S) where S = (t j 7→ Tj)
j∈1..m and each table Tj =

(c ji 7→ A ji : Tji)
i∈1..n j . Let Oj = {i ∈ 1.. j | A ji = O()}.

We let [[Observed(M)]] , Latent(M), and [[A]] , A otherwise.
We then translate the schema S as follows.

Tji , (R 7→ Input : int,
V 7→Observed((R : link(t j)).c ji) : Tji) if i ∈ Oj

T′j , (c ji 7→ [[A ji]] : Tji)
i∈1..n j

S′ , (t j 7→ T′j,(t ji 7→ Tji)
i∈Oj) j∈1..m

To translate the database, we first translate the observations in d?
y .

Rxji , [{R = k} | d?
y .t j[k].c ji 6= ?]k∈0..|d?

y .t j |−1

Ryji , [{V = d?
y .t j[k].ci} | d?

y .t j[k].c ji 6= ?]k∈0..|d?
y .t j |−1.

332

The translations of the original tables have no observed values.

Ryj , [{}]k∈0..|dx.t j |−1

Finally, we can combine these tables into a new database d′x,d
′
y.

d′x , {t j 7→ dx.t j;{t ji 7→ Rxji}i∈Oj} j∈1..m

d′y , {t j 7→ Ryj; {t ji 7→ Ryji}i∈Oj} j∈1..m

Lemma 3. If (dx,d?
y | S) is a queryable missing-values learner,

then (d′x,d
′
y | S′) as defined above is a queryable learner.

To answer the missing-values query using the results of infer-
ence for the translated learner, we need to go from an inferred dis-
tribution for the translated schema S′ to a distribution for the origi-
nal schema S. This is done by the function I defined below.

I(w,(,z)) = ({t j = w.t j} j∈1..m,

({t j = [{c ji = z.t j[k].c ji}i∈Oj]k∈0..|d?
y .t j |−1} j∈1..m,

{t j = [{c ji = z.t j[k].c ji}i∈L j]k∈0..|d?
y .t j |−1} j∈1..m)).

We can now show that the translation is correct: it reduces
query-by-missing-value to query-by-latent-column.

Theorem 3. Let L = (dx,d?
y | S) be a queryable missing-values

learner. Let L′ = (d′x,d
′
y | S′) as defined above, and let µ be the se-

mantics of the latent column query on L′ as given in Theorem 2.
Then I−1µ is a version of the joint posterior conditional distribu-
tion PE

[
w,yz |Ofst yz(d

?
y)
]

of L.

Proof: (sketch) The compilation merely adds deterministic data
and copies of random variables, which are then ignored by I.

As an optimization, an implementation might only translate ob-
served columns where some data is missing in the current database
into new tables. In the example above, there are no missing values
in column X2 in the database, so it can remain observed in GG′,
and no new table needs to be created for its contents.

User/Movie/Rating Recommender Recall the User/Movie/Rat-
ing Schema of Section 3.2. Given existing tables of users, movies,
and ratings, suppose we wish to recommend to user i movies that
they are likely to rate with five stars. To do so, we first modify the
annotation on the movie column of the Rating table, adding a uni-
form per-row prior distribution.

Rating
u link(User) input
m link(Movie) output DiscreteUniform(SizeOf(Movie))
Score int output CDiscrete(N=5)[u.z,m.z]

We then add a single row {u = i; m = ?; Score = 5} to the
existing data in the Rating table, denoting that user i has rated an
unknown movie with 5 stars. This missing-values query is then
translated to a corresponding latent column query in the manner
defined above. Inference returns a discrete distribution over movie
IDs for the missing value. Finally, high probability IDs can be
selected for recommendation to the user.

In a variation of this query, we can weight the results by how
many people have seen (that is, rated) each movie. To this end,
we add interdependence between rows (a shared frequency prior)
by instead using the model CDiscrete(N=SizeOf(Movie)) for the
movie column, and then proceed as above.

8. Related work
Probabilistic Programming Languages There is by now a num-
ber of probabilistic programming languages, that differ in their
target audience, expressive power, performance, and philosophy.

BUGS (Bayesian Inference using Gibbs sampling) (Gilks et al.
1994) is a simple language for specifying probabilistic models that
allows for inference using Gibbs sampling. It is widely used in the
Bayesian community, but so far does not scale to large datasets.
Microsoft Research’s Infer.NET (Minka et al. 2012) achieves better
scalabililty through support of deterministic approximate inference
algorithms such as expectation propagation and variational mes-
sage passing. Church (Goodman et al. 2008) is a relatively new
probabilistic programming language based on Lisp, which allows
for recursion and enables non-parametric Bayesian models through
memoization. Furthermore, there are languages like IBAL (Pfef-
fer 2007) and Figaro (Pfeffer 2009), which incorporate decision-
theoretic concepts as well. FACTORIE (McCallum et al. 2009) is
an imperative framework for constructing graphical models in the
form of factor graphs, used mostly for information extraction. All
these languages follow the traditional paradigm of separating the
code from the data schema and hence make it necessary to repli-
cate the data schema within the language and to import the data
from a database. On the other hand, Tabular is focused on learn-
ing from relational data, and does not directly address some of the
emerging application areas of probabilistic programming such as
vision as inverse graphics (Mansinghka et al. 2013; Wingate et al.
2011), or decision making for security (Mardziel et al. 2011).

Probabilistic Databases Probabilistic databases represent a line
of research in which the database community is concerned with
the question of how to handle uncertain knowledge in relational
databases (see, for example, Dalvi et al. (2009)). Typically, the as-
sumption is made that each tuple is only in the database with a given
probability, and that the presence of different tuples are indepen-
dent events. The resulting probabilistic database can be interpreted
in terms of the possible worlds semantics. It is further assumed
that the probability values associated with each tuple are provided
by the data collector, for example, from knowledge about measur-
ing errors or from probabilistic models outside the probabilistic
database. The main technical difficulty is to evaluate queries against
probabilistic databases because despite the simplistic independence
assumption on the presence of tuples, complex queries involving
logical and aggregation operators can lead to difficult inference
problems. This is also the main difference to the Tabular approach:
whereas probabilistic databases work with concrete probabilities,
Tabular works with non-probabilistic database schemas containing
simple tuples (possibly with missing values) and allows building
probabilistic models based on that data. In contrast to probabilistic
database systems Tabular is thus compatible with the vast majority
of existing relational datasets.

Statistical Relational Learning Statistical Relational Learning
operates in domains that exhibit both uncertainty and relational
structure (see Getoor and Taskar (2007) for an excellent overview).
Several contributions focus on combining probability and first-
order logic, such as Bayesian Logic (BLOG) (Milch et al. 2005)
which allows reasoning about unknown objects or Bayesstore
(Wang et al. 2008), which bridges the world of probabilistic
databases and statistical relational learning. Tabular is more closely
related to work that makes direct use of data in a relational database
schema such as Getoor et al. (2007), Heckerman et al. (2007), and
Neville and Jensen (2007). Tabular is based on directed graphi-
cal models, distinguishing it from Markov Logic (Domingos and
Richardson 2004). Tabular was also inspired by a concept called
PQL (Van Gael 2011) which augments the SQL query language
with statements that construct a factor graph aligned with a given
database schema. In summary, Tabular can be viewed as a language
that enables the construction of statistical relational models directly
from a schema, but goes beyond prior work in this field in that it

333

allows the introduction of latent variables and models continuous
as well as discrete variables.

Tabular was directly inspired by the question of finding a tex-
tual notation for the factor graphs generated by InfernoDB (Singh
and Graepel 2012) which constructs a hierarchical mixture-based
graphical model in Infer.NET (Minka et al. 2012) from an arbitrary
relational schema. CrossCat (Shafto et al. 2006) is a related model,
which handles single tables with mixed types (real, integer, bool).
With Tabular, these types of model can be implemented in a few
lines of code, and we envisage the automatic synthesis of a Tabular
program that best models a given relational dataset, similar to the
work of Grosse et al. (2012) on matrix decompositions.

9. Conclusions
We propose schema-driven probabilistic programming as a new
principle of programming language design. The idea is to design
a probabilistic modelling language by starting with a database
schema and enriching it with notations for describing random vari-
ables, their probability distributions and interdependencies, how
they relate to data matching the schema, and what is to be inferred.

Acknowledgments
Conversations about this work with Chris Bishop, Lucas Bordeaux,
John Bronskill, Tom Minka, and John Winn were invaluable. Misha
Aizatulin made many contributions to the Fun system on which this
work depends. Marcin Szymczak and Danny Tarlow commented
on a draft. We would like to thank John Rust and Michal Kosin-
ski from the Cambridge Psychometrics Centre as well as Pearson
Assessments for providing the IQ dataset for research purposes.

References
Y. Bachrach, T. Graepel, T. Minka, and J. Guiver. How to grade a test

without knowing the answers - a Bayesian graphical model for adaptive
crowdsourcing and aptitude testing. In Proc. ICML ’12, Omnipress 2012.

S. Bhat, J. Borgström, A. D. Gordon, and C. V. Russo. Deriving prob-
ability density functions from probabilistic functional programs. In
Proc. TACAS ’13, volume 7795 of LNCS, pages 508–522. Springer,
2013.

C. M. Bishop. Model-based machine learning. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences, 371(1984), 2013.

J. Borgström, A. D. Gordon, M. Greenberg, J. Margetson, and J. Van
Gael. Measure transformer semantics for Bayesian machine learning.
In Proc. ESOP’11, volume 6602 of LNCS, pages 77–96. Springer, 2011.
Download available at http://research.microsoft.com/fun.

N. N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in the
dirt. Commun. ACM, 52(7):86–94, 2009.

P. Domingos and M. Richardson. Markov logic: A unifying framework for
statistical relational learning. In Proc. SRL2004, pages 49–54, 2004.

L. Getoor and B. Taskar, editors. Introduction to Statistical Relational
Learning. The MIT Press, 2007.

L. Getoor, N. Friedman, D. Koller, A. Pfeffer, and B. Taskar. Probabilistic
relational models. In Getoor and Taskar (2007).

W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. A language and program
for complex Bayesian modelling. The Statistician, 43:169–178, 1994.

M. Giry. A categorical approach to probability theory. In B. Banaschewski,
editor, Categorical Aspects of Topology and Analysis, volume 915 of
Lecture Notes in Mathematics, pages 68–85. Springer, 1982.

N. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B.
Tenenbaum. Church: a language for generative models. In Proc. UAI’08,
pages 220–229. AUAI Press, 2008.

A. D. Gordon, M. Aizatulin, J. Borgström, G. Claret, T. Graepel, A. Nori,
S. Rajamani, and C. Russo. A model-learner pattern for Bayesian
reasoning. In Proc. POPL ’13, pages 403–416, ACM Press, 2013a.

A. D. Gordon, T. Graepel, N. Rolland, C. Russo, J. Borgström, and
J. Guiver. Tabular: A schema-driven probabilistic programming lan-
guage. Technical Report MSR-TR-2013-118, Microsoft Research,
2013b.

R. Grosse, R. Salakhutdinov, W. T. Freeman, and J. B. Tenenbaum. Ex-
ploiting compositionality to explore a large space of model structures.
In Proc. UAI ’12, pages 306–315. AUAI Press, 2012.

P. Hanrahan. Analytic database technologies for a new kind of user: the
data enthusiast. In Proc. SIGMOD ’12, pages 577–578. ACM, 2012.

D. Heckerman, C. Meek, and D. Koller. Probabilistic Entity-Relationship
Models, PRMs, and Plate Models. In Getoor and Taskar (2007).

R. Herbrich, T. Minka, and T. Graepel. Trueskilltm: A Bayesian skill rating
system. In Proc. NIPS’06, pages 569–576, MIT Press, 2007.

M. Izbicki. Algebraic classifiers: a generic approach to fast cross-validation,
online training, and parallel training. In Proc. ICML 2013, JMLR W&CP
28(3):648-656, 2013.

O. Kiselyov and C. Shan. Embedded probabilistic programming. In
Proc. DSL ’09, volume 5658 of LNCS, pages 360–384. Springer, 2009.

D. Koller and N. Friedman. Probabilistic Graphical Models. The MIT
Press, 2009.

V. K. Mansinghka, T. D. Kulkarni, Y. N. Perov, and J. B. Tenenbaum. Ap-
proximate Bayesian image interpretation using generative probabilistic
graphics programs. To appear in Proc. NIPS’13. Available at http:
//arxiv.org/abs/1307.0060, 2013.

P. Mardziel, S. Magill, M. Hicks, and M. Srivatsa. Dynamic enforcement
of knowledge-based security policies. In Proc. CSF’11, pages 114–128.
IEEE Computer, 2011.

A. McCallum, K. Schultz, and S. Singh. Factorie: Probabilistic program-
ming via imperatively defined factor graphs. In Proc. NIPS’09, pages
1249–1257. Curran Associates, 2009.

B. Milch, B. Marthi, S. J. Russell, D. Sontag, D. L. Ong, and A. Kolobov.
BLOG: Probabilistic models with unknown objects. In Proc. Probabilis-
tic, Logical and Relational Learning — A Further Synthesis, 2005.

T. Minka and J. M. Winn. Gates. In Proc. NIPS’08, pages 1073–1080. MIT
Press, 2008.

T. Minka, J. Winn, J. Guiver, and D. Knowles. Infer.NET 2.5, 2012.
Microsoft Research Cambridge. http://research.microsoft.com/infernet.

J. Neville and D. Jensen. Relational dependency networks. Journal of
Machine Learning Research, 8(8):653–692, 2007.

K. Nowicki and T. A. B. Snijders. Estimation and prediction for stochastic
blockstructures. J. Amer. Statist. Assoc., 96:1077–1087, 2001.

A. Pfeffer. The design and implementation of IBAL: A general-purpose
probabilistic language. In Getoor and Taskar (2007).

A. Pfeffer. Figaro: An object-oriented probabilistic programming language.
Technical report, Charles River Analytics, 2009.

N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of
probability distributions. In Proc. POPL ’02, pages 154–165. ACM,
2002.

P. Shafto, C. Kemp, V. Mansinghka, M. Gordon, and J. B. Tenenbaum.
Learning cross-cutting systems of categories. In Proc. CogSci ’06, pages
2146–2151. Cognitive Science Society, 2006.

S. Singh and T. Graepel. Compiling relational database schemata into
probabilistic graphical models. CoRR, abs/1212.0967, 2012.

J. Van Gael. PQL—probabilistic query language. Blog post
available at http://jvangael.github.io/2011/05/12/
pqla-probabilistic-query-language/, May 2011.

D. Z. Wang, E. Michelakis, M. Garofalakis, and J. M. Hellerstein.
Bayesstore: managing large, uncertain data repositories with probabilis-
tic graphical models. Proc. VLDB Endow., 1(1):340–351, Aug. 2008.

D. Wingate, N. D. Goodman, A. Stuhlmüller, and J. M. Siskind. Nonstan-
dard interpretations of probabilistic programs for efficient inference. In
Proc. NIPS ’11, pages 1152–1160, 2011.

334

