
Technology for Inferring Contracts from Code

Francesco Logozzo
Microsoft Research

One Microsoft Way, Redmond, WA, USA
logozzo@microsoft.com

ABSTRACT
Contracts are a simple yet very powerful form of specifi-
cation. They consists of method preconditions and post-
conditions, of object invariants, and of assertions and loop
invariants. Ideally, the programmer will annotate all of her
code with contracts which are mechanically checked by some
static analysis tool. In practice, programmers only write few
contracts, mainly preconditions and some object invariants.
The reason for that is that other contracts are “clear from
the code”: Programmers do not like to repeat themselves.
As a consequence, any usable static verification tool should
provide some form of contract inference.

Categories and Subject Descriptors
D [Software]: Miscellaneous; D.2.1 [Software Engineer-
ing]: Requirements/Specifications; D.2.4 [Software Engi-
neering]: Software/Program Verification—Assertion check-
ers,Programming by contract

General Terms
Verification

Keywords
Abstract Interpretation,Contracts,Inference

1. CONTRACT INFERENCE
Abstract interpretation [2] provides the theoretical foun-

dations for automatic contracts inference. The contract in-
ference problem is just an abstraction of the trace semantics.
For instance, a loop invariant is an abstraction of the states
reaching the loop head and an object invariant is an ab-
straction of all the states reachable in the steady points of
an object [8].

1.1 Loop invariants

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
HILT’13, November 12–14, 2013, Pittsburgh, PA, USA.
ACM 978-1-4503-2467-0/13/11.
http://–enter the whole DOI string from rightsreview form confirmation.

Abstract interpretation provides an elegant methodology
to infer loop invariants. First, set up a sound abstract do-
main. The abstract domain captures the properties of in-
terest, e.g., the shape of the heap, linear inequalities among
program variables [6], or array contents [5]. Soundness guar-
antees that no concrete behavior is ignored. In practice, the
analysis abstract domain is built by composing atomic ab-
stract domains. Second, set up the abstract operations and
transfer functions. The abstract operations combine two ab-
stract elements, the transfer functions describe how abstract
states are modified by atomic program statements. Third,
design convergence operators (widening, narrowing). Con-
vergence operators guarantee that the loop inference process
actually terminates.

Finally, the inferred loop invariant is just the abstract el-
ement at the loop head computed by the abstract semantics
above. In practice, as the loop invariant is mainly used by
the tool, we are not interested in having a “nice-looking”
invariant.

1.2 Postconditions
Theoretically, an inferred postcondition is similar to a loop

invariant: it is just the abstract element at the method re-
turn point. However, in practice we’d like to have “nice-
looking” and compact postconditions, e.g., without redun-
dant information. At this aim, the postcondition inference
proceeds as follows. First, project all the locals from the
abstract state — they are not visible to the external callers.
Second, ask each atomic abstract domain to serialize its
knowledge into a user-readable form — the abstract domains
may have a very compact and optimized representation of
their elements, not suitable to appear in a contract. Third,
remove the contracts that already appear in the source code
as postconditions. Fourth, sort and simplify the redundant
postconditions.

1.3 Preconditions
We differentiate among sufficient and necessary precondi-

tions. If valid, a sufficient precondition guarantees the callee
is correct, but nothing can be said if it not valid — the callee
may or may not be correct. If not-valid, a necessary precon-
dition guarantees the callee is incorrect, but nothing can be
said if it is valid. When automatic inference of preconditions
is considered, we advocate the inference of necessary precon-
dition. In fact, a sufficient precondition can be too strong for
a caller — at worst false. On the other hand, a necessary
precondition is something that should be satisfied by the
caller, otherwise the program will definitely fail later. We
designed several algorithms to infer necessary preconditions:



atomic, with disjuctions, and for collections [4]. Necessary
preconditions can be easily checked to be also sufficient by
injecting them and reanalysing the callee [3].

1.4 Object Invariants
We differentiate among reachable and necessary object in-

variants. A reachable object invariant characterizes all the
fields values that are reachable after the execution of the
constructor or any public method in the class [7]. A nec-
essary object invariant is a condition on the object fields
that should hold, otherwise there exists a sequence of pub-
lic method calls causing the object into an error state [1].
Reachable and necessary object invariants are complemen-
tary, and both can be used to improve the precision of
contract-based static analyzers.

2. CONCLUSIONS
Inferred contracts are vital for the success of verification

tools. In our static contract checker, cccheck/Clousot, we
spent a large amount of time to implement, refine, and op-
timize the contract inference algorithms.

3. REFERENCES
[1] M. Bouaziz, L. Logozzo, and M. Fähndrich. Inference of

necessary field conditions with abstract interpretation.
In APLAS, 2012.

[2] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In
POPL’77. ACM Press, Jan. 1977.

[3] P. Cousot, R. Cousot, M. Fähndrich, and F. Logozzo.
Automatic inference of necessary preconditions. In
VMCAI, pages 128–148, 2013.

[4] P. Cousot, R. Cousot, and F. Logozzo. Contract
precondition inference from intermittent assertions on
collections. In VMCAI’11, 2011.

[5] P. Cousot, R. Cousot, and F. Logozzo. A parametric
segmentation functor for fully automatic and scalable
array content analysis. In Proceeding of the 38th ACM
Symposium on Principles of Programming Languages
(POPL 2011). ACM Press, Jan. 2011.

[6] V. Laviron and F. Logozzo. Subpolyhedra: A (more)
scalable approach to infer linear inequalities. In
VMCAI ’09, 2009.

[7] F. Logozzo. Modular static analysis of object-oriented

languages. Thèse de doctorat en informatique, École
polytechnique, 2004.

[8] F. Logozzo. Class invariants as abstract interpretation
of trace semantics. Computer Languages, Systems &
Structures, 35(2):100–142, 2009.


