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Abstract—When analyzing version histories, researchers tra-
ditionally focused on single events: e.g. the change that causes
a bug, the fix that resolves an issue. Sometimes however, there
are indirect effects that count: Changing a module may lead to
plenty of follow-up modifications in other places, making the
initial change having an impact on those later changes. To this
end, we group changes into change genealogies, graphs of changes
reflecting their mutual dependencies and influences and develop
new metrics to capture the spatial and temporal influence of
changes. In this paper, we show that change genealogies offer
good classification models when identifying defective source files:
With a median precision of 73% and a median recall of 76%,
change genealogy defect prediction models not only show better
classification accuracies as models based on code complexity,
but can also outperform classification models based on code
dependency network metrics.

Index Terms—Data mining; Predictive models; Software qual-
ity; Software engineering

I. INTRODUCTION

Estimating and predicting software quality is a classic do-
main of analyzing version histories. The typical assumption
is that modules that are similar to previously failure-prone
modules would share the same bug-proneness, and therefore
be predicted as likely to have bug fixes in the future. A
similarity may be found due to fact that they share the same
domain, the same dependencies, the same code churn, the
same complexity metrics—or simply because they have a
history of earlier bugs themselves. Sometimes, however, bugs
are induced indirectly: Rather than being failure-prone by
itself, a change in a module A may lead to changes in modules
related to A, which in themselves may be risky and therefore
induce bugs. Such indirect effects, however, would not be
captured in A’s metrics, which thus represent a local view
of history, either spatially or temporally.

As an example, assume A is an abstract superclass of an
authentication system. Now assume a change to A adds a
new (flawed) authentication interface. This will have to be
implemented in all subclasses of A; and any bugs later found
will have to be fixed in these subclasses as well. All these
bugs are caused by the initial change to A; yet, A will never
show up as particularly bug-prone or be flagged as risky to
change.

In this paper, we make use of change genealogy graphs to
define a set of change genealogy network metrics describing
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the structural and temporal dependencies between change sets.
Our assumption is that code changes and their impact on other,
later applied code changes can differ substantially. We suspect
that change sets that cause more dependencies to other, later
applied change sets are likely to be more crucial with respect
to the development process. The more dependencies a change
set causes or relies on, the more complex the applied change
and thus, the more critical the applied change. Consequently,
we suspect code artifacts that got many crucial and central
code changes applied to be more defect prone than others.
Change genealogies thus would identify the interface change
in module A as being the primary cause for the later bugs,
and mark A as risky to change.

This is similar to the findings of Zimmermann and Nagap-
pan who discovered that more central code artifacts tend to be
more defect prone than others [30]; and indeed, these would
mark A as potentially bug-prone because it is central. In our
case, we do not measure the dependencies of the changed code
artifacts but rather concentrate on the dependencies of the
individual changes themselves, and can therefore determine
how the initial change in A caused the later bug fixes in
related modules. Specifically, we seek to answer the following
research question:

Are change genealogy metrics effective in classifying
source files to be defect-prone?

To answer this question, we ran experiments on four open
source JAVA projects. The results show that defect prediction
models based on change genealogy metrics can predict defec-
tive source files with precision and recall values of up to 80%.
On median, change genealogy defect prediction models show a
precision of 73% and a recall of 76%. Compared to prediction
models based on code dependency network or code complexity
metrics, change genealogy based prediction models achieve
better precision and comparable recall values.

II. BACKGROUND

A. Change Genealogies

Change Genealogies were first introduced by Brudaru and
Zeller [6]. A change genealogy is a directed acyclic graph
structure modeling dependencies between individual change
sets. Change genealogies allow reasoning about the impact
of a particular change set on other, later applied change sets.
German et al. [10] used the similar concept of change impact
graphs to identify change sets that influence the reported



// fixes a wrong method
// call in line 6 in class C

public class C {
public C() {

B b = new B();
b.bar(5);
A.foo(5f);

}
}
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Fig. 1. Diff output corresponding to the table cell of column CS4 and row
File3 shown in Figure 2. It also corresponds to the genealogy vertex CS4
shown in Figure 3.

location of a failure. Alam et al. [2] reused the concept of
change dependency graphs [10] to show how changes build
on earlier applied changes measuring the time dependency
between both changes. In 2010, Herzig [15] used the orig-
inal concept of change genealogies as defined by Brudaru
and Zeller [6] to implement change genealogies modeling
dependencies between added, modified, and deleted method
definitions and method calls. Later, Herzig and Zeller [14]
used method based change genealogy graphs to mine cause-
effect chains from version archives using model checking. In
this paper, we reuse the concept of genealogy graphs as defined
and implemented by Herzig [12], [15].

Change Genealogies in a Nutshell

Change genealogy graphs model dependencies between
individual change sets capturing how earlier changes enable
and cause later ones. Dependencies between change sets are
computed based on dependencies between added and deleted
method definitions and method calls. Two change sets CSN

and the earlier change set CSM depend on each other, if any
of the applied change operations depend on each other:
• CSN deletes a method definition added in CSM ,
• CSN adds a method definition deleted in CSM ,
• CSN adds a statement calling a method added in CSM ,
• CSN deletes a method call added in CSM .

For this purpose, we analyze the complete version history of a
software project reducing every applied change set to a number
of code change operations that added or deleted method calls
(AC, DC) or added or deleted method definitions (AD, DD).
The example change set shown in Figure 1 contains two
change operations: one deleting the method call b.bar(5)
and one adding A.foo(5f). Method calls and definitions are
identified using their full qualified name and absolute position
within the source code.

The example change genealogy shown in Figure 3 corre-
sponds to the artificial example history shown in Figure 2.
Following the initial change set example in Figure 1 we can
see that this change set causes two different dependencies for
change genealogy vertex CS4. Removing the method call to
B.bar(int) makes CS4 depending on CS2 that added the
just removed method call. CS4 also depends on CS3 con-
taining a change operation deleting the method definition of
B.bar(int). Apart from dependencies between individual
change sets, a change genealogy stores changed code artifacts

File 2
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File 4

File 1

Change Set
(CS1)

Change Set
(CS2)

Change Set
(CS3)

Change Set
(CS4)

float A.foo(float)
int A.foo(int)

d = A.foo(5f)

int A.foo(int)

int B.bar(int)

x = B.bar(5) x = B.bar(5)
x = A.foo(5f)

d = A.foo(0.2)

Fig. 2. We characterize change sets by method calls and definitions added
or deleted. Changes depend on each other based on the affected methods.
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day 0   0 day   1 day   6 day

File 1, File 2

AD    AC

File 3 File 1, File 2 File 3, File 4

AD    AC

AD    AC

+ + +

AC    DD

AC    DC

Fig. 3. Sample change genealogy derived from the change operations shown
in Figure 2. CSi → CSj indicates that the change CSj depends on CSi.

(e.g. file names) as vertex annotations and the dependency
types between vertices as edge annotations.

B. Network Metrics

Network metrics describing the dependency structure be-
tween individual code artifacts (e.g. source files) have shown
to be powerful to express dependencies between source code
artifacts such as methods and to predict software defects on
file and package level [4], [24], [28], [30]. In this work, we
use the concept of network metrics to express and measure
dependency relations between change sets. Since these depen-
dencies are already modeled within a change genealogy, we
can reuse many network metrics used in previous studies.

C. Predicting Defects

The number of studies and approaches related to defect
prediction is large and continues to grow. We reference only
those approaches and studies that are closely related to this
work. The given references are neither complete nor repre-
sentative for the overall list of defect prediction models, their
applications and related approaches.

One of the earliest attempts to predict defects was conducted
by Basili et al. [3] using object-oriented metrics. Many studies
investigated a large variety of different code metric types
for defect prediction purposes. Ostrand et al. [22] used code
metrics and prior faults to predict the number of faults for large



industrial systems. Zimmermann et al. [31] demonstrated that
higher code complexity leads to more defects. Besides code
related metrics, there exist studies showing that change-related
metrics [18], developer related metrics [23], organizational
metrics [20] and process metrics [11] can be used to predict
defect prone code artifacts.

The usage of code dependency information to build defect
prediction models is not new either. Schröter et al. [26] used
import statements to predict the number of defects for source
files at design time. Shin et al. [27] and Nagappan and
Ball [19] provided evidence that defect prediction models can
improve when adding calling structure metrics.

Zimmermann and Nagappan [30] demonstrated that network
metrics on code entity dependency graphs can be used to build
precise defect prediction models. Code artifacts communicate
with each used using method calls or shared variables. Model-
ing these communication channels results in a graph structure
that can be used to apply network analysis on them. Later, Bird
et al. [4] extended the set of network metrics by extending code
dependency graph adding contribution dependency edges.

III. CHANGE GENEALOGY METRICS

In Section II-A we briefly discussed the concept of change
genealogies. Summarizing, change genealogies model depen-
dencies (edges) between individual change sets (vertices).
Similar to code dependency metrics [4], [30] we can use
change set dependency graphs to define and compute change
genealogy metrics describing the dependency structures be-
tween code changes instead of code artifacts.

Each change set applied to the software system is rep-
resented by a change genealogy vertex. Computing network
metrics for each change genealogy vertex means to compute
change set dependency metrics. Later, we will use this set
of genealogy metrics to classify change sets as bug fixing or
feature implementing using a machine learner and to predict
defect-prone source code artifacts.

To capture as many of such dependency differences as pos-
sible, we implemented various genealogy dependency metrics
of different categories.

A. EGO Network Metrics

Ego network metrics describe dependencies among change
genealogy vertices and their direct neighbors. For every vertex
we consider direct dependent or direct influencing change sets,
only. Thus, this set of metrics measures the immediate impact
of change sets on other change sets. Table I describes the
implemented genealogy ego network metrics.

The metrics NumDepAuthors and NumParentAuthors refer
to authorship of change sets. Code changes that fix a bug may
dominantly depend on changes that were committed by the
same developer. We suspect bug fixes to be fixed by code
owners and that developers call their own functionality and
methods more often than foreign ones. Thus, the number of
authors of code change parents might be valuable. The last
six metrics in Table I express temporal dependencies between
change sets based on their commit timestamps.

TABLE I
EGO NETWORK METRICS CAPTURING DIRECT NEIGHBOR DEPENDENCIES.

Metric name Description

NumParents The distinct number of vertices being
source of an incoming edge.

NumDefParents The distinct number of vertices repre-
senting a method definition operation
and being source of an incoming edge.

NumCallParents The distinct number of vertices rep-
resenting a method call operation and
being source of an incoming edge.

NumDependants The distinct number of vertices being
target of an outgoing edge.

NumDefDependants The distinct number of vertices repre-
senting a method definition operation
and being target of an outgoing edge.

NumCallDependants The distinct number of vertices rep-
resenting a method call operation and
being target of an outgoing edge.

AvgInDegree The average number of incoming edges.
AvgOutDegree The average number of outgoing edges.

NumDepAuthors The distinct number of authors respon-
sible for the direct dependents.

NumParentAuthors The distinct number of authors that
implemented the direct ascendants of
this vertex.

AvgResponseTime The average number of days between a
vertex and all its children.

MaxResponseTime The number of days between a vertex
and the latest applied child.

MinResponseTime The number of days between a vertex
and the earliest applied child.

AvgParentAge The average number of days between a
vertex and all its parents.

MaxParentAge The number of days between a vertex
and the earliest applied parent.

MinParentAge The number of days between a vertex
and the latest applied parent.

B. GLOBAL Network Metrics

Global network metrics describe a wider neighborhood.
Most global network metrics described in Table II can be
computed for the global universe of vertices and dependencies.
For practical reasons, we limited the maximal traversal depth
to a maximal depth of five.

Metrics counting the number of global descendants or
ascendants express the indirect impact of change sets on other
change sets and how long this impact propagates though
history. The set of inbreed metrics expresses dependencies
between a change set and its children in terms of common
ascendants or descendants. Code changes that depend on
nearly the same earlier change sets as its children might
indicate reverted or incomplete changes.

C. Structural Holes

The concept of structural holes was introduced by Burt [7]
and measures the influence of actors in balanced social net-
works. When all actors are connected to all other actors, the
network is well-balanced. As soon as dependencies between
individual actors are missing (“structural holes”) some actors
are in advanced positions.



TABLE II
GLOBAL NETWORK METRICS.

Metric name Description

NumParents† The distinct number of vertices being part of on
incoming path.

NumDefParents† Like NumParents but limited to vertices that
change method definitions.

NumCallParents† Like NumParents but limited to vertices that
change method calls.

NumDependants† The distinct number of vertices being part of on
outgoing path.

NumDefDependants† Like NumDependants but limited to vertices that
change method definitions.

NumCallDependants† Like NumDependants but limited to vertices that
change method calls.

Inbreed metrics:
NumSiblingChildren The number of children sharing at least one

parent with this vertex.
AvgSiblingChildren The average number of parents this vertex and

its children have in common.
NumInbreedParents The number of grandparents also being parents.
NumInbreedChildren The number of grandchildren also being chil-

dren.
AvgInbreedParents The average number of grandparents also being

parent.
AvgInbreedChildren The average number of grandchildren also being

children.
† maximal network traversal depth set to 5.

TABLE III
STRUCTURAL HOLES METRICS SIMILAR TO BURT [7].

Metric name Description

EffSize The number of vertices that connected to this vertex mi-
nus the average number of ties between these connected
vertices.

InEffSize The number of vertices that connected by incoming edges
to this vertex minus the average number of ties between
these connected vertices.

OutEffSize The number of vertices that connected by outgoing edges
to this vertex minus the average number of ties between
these connected vertices.

Efficiency norms EffSize by the number of ego-network vertices.
InEfficiency norms InEffSize by the number of ego-network vertices.
OutEfficiency norms OutEffSize by the number of ego-network ver-

tices.

The effective size of a network is the number of change
sets that are connected to a vertex minus the average number
of ties between these connected vertices. The efficiency of a
change set is its effective size normed by the number of vertices
contained in the ego network. The higher the metric values for
these metrics the closer the connection of a change set to its
ego network. Table III lists the complete list of used structural
hole metrics.

IV. DATA COLLECTION

The goal of our approach is to predict defective source files
using change genealogy network metrics. To put the accuracy

TABLE IV
PROJECTS USED FOR EXPERIMENTS.

HTTPCLIENT JACKRABBIT† LUCENE RHINO

History length 6.5 years 8 years 2 years 13 years
Lines of Code 57k 66k 362k 56k
# Source files 570 687 2,542 217
# Code changes 1,622 7,465 5,771 2,883
# Mapped BUGs1 92 756 255 194
# Mapped RFEs2 63 305 203 38

Change genealogy details
# vertices 973 4,694 2,794 2,261
# edges 2,461 15,796 8,588 9,002
† considered only JACKRABBIT content repository (JCR).
1 refers to mapped fixes to bug reports
2 refers to implemented/enhanced feature requests

candidate pairs

?version archive

bug mappingcreation order timestamp resolution

Filter Chain

Reading data Selecting potential linkages Filtering based on several criteria Saving data

Reg
Ex

bug database

Fig. 4. Process of linking change sets to bug reports.

of such prediction models into perspective we compare our
models against models based on code complexity [31] and
models based on code dependency models by Zimmermann
and Nagappan [30] (referred to as Z&N for sake of brevity).

All models are evaluated on the four open-source JAVA
projects HTTPCLIENT, LUCENE, RHINO, and JACKRABBIT.
The projects differ in size from small (HTTPCLIENT) to large
(LUCENE) allowing us to investigate whether the classifica-
tion and prediction models are sensitive to project size. All
projects are known in the research community and follow
the strict and industry-like development processes of APACHE
and MOZILLA. A brief summary of the projects and their
genealogy graphs is presented in Table IV. Change genealogy
graphs contain approximately as many vertices as applied
change sets. The difference in the number of vertices and the
number of change sets is caused by change sets that do not add
or delete any method definition or method call (e.g. modifying
the build system or code documentation).

A. Bugs

For our approach we need to identify bug fixing change
sets and the total number of applied bug fixes per source file.
Mapping bug report to change sets, we can associate change
sets with modified source files and count the distinct number
of fixed bug reports per source file.

To associate change sets with bug reports, we followed a
similar approach as described by Zimmermann et al. [31] (see
also Figure 4):

1) Bug reports and change sets are read from the correspond-
ing bug tracking system and version archive.

2) In a pre-process step we select potential candidates
using regular expressions such as to search for po-



TABLE V
SET OF CODE COMPLEXITY METRICS USED.

Identifier Description

NOM Total number of methods per source file.
LCOM Lack of cohesion of methods in source file.
AVCC Cyclomatic complexity after McCabe [17].
NOS Number of statements in source file.
INSTΣ Number of class instance variables.
PACK Number of imported packages.
RCS� Total response for class (#methods + #distinct method

calls).
CBO� Couplings between objects [8].
CCML Number of comment lines.
MOD� Number of modifiers for class declaration.
INTRΣ Number of implemented interfaces.
MPC� Represents coupling between classes induced by message

passing.
NSUBΣ Number of sub classes.
EXTΣ Number of external methods called.
FOUTΣ Also called fan out or efferent coupling. The number of

other classes referenced by a class.
F-INΣ Also called fan in or afferent coupling. The number of

other classes referencing a class.
DIT∧ The maximum length of a path from a class to a root

class in the inheritance structure.
HIERΣ Number of class hierarchy methods called.
LMCΣ Number of local methods called.
Σ aggregated using the sum of all metric values of lower order
granularity. � aggregated using the mean value. ∧ aggregated using
the max value. Otherwise directly computed on file level.

tential bug report references in commit messages (e.g.
[bug|issue|fixed]:?\s*#?\s?(\d+)).

3) The pairs received from step 2) are passed through a set
of filters checking

a) that the bug report is marked as resolved.
b) that the change set was applied after the bug report

was opened.
c) that the bug report was marked as resolved not later

than two weeks after the change set was applied.
To determine a set of ground truth identifying the real

purpose of change sets we use a data set published by Herzig
et al. [13] containing a manually classified issue report type
for more than 7,400 issue report. Instead of using the original
issue report type to identify bug reports, we used the manual
classified issue report type as published by Herzig et al. [13].

B. Complexity Metrics

Complexity metrics were used to train and evaluate the
classification benchmark model based on code complexity
churn metrics as well as the code complexity defect prediction
benchmark model. We computed code complexity metrics
for all source files of each projects trunk version using a
commercial tool called JHAWK [1]. Using JHAWK we com-
puted classical object-oriented code complexity metrics listed
in Table V.

C. Network Metrics

Code dependency network metrics as proposed by Z&N
express the information flow between code entities modeled

TABLE VI
LIST OF CODE DEPENDENCY NETWORK METRICS.

Metric name Description

Ego-network metrics (computed for incoming, outgoing, and undirected depen-
dencies; descriptions adapted from Z&N):
Size # nodes connected to the ego network
Ties # directed ties corresponds to the number of edges
Pairs # ordered pairs is the maximal number of directed

ties
Density % of possible ties that are actually present
WeakComp # weak components in neighborhood
nWeakComp # weak components normalized by size
TwoStepReach % nodes that are two steps away
Brokerage # pairs not directly connected. The higher this

number, the more paths go through ego
nBrokerage Brokerage normalized by the number of pairs
EgoBetween % shortest paths between neighbors through ego
nEgoBetween Betweenness normalized by the size of the ego

network

Structural metrics (descriptions adapted from Z&N):
EffSize # entities that are connected to an entity minus the

average number of ties between these entities
Efficiency Normalizes the effective size of a network to the

total size of the network
Constraint Measures how strongly an entity is constrained by

its neighbors
Hierarchy Measures how the constraint measure is distributed

across neighbors. When most of the constraint
comes from a single neighbor, the value for hi-
erarchy is higher

Centrality metrics (computed each for incoming, outgoing, and undirected depen-
dencies; descriptions adapted from Z&N):
Degree # dependencies for an entity
nDegree # dependencies normalized by number of entities
Closeness Total length of the shortest paths from an entity (or

to an entity) to all other entities
Reachability # entities that can be reached from a entity (or

which can reach an entity)
alpha.centrality† Generalization of eigenvector centrality [5]
Information Harmonic mean of the length of paths ending in

entity
Betweenness Measure for a entity in how many shortest paths

between other entities it occurs
nBetweenness Betweenness normalized by the number of entities
† Metrics not used by Z&N.

by code dependency graphs. The set of network metrics we
used slightly differs from the original metrics set used by
Z&N. We computed the network metrics using the R statistical
software [25] and the igraph [9] package. We could not re-use
two of the 25 original network metrics: ReachEfficiency and
Eigenvector. While we simply excluded ReachEfficiency from
our network metric set, we substituted the Eigenvector metric
by alpha.centrality—a metric that can be “considered as a
generalization of eigenvector centrality to directed graphs” [5].
Table VI lists all code dependency network metrics used
in this work. Metrics carry the same metric name than the
corresponding metric as described by Z&N.

D. Genealogy Metrics

We discussed the set of genealogy metrics in Section III.
To compute these metrics, we constructed change genealogy
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Fig. 5. Data collection used to predict defects for source files.

graphs modeling dependencies between change sets over the
entire project history. But change genealogies model depen-
dencies between individual changes. Thus, change genealogy
network metrics express dependencies between change sets
and not between source files, which we need in order to build
classification models for source files. To transform change
genealogy metrics into source file metrics, for each source
file of a project, we aggregate all change genealogy metric
values over all change sets that modified the corresponding
file. We used three different aggregation functions: mean, max,
and sum. The intuition behind aggregating change genealogy
metrics to source file level is that we suspect central change
sets as more crucial with respect to the development process.
Consequently, we suspect code artifacts being changed by such
crucial change sets to be more defect prone than others.

The resulting data collection is illustrated in Figure 5. For
each source file of a project—identified by its full qualified
file name—we know the distinct number of bugs that were
fixed using change sets touching the corresponding file and
three sets of metric values: code complexity metrics, network
metrics as described and discussed by Z&N, and aggregated
change genealogy metrics.

V. EXPERIMENTAL SETUP

Our goal is to test multiple classification models based on
different metrics set to classify defective source files for our
four open-source software projects under investigation and to
compare these classification models against each other. We
consider source files as defective if at least one change set
fixing a bug report modified the source file.

For each prediction model to be built, we require a data
collection containing explanatory variables (metric values per
source file) and the dependent variable identifying the number
of fixed bugs in the corresponding source files (see Figure 5).
For each project, we train and test four different sets of
classification model based on: one model based on code com-
plexity metrics (CM), one model based on code dependency
network metrics (NM), one model based on genealogy network
metrics (GM), and one model based on a combined set code
dependency and change genealogy network metrics (Comb.).

Each prediction model requires training and testing sets. To
achieve comparable prediction models we split the original
data set as shown in Figure 5 twice:

First split: stratified random sampling We split the overall
data set into 2/3 training and 1/3 testing sets using
stratified sampling—the ratio of source files being marked
as defective (bug count larger than zero) in the original
dataset is preserved in both training and testing subsets.
Stratified sampling makes training and testing sets more
representative since it reduces sampling errors.

Second split: by metric columns Next, we split training and
testing sets by metric columns. For each training and
testing set received from the first splitting step, we
produce four training and four testing sets each containing
the metric columns required to train and test one of
the four different prediction models: code complexity
metrics (CM), code dependency network metrics (NM),
genealogy metrics (GM), combined set code dependency
and change genealogy network metrics (Comb.).

Splitting the metric columns apart after splitting training
and testing sets apart ensures that each metric set is validated
on the exact same training and testing sets and thus ensures
a fair comparison between the individual metric sets. Further,
we repeatedly sample the original data sets 100 times (cross-
fold) using the above splitting scheme in order to generate 100
independent training and testing sets per metric set. Thus, in
total we generate 400 different training and testing sets per
subject project.

We conducted our experiments using the R statistical
software [25] and more precisely Max Kuhn’s R package
caret [16]. The caret package provides helpful functions and
wrapper methods to train, tune, and test various classifica-
tion models. Table VII lists the models we used for our
classification results. Each model is optimized by the caret
package by training models using different tune parameters
(please see caret manual1 for more details). “The performance
of held-out samples is calculated and the mean and standard
deviations is summarized for each combination. The parameter
combination with the optimal resampling statistic is chosen as
the final model and the entire training set is used to fit a final
model” [16]. The level of performed optimization can be set
using the tuneLength parameter. We set this number to five. We
further apply the following optimization steps before training
and testing the individual classification models:

Remove constant metric columns. Metrics that show near
zero variance and thus can be considered as constant.
The caret package provides the nearZeroVar function
that identifies those explanatory variables that show no
significant variance. Such metrics will not contribute to
the final prediction or classification model.

Remove highly inter-correlated metric columns. If two
explanatory variables are correlated with other variables
they add no new information dimension. Using the caret
function findCorrelation we remove any metric column
that showed a correlation higher than 0.9 with any other
metric column.

1http://cran.r-project.org/web/packages/caret/caret.pdf

http://cran.r-project.org/web/packages/caret/caret.pdf


TABLE VII
LIST OF MODELS USED FOR PREDICTION EXPERIMENTS.

Model∗ Description

k-nearest neighbor
(knn)

This model finds k training instances
closest in Euclidean distance to the given
test instance and predicts the class that
is the majority amongst these training
instances.

Logistic regression
(multinom)

This is a generalized linear model using
a logic function and hence suited for bi-
nomial regression, i.e. where the outcome
class is dichotomous.

Recursive partition-
ing (rpart)

A variant of decision trees, this model
can be represented as a binomial tree and
popularly used for classification tasks.

Support vector ma-
chines (svmRadial)

This model classifies data by determining
a separator that distinguishes the data
with the largest margin. We used the
radial kernel for our experiments.

Tree Bagging (tree-
bag)

Another variant of decision trees, this
model uses bootstrapping to stabilize the
decision trees.

Random forest
(randomForest)

An ensemble of decision tree classifiers.
Random forests grow multiple decision
trees each “voting” for the class on an
instance to be classified.

∗For better understanding, we advise the reader to refer to specialized
machine learning texts such as by Wittig and Frank [29].

Rescaling and centering data. To minimize the effects of
large metric values on the classification models, we
rescaled all metric columns (training and testing data)
into the value range [0,1].

As evaluation measure we report precision, recall, and F-
measure. Each of these measures is a value between zero and
one. A precision of one indicated that the classification model
did not produce any false positives; that is classified non bug
fixes as bug fixes. A recall of one would imply that the classi-
fication model did not produce any false negatives—classified
a bug fix not as such. The F-measure represents the harmonic
mean of precision and recall.

To measure whether the reported classification performance
differences are statistical significant, we performed a Kruskal-
Wallis test—a non-parametric statistical test to statistically
compare the results. The statistical tests showed that all
reported differences in classification performances are statisti-
cally significant (p < 0.05).

VI. PREDICTION RESULTS

Classification results are presented in Figure 6. Panels across
the x-axis in the figure represent the subject projects. The
four prediction models used were run on 100 stratified random
samples on four metric sets: complexity metrics (CM), code
dependency network metrics (NM), change genealogy metrics
(CGM), and a combined set of combined code dependency
and change dependency network metrics (Comb.). For each
run we computed precision, recall an F-measure values.

TABLE VIII
MEDIAN PREDICTION PERFORMANCE MEASURES AS SHOWN IN FIGURE 6.

Metric set HTTPCLIENT JACKRABBIT LUCENE RHINO

Precision
CM 0.47 0.61 0.59 0.55
NM 0.62 0.64 0.66 0.70
GM 0.79 0.71 0.71 0.74
Comb. 0.82 0.67 0.60 0.77

Recall
CM 0.38 0.37 0.21 0.36
NM 0.70 0.50 0.30 0.64
GM 0.69 0.48 0.41 0.62
Comb. 0.79 0.79 0.41 0.76

F-Measure
CM 0.42 0.45 0.30 0.42
NM 0.67 0.56 0.42 0.65
GM 0.73 0.57 0.52 0.67
Comb. 0.79 0.72 0.49 0.77

The boxplots in the figure reflect the distribution of the
corresponding performance measure. For each distribution
the best performing model (see Section V) is stated under
the corresponding. The boxplot black line in the middle of
each boxplot indicates the median value of the corresponding
distribution. Larger median values indicate better performance
on the metrics set for the project based on the respective
evaluation measure. Note that the red colored horizontal lines
connecting the medians across the boxplots do not have
any statistical meaning—they have been added to aid visual
comparison of the performance of the metrics set. An upward
sloping horizontal line between two boxplots indicates that the
metrics set on the right performs better than the one of the left
and vice versa.

A. General Observations

In general, the variance of classification results between
individual models seems to be high, especially for models
trained and tested on the combined set of network and
genealogy metrics. Although, in most cases, treebag models
provided the best classification performances, it seems to be
important to not only compare individual metric sets but also
individual classification models as this may heavily impact the
performance results. For the rest of this section, we will use
the median performance (black line in box plots and shown
inTable VIII) across all models as comparison basis, unless
stated otherwise.

B. Comparing Complexity and Network Metrics

As expected, network metrics (NM) outperform code com-
plexity metrics (CM). Across all projects and network metric
models show better precision and recall values. Except for
LUCENE, network metric models even show a lower variance
border that lies above the upper variance border for complexity
metrics, although network metric models seem to show larger
variances and thus seem to be more dependent upon the used
algorithm to train the individual model. Overall, the result con-
firms the initial findings by Zimmermann and Nagappan [30].
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Fig. 6. Results from the repeated holdout prediction setup.

C. Comparing Network and Genealogy Metrics

When comparing the average classification performances
between code dependency network (NM) and genealogy (GM)
it is evident that genealogy metrics outperform network met-
rics with respect to precision values. For all projects, geneal-
ogy metric models report higher precision values. The median
precision of network metric models across all projects lies at
0.64 whereas the median precision of models based on change
genealogies lies at 0.74. That is an increase of 10% for the
median precision. Thus, models based on change genealogy
metrics tend to report 10% less false positives when compared
to network metric models.

At the same time, the median recall values for change
genealogy metrics (0.58) lie slightly below the recall values
of models trained on network metrics (0.59). Thus, using
genealogy network metrics to classify defective source files
reduces the number of false positives by about 10% while
reporting nearly exactly the same amount of false negatives.
That also explains the overall better F-measures for genealogy
metric models across all projects.

D. The Combined Set of Network Metrics

Combining code dependency and change dependency net-
work metrics to classify code changes led to a mixed result.
While precision values for HTTPCLIENT and RHINO were
the best precision values when compared to all other metric
sets, the precision dropped for the remaining two projects
to code dependency metric level. But interestingly, models
trained using the combined metric sets show better recall
values for all four projects. Except for LUCENE the recall
values are considerable increased: up to 29% while the median
improvement lies at 10.5%. Comparing the F-measures across
all projects and all metric sets, the combined network metric
set showed the best results, except for LUCENE where the
combined network metrics showed slightly lower F-measures
than the genealogy network Metrics.

Overall, project size seems to have no impact on prediction
accuracy.

* Models based on change genealogy metrics report less
false positives (higher precision).

* Combining code dependency and change genealogy
metrics increases recall but decreases precision.



TABLE IX
TOP 10 MOST INFLUENTIAL METRICS PER PROJECT IN DECREASING ORDER.

HTTPCLIENT JACKRABBIT LUCENE RHINO

NumParentAuthors (GM) OutDegree (NM) closeness (NM) OutEfficiency (GM)
NumCallParents (GM) OutEfficiency (GM) twoStepReach (NM) Efficiency (GM)
NumParents (GM) AvgChildrenOut (GM) effSize (NM) ChildrenParents (GM)
OutEffSize (GM) NumCallParents (GM) efficiency (NM) AvgParentAge (GM)
NumInbreedChildren (GM) AvgInbreedChildren (GM) tiesOut (NM) MinResponseTime (GM)
EffSize (GM) AvgSiblingChildren (GM) NumDefDependents (GM) NumParents (GM)
NumDependants (GM) NumCallParents (GM) NumChildrenParents (GM) MinParentAge (GM)
NumCallDependents (GM) InEffeciency (GM) NumCallDependents (GM) outDegree (NM)
NumSiblingChildren (GM) NumParents (GM) NumSiblingChildren (GM) MaxResponseTime (GM)
MaxParentAge (GM) Efficiency (GM) MaxParentAge (GM) AvgInbreedChildren (GM)

E. Influential Metrics

To identify the overall most influential metrics, we used the
filterVarImp function provided by the caret [16] package.
This function computes a ROC curve by first applying a series
of cutoffs for each metric before computing the sensitivity
and specificity for each cutoff point. The importance of the
metric is then determined by measuring the area under the
ROC curve. We use a combined metrics set containing all
metrics (CM, NM, and GM) to compute variable importance
of these metrics. The top-10 most influential metrics are shown
in Table IX in decreasing order.

The top-10 most influential for HTTPCLIENT and RHINO
are all change genealogy metrics. The top most influential
metrics for JACKRABBIT is a code dependency metric measur-
ing the number of outgoing edges. The top-5 most influential
metrics for LUCENE are all code dependency metrics and
explains the exceptional trends in the overall classification
performance comparison for this project.

We observed three different patterns with respect to pres-
ence and ranking of network and change genealogy metrics:
Efficiency network metrics are in the top-10 most influ-

ential metrics for every of the four projects. For
LUCENE the code dependency efficiency metric con-
tributed (effsize and efficiency) while for the other three
projects the change genealogy efficiency metrics (EffSize
and Efficiency) made the difference.

The number of genealogy parents seems to be crucial. The
more change genealogy parents the higher the likelihood
of bugs. For all projects, the top-10 set of most influen-
tial metrics contains at least one metric expressing the
number of change parents.

The time span between changes seems to be crucial as
well. For three out of four projects the timespan between
a change and its parents is important. Combined with the
previous finding, it seems that source files that got applied
many change set combining multiple older functions are
more likely to be defect prone than others.

* Network efficiency seems to be crucial for prediction
models relying on network metrics.

* Applying many changes combining multiple older func-
tions seems to raise defect likelihood.

VII. THREATS TO VALIDITY

Empirical studies like this one have threats to validity.
Change Genealogies. First and most noteworthy, change ge-

nealogies model only dependencies between added and
deleted method definitions and method calls. Disregard-
ing change dependencies not modeled by change genealo-
gies might have an impact on change dependency metrics.
More precise change dependency models might lead to
different change genealogy metric values and thus might
change the predictive accuracy of the corresponding clas-
sification and prediction models.

Number of bugs. Computing the number of bugs per file is
based on heuristics. While we applied the same technique
as other contemporary studies do, there is a chance the
count of bugs for some files may be an approximation.

Issue reports. We reused a manual classified set of issue
reports to determine the purpose of individual change
sets. The threats to validity of the original manual clas-
sification study [13] also apply to this study.

Non-atomic change sets. Individual change sets may refer to
only one issue report but still apply code changes serving
multiple development purposes (e.g. refactorings or code
cleanups). Such non-atomic changes introduce noise into
the change genealogy metric sets and thus might bias the
corresponding classification models.

Study subject. The projects investigated might not be repre-
sentative, threatening the external validity of our findings.
Using different subject projects to compare change ge-
nealogy, code dependency, and complexity metrics might
yield different results.

VIII. CONCLUSION

When it comes to learning from software histories, looking
for indirect effects of events can make significant differences.
As presented in this paper, software genealogies provide wider
and deeper insights on the long-term impact of changes,
resulting in better change classification report significantly less
false positives when compared to code network metric and
code complexity models.

In our future work, we will continue to take a broad,
long-term view on software evolution. With respect to change
genealogies, our work will focus on the following topics:



Graph patterns and metrics. Besides temporal change
rules [15], we can also search for specific patterns in
the genealogy graph, such as identifying changes that
trigger the most future changes, changes with the highest
long-term impact on quality or maintainability, or bursts
of changes in a short time period. Such patterns may
turn out to be excellent change predictors [21].

More features and rules. Genealogies may be annotated
with additional features, such as authors or metrics,
in order to allow more predictive patterns (“Whenever
Bob increases the cyclomatic complexity above 0.75, the
module requires refactoring”)

Prediction rationales. Predictions based on change genealo-
gies build on a wide number of factors that are harder
to comprehend than isolated metrics. We are working on
providing rationales based on past history to precisely
explain why a module is predicted to fail, and to suggest
short- and long-term consequences.

To learn more about our work, visit our Web site:

http://softevo.org/change genealogies/
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