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Abstract

In data centers, the IO path to storage is long and com-

plex. It comprises many layers or “stages” with opaque

interfaces between them. This makes it hard to enforce

end-to-end policies that dictate a storage IO flow’s per-

formance (e.g., guarantee a tenant’s IO bandwidth) and

routing (e.g., route an untrusted VM’s traffic through a

sanitization middlebox). These policies require IO dif-

ferentiation along the flow path and global visibility at

the control plane. We design IOFlow, an architecture

that uses a logically centralized control plane to enable

high-level flow policies. IOFlow adds a queuing abstrac-

tion at data-plane stages and exposes this to the con-

troller. The controller can then translate policies into

queuing rules at individual stages. It can also choose

among multiple stages for policy enforcement.

We have built the queue and control functionality at

two key OS stages– the storage drivers in the hypervisor

and the storage server. IOFlow does not require applica-

tion or VM changes, a key strength for deployability. We

have deployed a prototype across a small testbed with a

40 Gbps network and storage devices. We have built

control applications that enable a broad class of multi-

point flow policies that are hard to achieve today.

1 Introduction

In recent years, two trends have gained prominence in

enterprise data centers– virtualization of physical servers

and virtualization of storage. Virtual machines (VMs)

on the physical servers are presented with a virtual disk.
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This virtual disk is simply a large file on a shared storage

server accessible across the shared data center network.

Though these trends have delivered on the promise of re-

duced costs and easier management, ironically they have

also resulted in increased end-to-end complexity. The

path of an IO request from a VM to a storage back-end

is complex, traversing many layers. A request also ap-

pears differently at each layer. For example, a file IO re-

quest like a read, write, create in a VM results in a

block IO request in the hypervisor. This, in turn, results

in Ethernet packets across the network, and finally an-

other file IO request and block device request at the stor-

age server. Requests may traverse many other layers; for

the Windows I/O stack there are over 18 stackable layer

classes with functionality such as compression, replica-

tion, deduplication, virus checking etc. [15]

Such complexity means that enforcing end-to-end

(e2e) policies is hard. It requires layers along the IO

path to treat requests differently based on their contents.

Further, policies may need to be enforced at one or more

or all layers along the path. For example, prioritizing

IOs from a VM to storage requires configuring all lay-

ers along the path. This simple policy governs a point-

to-point IO flow, i.e., all IOs from one endpoint to an-

other endpoint. Policies regarding multi-point flows are

even harder to enforce. For example, guaranteeing a ten-

ant’s IO bandwidth requires dynamic layer configuration

across the paths from all its VMs to the storage servers.

This paper proposes IOFlow, an architecture that en-

ables e2e policies in data centers. The policies spec-

ify the treatment of IO flows from virtual machines to

shared storage. Flows are named using a four-tuple com-

prising human-friendly high-level identifiers: {VMs, op-

erations, files, shares}. For example, if a tenant with

100 VMs that perform data mining on files in “dataset

A” is to be given high priority, the policy can be written

as {VM 1-100, *, *, “dataset A”}→ High Priority.

IOFlow comprises three components. First, a logi-

cally centralized controller discovers data plane stages

(i.e., layers that are IOFlow compliant), and maintains a

stage-level data center topology graph. Second, data-

plane queues allow for differentiated treatment of IO



requests. Stages expose a simple control interface that

specifies the low-level identifiers that can be used to di-

rect requests to queues. This interface allows the con-

troller to create queues and dynamically configure their

service and routing properties. For example, by config-

uring a queue to be serviced at a specified rate, the con-

troller can ensure an IO flow achieves guaranteed per-

formance. Third, we specify a simple interface between

the controller and control applications that can be built

on top. These applications translate policies into stage-

specific configuration disseminated by the controller.

With IOFlow, the controller has global visibility. This

allows control applications to use centralized algorithms

to translate policies into stage configuration. Such trans-

lation includes determining “where” a policy needs to

be enforced and “what” queuing rules are needed. By

contrast, designing decentralized versions of such appli-

cations is harder.

The gains offered by centralized control algo-

rithms have also motivated software-defined network-

ing (SDN) [5, 6, 12, 21, 32]. However, enabling policies

for storage IO flows requires classifying and controlling

storage IO requests which is difficult to achieve at the

network layer (at NICs and switches). IOFlow borrows

several SDN ideas and applies them to shared storage,

enabling a software-defined storage architecture (SDS).

A key challenge was designing queues and rate limiters

for storage flows. While network devices have always

been able to queue packets based on the network header,

configurable queues at storage stages do not exist today;

partly because the header for an IO request changes as

it traverses across layers. Further, rate limiting is hard

because the relation between IO operation and process-

ing time is a non-linear function of IO type, data locality,

device type and request size.

We have added control to two key stages in the Win-

dows IO stack: the storage drivers in the hypervisor and

the storage server. This allows us to enforce policies

with unmodified applications and VMs. We have also

added control to other optional stages: a malware scan-

ning device driver, a guest OS file system in the VM,

and the network drivers. We have deployed IOFlow on

a 12-server testbed of 120 VMs. Through two control

applications we built on IOFlow, we illustrate how the

system overcomes several challenges: data and control

plane efficiency in fast 40 Gbps RDMA-based IO paths,

incremental deployability, end-to-end flow name resolu-

tion and dynamic control.

2 Scope and challenges

This paper focuses on management of enterprise data

centers. Such data centers comprise compute and stor-

age servers. The compute servers are virtualized and

host virtual machines (VMs). Each user or tenant of the

data center is allocated a group of VMs and can run arbi-

trary applications on its VMs. The storage servers act as

front-ends for back-end storage. Storage is usually vir-

tualized, i.e., VMs are often unaware of the details of the

interconnect fabric and the storage configuration. VMs

are presented with virtual hard disks or VHDs that are

simply large files on the storage servers. Such storage

virtualization eases management tasks like VM migra-

tion and dealing with storage failures.

The compute and storage servers are connected

through a network switch that carries both IP traffic be-

tween the VMs, and storage traffic from VMs to storage

and between the storage servers themselves. While our

design can accommodate all these, in this paper we focus

only on IO requests from VMs to storage. We also as-

sume the data center has been provisioned appropriately

such that the performance bottleneck is at the storage

servers; small IO requests are typically interrupt limited

while large requests are limited by the bandwidth of the

storage back-end or the server’s network link.

IOFlow’s design targets small-to-medium data cen-

ters, with tens of storage servers, hundreds of physical

compute servers and 8-16 VMs per server, resulting in

O(thousand) VMs. While our ideas can be extended to

larger public data centers like Amazon EC2 and Win-

dows Azure, they pose tougher scalability requirements.

We defer an exploration of such scaling to future work.

2.1 Example policies

A key challenge in enterprise data centers is enforcement

of management policies for storage IO flows. Unlike a

network flow which refers to a transport connection be-

tween two endpoints, we use the term “flow” to refer

to all IO requests to which a single policy applies. So

flows can be multi-point with one or more source end-

points and one or more destination endpoints. The flow

endpoints are named using high-level identifiers like VM

name for the source, and file name and share name for

the destination. For ease of exposition, below we use ex-

ample flow policies of the form: {[Set of VMs], [Set of

storage shares]}→ Policy. We focus on policies that dic-

tate the performance and routing of flows. Such policies

could be specified by data center administrators, man-

agement software within the data center or by tenants

themselves.

Policy P1. {VM p, Share X} → Bandwidth B. VM p

runs a SQL client that accesses SQL data files on stor-

age share X . To ensure good query performance, p is

guaranteed bandwidth B when accessing the share.1

1B is in tokens/sec. The relation of tokens to actual IO operations

is detailed in Section 3.2.



Policy Where to What to
enforce? enforce?

P1 {p, X}→ B C(p) Or S(X) Static rate limit
P2 {p, X}→ Min B C(p) Or S(X) Dynamic rate limit
P3 {p, X}→ Sanitize C(p) Or S(X) Static routing
P4 {p, X}→ Priority C(p) & S(X) Static priority
P5 {[p, q, r], C(p), C(q) & C(r) Dynamic VM Or

[X ,Y ]}→ B Or S(X) & S(Y ) Server rate limits

Table 1: E2E policies may require distributed and

dynamic enforcement. C(p) refers to the compute

server hosting VM p, S(X) refers to the storage server

where share X is mounted.

Policy P2. {p, X} → Min bandwidth B. Similar to

policy P1, but when other VMs are idle, p is allowed to

exceed its bandwidth guarantee.

Policy P3. {p, X}→ Sanitize. VM p’s IO traffic must

be routed through a sanitization layer.

Policy P4. {p, X}→ High priority. VM p runs a SQL

client that accesses SQL log files on storage share X . To

ensure low latency for log operations, p’s storage traffic

requires high priority treatment along the e2e path.

Policy P5. {[p,q,r], [X ,Y ]} → Bandwidth B. VMs

p,q and r belong to the same tenant and when accessing

share X and Y , they are guaranteed bandwidth B. Such

per-tenant guarantees are useful since any of the VMs

involved is allowed to use the bandwidth guarantee.

Policies P1–P4 specify treatment of point-to-point

flows whereas P5 applies to multi-point flows.

2.2 Challenges

We use the examples above to highlight why IO flow

policies are difficult to enforce in today’s data centers.

Differentiated treatment. To enforce policies, lay-

ers along the flow path need to treat packets differently

based on their contents (header and data). For example,

consider policy P1. Storage traffic from VM p traverses

the guest OS and the hypervisor at the compute server,

then the network switch and finally the OS at the storage

server before reaching the disk array. To enforce this

policy, at least one of these layers needs to be able to

control the rate at which requests from VM p to share X

are forwarded.

Flow name resolution. Flows are specified using

high-level names, e.g., the VM and share name. How-

ever, individual layers may not recognize these names,

and thus, they may not be able to attribute a request to

the flow it belongs to and the policy that applies. For

instance, for policy P1, any of the layers from VM p

to share X can act as enforcement points, yet each can

only observe some low-level identifiers in the requests

that traverse them. The flow’s destination share X may

appear as a file system inside the VM and the guest OS

but appears as a block device inside the hypervisor. The

hypervisor maps this to a VHD file on the storage server

(e.g., “//server/file.VHD”). The storage server, in turn,

maps this file (e.g., “H:/file.VHD”) to a specific device

(e.g., “/device/ssd5”). Hence, flow names need to be

consistently resolved into low level identifiers that are

accessible to individual layers.

Distributed enforcement. Flow policies may need

to be enforced at more than one layer along the flow’s

path. For example, policy P4 entails VM p’s packets

should achieve high priority, so it needs to be enforced

at all layers along the e2e path. Multi-point policies add

another dimension to the need for distributed enforce-

ment. For example, policy P5 requires that the aggregate

traffic from VMs p, q and r to shares X and Y be rate

limited. This can be enforced either at each of the com-

pute servers hosting these VMs or at the storage servers

where the shares are mounted.

Dynamic enforcement. Some policies may require

static configuration of layers while others require dy-

namic configuration. For example, policy P1 in Ta-

ble 1 requires a static bandwidth limit for VM p’s traffic.

Static enforcement rules are also sufficient for policies

P3 and P4. As a contrast, policy P2 requires that the

bandwidth limit for VM p should be adjusted based on

the spare system capacity (but should never go below

the minimum guarantee). Similarly, multi-point policies

like P5 that offer aggregate guarantees also require dy-

namic enforcement rules.

Admission control. Some policies may not be fea-

sible due to the capacity of the underlying physical re-

sources. For example, to meet a bandwidth guarantee for

a VM, the storage back-end should have enough capac-

ity to accommodate the guarantee. The challenge here is

to determine if a policy is feasible to achieve.

In summary, enforcing flow policies requires the data

plane to support traffic differentiation and global visi-

bility at the control plane. Such visibility allows control

algorithms to map flow names into low-level identifiers,

to determine if a policy is feasible, to decide where to

enforce it and how to dynamically change enforcement

rules. This motivated our controller-based design which

we describe next.

3 Design

IOFlow is a software-defined storage architecture that

enables IO flow policies in multi-tenant data centers.

IOFlow requires layers along the IO path to implement

a simple control interface with seven API calls. Layers

that implement this API are called “stages”. A logically

centralized controller uses the API to configure stages to

make local decisions that enable an end-to-end policy.
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Figure 1: System architecture. IOFlow brings sev-

eral IO stack stages (shaded) under unified control.

Each stage implements queues and queuing rules.

Stages. Figure 1 shows key layers along the IO stack in

a typical data center. Any of these can serve as stages.

In our prototype, we have implemented the SMB client

(SMBc at the hypervisor) and the SMB server (SMBs at

the storage server) as stages for enforcing performance

policies. SMB is a distributed IO protocol that can run

over RDMA. We have also implemented the network

drivers as IOFlow stages.

Each stage implements traffic differentiation through

queues. Queuing rules map individual IO requests

to queues. The stage’s control API is shown in

Table 2. The API allows the controller to dis-

cover the kind of IO headers a stage understands,

and can thus use to assign packets to queues

(getQueueInfo). Further, it allows the controller to

create queuing rules (createQueueRule) and con-

figure queue properties (configureQueueService

and configureQueueRouting). Queues have

service properties that govern how fast they are ser-

viced, and routing properties that dictate the next stage

to which IO requests are routed.

Controller. A logically centralized data center con-

troller discovers and interacts with the stages in servers

across the data center to maintain a topology graph. It

exposes this topology and information about individual

stages to control applications built on top. These con-

trol applications translate high-level flow policies into

stage-specific configuration, namely queuing rules for

assigning packets to queues and the queue properties.

Such translation may be done proactively when the ten-

ant specifies a policy or reactively when a stage receives

an IO request that does not match any existing queues

and contacts the controller.

A0 getQueueInfo ()

returns kind of IO header stage uses for queuing,

the queue properties that are configurable,

and possible next-hop stages

A1 getQueueStats (Queue-id q)

returns queue statistics

A2 createQueueRule (IO Header i, Queue-id q)

creates queuing rule i → q

A3 removeQueueRule (IO Header i, Queue-id q)

A4 configureQueueService (Queue-id q,

<token rate,priority, queue size>)

A5 configureQueueRouting (Queue-id q,

Next-hop stage s)

A6 configureTokenBucket (Queue-id q,

<benchmark-results>)

Table 2: IOFlow’s API for data-plane stages.

To show the use of the control API, we focus on Fig-

ure 1 and illustrate the enforcement of a simple policy–

{VM 4, Share X}→ Bandwidth B. The controller knows

about the following stages on the IO path: SMBc and

network driver in the hypervisor, and SMBs and network

driver in the storage server. Other layers in the figure are

not IOFlow-compliant. No other policies exist and the

stages have no queuing rules.

Figure 2 shows the API calls used by the controller

at the SMBc stage to enforce this policy. Through call

1, the controller determines the stage understands “File

IO” headers. It then creates a queuing rule that directs

IOs from VM 4 to server with share X to queue Q1. This

also causes queue Q1 to be created. Note that the File IO

header in an IO request contains other fields (like the op-

eration type) that are assumed wildcarded and hence, not

matched against. All other IOs are directed to queue Q0.

Through calls 4 and 5, the controller configures queue

Q1 to be serviced at rate B while the default queue uses

the rest of the storage capacity.

1: getQueueInfo (); returns “File IO”

2: createQueueRule (<VM 4, //server X/*>, Q1)

3: createQueueRule (<*, *>, Q0)

4: configureQueueService (Q1, <B,0,1000>)

5: configureQueueService (Q0, <C-B,0,1000>)

Figure 2: Controller enforces example policy at

SMBc stage. Q0 is stage’s default queue. C is the

capacity of storage back-end.

3.1 Design goals

With IOFlow, we target three main design goals. First,

queues at stages must be fast and cause minimal per-

formance degradation. Any performance degradation



1: IO Header <VM1, //server X/file F>→ Queue Q1

2: IO Header <VM2, //server Y/*> → Queue Q2

3: IO Header <VM3, *>→ Queue Q4

4: <*, *> → Queue Q3

Figure 3: Example SMBc stage queuing rules.

“Server” could be a remote machine or the local host.

1: IO Header <SID S1, H:/File F>→ Queue Q1

2: IO Header <SID S2, H:/File G>→ Queue Q1

3: IO Header <SID S2, H:/Directory A/*>→ Queue Q2

4: <*, *> → Queue Q3

Figure 4: Example SMBs queuing rules. SID stands

for security descriptor that identifies VM.

along the IO stack will show up with fast 40+ Gbps

RDMA-capable networks and storage devices such as

SSDs or in-memory storage like memcached [18] or

RamCloud [19]. Second, the control plane must be flex-

ible, responsive, accurate, resilient and scalable. The

control plane should be flexible, responsive and accurate

to allow for rich control application policies. It must

survive failures and any temporary unavailability of the

control plane should not stall the data plane. It must also

be scalable. Third, it is our goal not to require any ap-

plication or VM changes. As we show in this paper, it

is possible to implement a rich set of policies benefiting

unmodified applications and VMs.

3.2 Stages

Each stage has queues and queuing rules. Queues are the

mechanism to provide differentiated flow control. All

queues and queuing rules are soft state, i.e., they do not

need to survive stage failures. Each stage inspects an

incoming IO request, matches it to a queuing rule and

forwards it to the appropriate queue. Queuing rules are

checked in the order they were created with the default

rule, if one exists, being checked last. If no match exists,

the request is blocked while the stage requests a queuing

rule from the controller that is subsequently installed at

the stage. Figure 3 shows example queuing rules at the

SMBc stage in the hypervisor; Figure 4 shows them for

the SMBs stage in the storage server. Note that stages

can use different low level IO Headers for queuing pack-

ets. The controller resolves a flow name to queuing rules

for individual stages. Also, different queuing rules can

refer to the same queue as in Rules 1 and 2 in Figure 4.

Stage queues have two main properties: service and

routing. A stage may allow the controller to configure

one or both or none of these through its control interface.

Service properties. A stage that implements queues

with configurable service properties can throttle or treat

IO requests preferentially. Such service properties are

needed for performance isolation policies (e.g., poli-

cies P1,P2,P4,P5). To throttle IO traffic, queues use a

token-bucket abstraction [31]. The queues are served

at token rate. Some queues can be treated pref-

erentially to others as indicated by the priority

field. If a queue reaches the queue size thresh-

old, the stage notifies the controller and blocks any fur-

ther inserts to that queue. There is no support in the

IO stack for dropping IO requests, but there is sup-

port for blocking requests and applying back-pressure.

The controller can set the service properties (<token

rate, priority, queue size>) for a queue using

the configureQueueService call. Periodically it

can use getQueueStats to monitor statistics on the

queue, i.e., its average service rate and queue size.

Queue routing. Some stages may allow control over

how IO requests are routed. Queues are associated with

a default next-hop. For example, requests at the SMBc

stage are routed to the network driver. It may allow re-

quests to be routed to a different stage, perhaps a stage

not even in the hypervisor. Such configurable plumbing

of stages can allow for a rich set of flow policies. For

example, Section 4.2 shows how the controller uses the

configureQueueRouting call to route IO requests

from untrusted VMs through a malware scanner stage.

Storage request peculiarities. Storage requests are

different from network packets, so the design of the to-

ken bucket is different for them too. For network pack-

ets, a single byte is represented by a single token. Stor-

age requests pose three challenges. First, they represent

different operations like read, write and create.

While a write operation contains the payload, a read

operation starts small in length (usually just a header) at

the sender and the response contains the payload. Thus,

at sender stages, instead of releasing tokens based on

bytes in the request, they need to be released based on

the end-to-end cost of the operation.

Second, operation processing time at the storage

back-end is also variable. Operation type, request size,

data locality and device type all impact processing time.

Thus, unlike network packets, the relation between stor-

age operation and tokens can be a non-linear func-

tion of the above properties. To address this, the con-

troller’s discovery component benchmarks the storage

devices to measure the cost of IO requests as a func-

tion of their type and size (see §3.3). It then uses the

configureTokenBucket call to configure stages

with information regarding the number of tokens to be

charged for any given request. Such configuration is

done periodically since the cost of IO requests varies

with varying aggregate workload to the storage device.

While this simple approach works well in our experi-
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Figure 5: The topology graph corresponding to the

physical setup in Figure 1. The nodes are stages

that implement IOFlow’s control interface. Cnet and

Cstorage are the capacities of the physical resources.

ments, we note that accurately determining the cost of

IOs with varying workloads is an active research prob-

lem; for example, mClock [9] uses an analytical expres-

sion for the cost of IOs against mechanical disks.

Third, to bound the performance uncertainty of ar-

bitrary long IO requests, we can instruct SMB to split

them; e.g., a 10 MB request can be split into 10 requests

of 1 MB with minimal performance penalty [29].

Stage efficiency. Data plane queues need to be very

efficient to handle high speed 40+ Gbps networks and

storage. By having global visibility, IOFlow’s controller

chooses where to implement the policy so as to minimize

performance impact. This is in addition to standard tech-

niques such as zero-copying of requests moving from

stage to stage and efficient min-heap-based selection of

which queue to service next within a stage. For exam-

ple, for a tenant with VMs across 10 hypervisors access-

ing the same storage server, the controller prefers to do

rate limiting at each of the hypervisors for greater paral-

lelism, rather than at the storage server.

3.3 Controller

The controller discovers stages in the data center, pro-

vides control applications with information needed to

implement e2e policies by converting them to stage-

specific configuration and then disseminates this config-

uration to the stages.

3.3.1 Discovery component

The controller’s discovery component maintains a stage-

level graph for the data center. When servers boot up

and device drivers are initialized, stages contact the con-

troller whose location is found through existing data cen-

ter management interfaces. Figure 5 shows a graph with

four stages corresponding to the setup in Figure 1. It

also includes the underlying physical resources, i.e., the

network link, the network switch and the storage back-

end. A simple example IO flow is shown, with a VM ac-

cessing a VHD. The discovery component uses API call

getQueueInfo to get information about the stages.

This includes the low-level IO header a stage can use

to assign packets to queues: SMB headers (SMBH) and

network IO headers (NIH).

The discovery component also determines the capac-

ity of the graph edges corresponding to physical re-

sources. For edges representing physical network links,

it relies on a pre-configured data center topology map.

For edges to the storage back-end, it runs a series of

benchmarks based on IoMeter [10] where IO packet

size, type, and locality are parameterized to cover a wide

range of workload characteristics. This benchmarking is

fully parallelizable, and only needs to be re-run in case

of hardware changes.

Flow name resolution. Flows are named using high-

level identifiers while stages can only observe IO head-

ers in packets. Thus, the controller needs to resolve flow

names into stage-specific queuing rules. For example,

since the controller knows the SMBc stage at the hy-

pervisor understands SMB headers, it generates queuing

rules of the form shown in Figure 3.

3.3.2 Churn, updates and ordering

The controller may need to update several stages when

a new policy is defined or updated, when the location of

existing VMs or shares changes, or if there are failures.

The controller deletes queuing rules at the stages along

the old flow path and adds queuing rules along the new

flow path.

There are policies that do not require any particular

update ordering across stages and can tolerate temporary

inconsistent rules at each stage as long as they eventu-

ally converge. Performance might slightly degrade dur-

ing such inconsistencies. For this set of applications, the

controller simply batches any state updates with a ver-

sion number to the relevant stages, waits for acks with

the same version number and only then proceeds with

any further state dissemination. If control applications

require strict update ordering the controller updates each

stage in the needed order without requiring stages to par-

ticipate in distributed agreement protocols.

Each stage’s configuration is soft state. Failure of any

stage along a path (e.g., storage server failure) will de-

stroy all queues and queuing rules on that stage. When

the server comes back online, it needs to contact the con-

trol service to get a list of queuing rules it is responsible

for. No request is processed until that completes. Hence,

the time to repopulate the soft state adds to the period of

unavailability for that storage path. Server reboot time,

however, still dominates the unavailability time.

The controller keeps track of a version number asso-

ciated with configuration messages to stages, and mono-

tonically increments that number each time it contacts

the stages. Upon receiving a message with a version

number, the stages discard any subsequent messages

with lower version numbers (that could have been in the

system after a temporary network partition).
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Figure 6: Topology sub-graph comprising stages rel-

evant for enforcement of policy 5 (other stages along

the path from VMs to storage are omitted for clarity).

Request ordering. IOFlow does not change appli-

cation request ordering semantics. IOFlow can delay

IOs or divert them to different queues. However, ap-

plications already ensure ordering semantics at a higher

level in order to deal with, for example, resources like

disks that could complete requests in any order. Appli-

cations have two ways of ensuring ordering: either use

synchronous IO or use asynchronous IO with explicit

fsync calls. IOFlow does not change the semantics in

either case.

4 Control applications

We have built two control applications on IOFlow. The

first application enables performance policies like P1,

P2, P4 and P5. We describe it in depth since it provides

context for general control applications. The second ap-

plication enables control over flow routing (policy P3).

4.1 Performance control

This control application enables three broad classes of

performance policies for both point-to-point and multi-

point flows. For each IO flow, a bandwidth guarantee or

a minimum bandwidth guarantee can be specified. With

the former, bandwidth is reserved for the flow and can

not be exceeded. Further, for each flow, its priority can

be specified. This priority will be enforced at all stages

along the flow path, and supports applications that re-

quire low IO latency.

To illustrate the operation of this control application,

we use policy P5, {{p,q,r}, {X, Y}} → Bandwidth B,

as an example. This policy is particularly interesting as

it involves a multi-point flow, i.e., it offers an aggregate

guarantee for IOs from multiple sources (VMs p,q,r)

to multiple destinations (shares X ,Y ). For example, if

VM p is the only VM generating IOs, it should achieve

bandwidth B. As we describe below, this requires dy-

namic configuration of stages.

This policy is enforced as follows. Given the data

center topology graph maintained by the controller, the

control application determines the sub-graph relevant for

this policy. As shown in Figure 6, this sub-graph com-

prises all the stages along the path from VMs p,q,r to

the storage servers where shares X and Y are mounted.

The edges of this graph are the links between the stages,

the physical network links and the interface from the

storage servers to the actual disks. The operation of the

control application comprises two steps.

Admission control. The controller needs to ensure

that all edges along the graph above have enough spare

capacity to meet the guarantee. The total bandwidth ca-

pacity of the network links and the links to storage is de-

termined by the controller’s discovery component. Since

some of the capacity on each link may have been re-

served for pre-existing policies, this policy can only be

admitted if the unreserved capacity on each link is no

less than the guarantee B.

Algorithm 4.1 Controller-based distributed rate limiting

Require: N VMs with aggregate guarantee B; D: set of VM

demands sorted in ascending order (Di > 0); VM i’s IOs

are queued at qi

Ensure: Assign rate Ri to VM i s.t. ∑Ri = B

1: le f tB = B // bandwidth left to distribute

2: for i in [0, N - 1] do

3: if Di ≤
le f tB
N−i then

4: Ri = Di // VM demand is less than fair share

5: else

6: Ri =
le f tB
N−i // VM demand is more than fair share

7: le f tB –= Ri

8: {share any left bandwidth and configure queues}
9: for i in [0, N - 1] do

10: Ri += le f tB / N

11: configureQueueService(qi,< Ri, 0,1000 >)

Enforcement. The controller needs to ensure that the

total rate of all IOs from VMs p,q,r to shares X ,Y does

not exceed B. This aggregate bandwidth limit can be en-

forced at any cut in the graph. As shown in Figure 6,

it can be enforced at the hypervisors where the VMs

are hosted or at the storage servers. For this example,

we assume the controller chooses to enforce the band-

width limit at a stage inside the hypervisors. To do this,

it needs to determine the per-VM bandwidth limit such

that the sum of the limits is equal to B. Thus, the con-

troller application needs to do distributed rate limiting

(DRL)– given a set of N VMs (in this example N=3),

distribute bandwidth B between them. In contrast to past

approaches [22], the presence of a controller with global

visibility allows us to achieve DRL through a simple

centralized algorithm, as shown in Algorithm 4.1.



This distributed rate limiting problem is akin to di-

viding a single link of capacity B between N competing

sources. A well accepted approach to fairly share the

link is to give each source their max-min fair share [4].

Max-min sharing assigns rates to VMs based on their

traffic demand, i.e., the rate at which they can send traf-

fic. Specifically, VMs are allocated rates in order of in-

creasing demands such that no VM gets a rate larger than

its demand and VMs with unsatisfied demands get equal

rates.2 Thus, given the demand set D for the VMs, we

determine the max-min fair share f such that when VMs

are allocated rates Ri as follows, it ensures ∑Ri = B:

Ri = min( f ,Di)

To enforce the policy, the control application config-

ures the hypervisor stages as follows. For VM p, it

creates a queue at a stage in the hypervisor where p is

hosted, creates a queuing rule that directs all traffic from

VM p to shares X and Y to this queue (through flow res-

olution and API call createQueueRule, not shown

in the algorithm) and configures the queue’s token rate to

the rate allocated to p (line 11). The stage configuration

for VMs q and r is similar.

To estimate VM demand, the controller periodi-

cally gathers statistics from the hypervisor stages using

getQueueStats. Every interval, the estimated de-

mand for a VM whose actual IO rate equals its previous

rate allocation is set to the aggregate limit B, else the

VM’s estimated demand is the same as its IO rate. For

idle VMs with no IOs, the estimated demand is set to

a low value so that they do not get rate limited to zero

and can ramp up when needed. Based on the updated

demand vector, the control application periodically gen-

erates new rate limits for the VMs and updates the token

rate for the appropriate queues. This exemplifies how

guaranteeing aggregate bandwidth for multi-point flows

requires dynamic enforcement.

Min-guarantee. The algorithm above ensures an ag-

gregate guarantee for multi-point flows. Instead, offer-

ing an aggregate minimum bandwidth guarantee means

that when VMs for one tenant are inactive, VMs of other

tenants can utilize the spare bandwidth. Ensuring this

is conceptually similar. The controller collects traffic

statistics from stage queues, and uses a hierarchical max-

min sharing algorithm across all data center VMs, in-

stead of IOs belonging to a single tenant, to determine

their bandwidth limits. However, we omit the details of

this algorithm for brevity.

Priority. Priority at each stage is set using the

configureQueueService call. When a queue has

no outstanding tokens, it is not served. When tokens be-

come available, the highest-priority queues are serviced

2While we describe unweighted max-min sharing here, the algo-

rithm can account for weights.
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Figure 7: Number of outstanding IO requests vs.

throughput and latency for an SSD array (Storage

type A in Table 3). The workload is IoMeter (Sec-

tion 6) using 8KB read requests.

first, until they run out of tokens. After that, the lower

priority queues are serviced next.

Enforcing end-to-end priority requires support from

all stages that see contention for resources. For incre-

mental deployment, IOFlow’s API allows the system to

tolerate layers that do not implement the control inter-

face by controlling the number of IO requests outstand-

ing in those layers. For example, in our implementation

IOFlow does not have control over requests once they

enter an SSD. The discovery component runs bench-

marks to measure the tradeoff between the token rate,

number of outstanding IO requests, and latency for the

device. As an example, to keep the SSD (Storage type A

in Table 3) 95% utilized, 90 outstanding requests could

be sufficient as shown in Figure 7 (other utilization-

latency tradeoff points could also be chosen). Thus,

IOFlow could control the token rate to maintain 90 re-

quests at the device and the rest in IOFlow’s data-plane

queues. Priority treatment can then be applied to those

data-plane queues.

4.2 Malware scanning middlebox

IOFlow allows runtime control over which IO requests

are routed through a specific processing middlebox. As

an example, we have implemented the malware scanning

control application which enforces policies like P3. The

intuition behind this control is that not all flows should

be (un)trusted equally. We have modified a standard

malware scanner kernel driver template [16] to operate

as an IOFlow stage. The default policy is to always scan

during an open, close and write operation.

The controller routes IO requests from un-

trusted VMs through the scanning stage using call

configureQueueRouting. Other requests are

routed around this stage. The scanning stage is an

optional stage and can reside at either hypervisor or

storage server. We verified the policies worked by

sending a mix of IOs from both trusted and untrusted

VMs, and observing which ones were scanned.



4.3 Impact of controller failure

The control applications are designed so that transient

controller failures do not impact system correctness.

Failures can lead to temporary degraded performance

however. Each control application implements a con-

servative default policy in case the controller is unreach-

able. For example, when the controller is unreachable,

the performance control application requires that stages

put all new traffic for which queuing rules do not exist

into a best-effort queue, until the controller is available

again to specify their policy. The malware scanning ap-

plication’s default policy is to scan all traffic.

5 Implementation

We implemented IOFlow on a Windows-based IO stack.

We implemented two kernel drivers that intercept stor-

age IO traffic and each serves as an IOFlow stage: a

storage driver that resides on top of the SMBc driver,

and a storage driver below the SMBs driver (see Fig-

ure 1). Unmodified binaries and applications can make

use of IOFlow’s functionality. We rely on the Windows

storage IO and network IO stacks for supporting the in-

jection of our storage and network drivers.

We have also added similar control to other optional

stages along the IO path: a malware scanning device

driver (benefits described in §4.2); a driver on top of the

guest OS file system (NTFS) that allows for IO flow dif-

ferentiation within a VM; network drivers in the hyper-

visor that allow for control of VM-to-VM traffic.

Stage queue rules are stored as soft-state in each in-

terception driver. The size of the token bucket associ-

ated with each queue is configurable; we used a size of

token rate x 1 sec tokens for our experiments. To-

kens are replenished using a 10 ms timer. Each stage

communicates with the control service by passing mes-

sages to a user-level slave process on the local machine,

which then transmits the messages to the controller us-

ing RPCs over TCP. The default control interval for the

controller is 1 second. For queue routing, a stage’s next

hop can be any stage on that stage’s physical machine,

including stages in the kernel and user-level. Routing

to a next hop on a remote machine can be done by first

routing to user-level and then sending an RPC to the re-

mote machine’s user-level, however implementing this

feature is future work.

Our system assumes that users and machines are au-

thenticated. In the current system, Windows assigns

each VM a unique security descriptor (SID). The SID

is a variable length structure, part of the initial open

or create IO request. SIDs can also be assigned to

users, not just VMs. The optional driver in the guest

OS is able to differentiate traffic based on user SIDs.

Network Storage A Storage B Storage C

1 NIC/server 8 SSDs RAM 3 Disks

1.7 TB 384 GB 2.7 TB

40 Gbps 2.7 GB/s∗ 5 GB/s† 0.3 GB/s

(=5 GB/s) 140K IOs/s∗ 460K IOs/s† 1K IOs/s

Table 3: Baseline device characteristics. GB/s mea-

sured with 512 KB streaming read requests. IOs/s

measured with 4 KB random-access read requests.

(∗) The SSDs’ write throughput is 1.5 GB/s and

50K IOs/s. (†) RAM is accessed over the network.

Index Data Message Log

Read % 75% 61% 56% 1%

IO Sizes 4/64 KB 8 KB 4/64 KB 0.5/64 KB

Seq/rand Mixed Rand Rand Seq

# IOs 32M 158M 36M 54M

Table 4: Workload characteristics for 4 tenants, part

of a 2-day Hotmail IO trace. Seq/rand refer to se-

quential and random-access respectively. M=million.

When changes to the guest OS are acceptable, richer

user-based policies can thus be enabled.

Stages along the stack sometimes re-write this SID

in-place. For example, the hypervisor converts a VM’s

IO header SID into a hypervisor SID and passes that

to the storage server. Thus, the ability of the storage

server to identify which VM triggered the IO is normally

lost. To differentiate per-VM traffic at the storage server,

we have implemented a small modification in the SMBc

stage. Each time SMBc sees an open or create, it

sends an IOCTL with the VM’s SID as the payload to

the SMBs stage on the storage server. SMBs then caches

that SID as part of the file handle context.

The kernel drivers are written in C and are around

22 kLOC in total. The controller is written in C# and is

around 3 kLOC lines of code. Currently, we run the con-

trol service on just one of our 12 testbed servers. It can

be replicated for availability using standard techniques.

6 Evaluation

We evaluate IOFlow across two dimensions: i) its ability

to enforce e2e policies and ii) the performance and scal-

ability of the control and data plane mechanisms. The

evaluation is driven by IO traces of the Hotmail service

and the IoMeter file system benchmark [10].

Our testbed comprises 12 servers, each with 16 In-

tel Xeon 2.4 GHz E5-2665 cores and 384 GB of RAM.

Each server has a 40 Gbps RDMA-capable Mellanox

ConnectX-3 NIC with a full-duplex port, connected to a

Mellanox MSX1036B-1SFR switch. Hypervisors com-

municate with storage servers using the SMB 3.0 file



0

1000

2000

3000

4000

5000

6000

7000

8000

0 60 120 180 240

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c)

Tenant 1: B=800 act=5000

Tenant 4: B=1500 act=410

Tenant 3: B=2500 act=848

Tenant 2: B=800 act=480

IOFlow disabled IOFlow enabled

Tenant 1: B=800 act=970

Tenant 4: B=1500 act=1800

Tenant 3: B=2500 act=3000

Tenant 2: B=800 act=970

Tenant 4: B=1500 act=2050

Tenant 3: B=2500 act=3100

Tenant 2: B=800 act=1130

Tenant 4: B=1500 act=2500

Tenant 3: B=2500 act=4200

Tenant 4: B=1500 act=2500

Tenant 3: B=2500 act=4200

phase 1 phase 2 phase 3 phase 4 phase 5 t (s)

Figure 8: 4 tenants using 120 VMs in total across 10 hypervisors with policies in Table 5. When IOFlow is dis-

abled tenant policies B are not met. With IOFlow enabled tenant policies are met (“actual” ≧ B). Furthermore,

extra capacity is assigned in proportion to the tenant minimum bandwidth.

server protocol over the SMB Direct RDMA transport.

In the link layer we use RDMA over converged ether-

net (RoCE). The servers run Windows Server 2012 R2

operating system with Hyper-V as the hypervisor.

Each server can act as either a hypervisor with up to

16 VMs on one hypervisor or as a storage server with

three types of configuration as seen in Table 3. Type A

uses 8 SSDs (Intel 520) in RAID-0, type B uses RAM

only (representative of a cached workload and used to

stress-test the system) and type C uses 3 disks (Seagate

Constallation 2) in RAID-0. When SSDs or disks are

used there is no data caching in RAM.

6.1 Policy enforcement

IOFlow enables all policies discussed in Section 2.1.

Here we show that IOFlow allows tenants with diverse

policies to co-exist. Our experiments are driven by a set

of I/O traces from the Hotmail service [26]. The traces

contain four distinct workloads with key characteristics

summarized in Table 4. The “Message” workload stores

email content in files; ‘Index” is a background mainte-

nance activity scheduled at night time in the data cen-

ter; the “Data” and “Log” workloads are database data

and transaction logs respectively. Metadata on emails is

stored on these databases.

Bandwidth policies. We first start by examining

whether IOFlow is able to enforce per-tenant minimum

bandwidth guarantees. We treat each of the four work-

loads as a tenant with its own policy. The exact poli-

cies are shown in Table 5. These are multi-point policies

combining policy P2 (minimum bandwidth guarantee)

and P5 (per-tenant bandwidth guarantee).

We use a total of 120 VMs spread over 10 hypervi-

sors and accessing a RAM-based share X . Each tenant

is assigned 30 VMs, spread equally over the 10 hypervi-

Tenant Policy

1. Index {V M1−30, X}→ Min 800 MB/s

2. Data {V M31−60, X}→ Min 800 MB/s

3. Message {V M61−90, X}→ Min 2500 MB/s

4. Log {V M91−120, X}→ Min 1500 MB/s

Table 5: E2E policies for four tenants accessing a

share X . IoMeter is parametrized with workload

characteristics from the Hotmail trace.

sor machines. In this experiment, each tenant’s VM uses

IoMeter parametrized to match the workload character-

istics of one of the Hotmail workloads in Table 4.3

Figure 8 shows cumulative results for the absolute

throughput achieved per tenant and in aggregate. The

experiment is separated across five phases, one every 60

seconds. In the first, IOFlow is not running; the min-

imum guarantee for three of the tenants is not met as

a result of Tenant 1 aggressively consuming system re-

sources. Aggressiveness is induced by setting the Tenant

1’s IoMeter outstanding requests to 32 per VM; the other

tenants use 8 per VM.

Enabling IOFlow at time t = 60secs ensures tenants

get the minimum bandwidth specified by their policy.

Since the overall capacity is higher than the sum of the

guarantees, each tenant receives extra capacity. Extra

capacity is assigned in proportion to the tenant mini-

mum bandwidth. At phases 3 (t = 120secs) and 4 (t =
180secs), tenants 1 and 2 become idle respectively. The

controller realizes that extra capacity is available and ap-

portions it across active tenants; again, extra capacity is

3The traces we obtained are open-loop and do not come close to

saturating the bandwidth of our system, hence for this experiment we

use closed-loop IoMeter. We will use trace replay of the real workloads

in the following experiments where we examine the co-existence of

bandwidth and priority policies.



Tenant Policy

1. Message {V M1−4, Y}→ High priority

2. Index {V M5−8, Y}→ B=16 MB/s

Table 6: E2E policies for IO trace replay.
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Figure 9: “Message” latency CDFs. The mean

and 99th percentile with IOFlow are 4.3 ms and

13.5 ms respectively. Without IOFlow they are

926 ms and 11668 ms respectively. With dedicated

hardware they are 3.1 ms and 13 ms respectively.

shared proportionally to tenant guarantees.4 In phase 5

(t = 240secs), half of the VMs of each of the remaining

two tenants cease generating work. The controller ap-

portions the extra capacity to the other VMs within each

tenant. Overall, this example shows that IOFlow effi-

ciently enables multi-point policies, with the controller

able to dynamically re-allocate resources based on inter-

and intra-tenant work-conservation.

Bandwidth and priority policies. We now turn

our attention to workloads with different requirements,

namely throughput and latency. To this end, we use a

trace replayer to replay the “Message” together with the

“Index” workloads from the Hotmail trace on the SSD

store. “Message” is a latency sensitive workload, while

“Index” is a typical bandwidth-hungry background task.

Current practice usually has such workloads separated in

time. In our traces, “Index” was scheduled during night

time. Here, we will highlight how IOFlow enables such

workloads to co-exist.

We replay the “Index” workload in closed-loop fash-

ion ignoring the original timestamps. We believe that

this is a reasonable adjustment since maintenance activ-

ities are usually triggered by a script and require batch

processing. The goal is to complete the “Index” activ-

ity within 24 hours. This leads to its policy– a steady

4The slight reduction in throughput during phase 3 is due to the

change in workload; the overall read:write ratio changes and Tenant 2’s

workload (with smaller IO sizes) gets more of the system’s resources.

state guaranteed IO rate of around 16 MB/s as shown in

Table 6. The policy specified for the “Message” work-

load is high priority, enforced at both SMBc and SMBs

stages. Note that, in general, a workload with high prior-

ity could starve lower priority workloads. Since the con-

troller has global visibility, it can avert this problem by

specifying a bandwidth limit to the high priority work-

load. In our setup the “Message” workload has an av-

erage rate of 62 MB/s and the SSDs can support both

workloads’ rates so a bandwidth limit is not necessary.

To show worst-case performance, we choose a 10-

minute trace interval with the highest 99% arrival rate

for the “Message” workload. We load-balance the trace

replay into 4 VMs and 2 servers (2 VMs/server) for

the “Message” workload and 4 VMs and 2 servers (2

VMs/server) for the “Index” workload. Each VM uses a

distinct 127 GB VHD. All 8 VHD files are on the same

SSD-based share Y .

Figure 9 shows the results. The latency for the “Mes-

sage” workload suffers when IOFlow is disabled. In-

stead, when IOFlow is enabled, the latency is almost

identical as to when “Message” has dedicated resources.

This shows that IOFlow provides good workload isola-

tion. The “Index” tenant’s average bandwidth over the

10-min interval is 17 MB/s.

6.2 Performance and scalability

IOFlow introduces mechanisms both at the control and

data planes. This section measures the performance and

scalability along the data and control planes.

6.2.1 Data plane overheads

Programmable data plane queues allow for differentiated

traffic treatment and workload isolation. This section

quantifies their overheads. We vary the IO size with

IoMeter to span the range between 0.5 KB and 64 KB

and we examine the system throughput achieved. The

read:write ratio is kept at 1:1 and IoMeter uses random-

access requests. We use the same 120 VMs over 10 hy-

pervisors setup accessing a single storage server. Each

VM corresponds to one tenant in this case. The ten-

ant’s SLA is a guarantee for 1/120th of the network and

storage capacity. Requests flow through both SMBc and

SMBs stages, but policy enforcement (i.e., rate limiting)

is done at the hypervisors’ SMBc stages. We vary the

storage server configuration to use RAM, SSDs or Disks.

Figure 10 shows the results. For the RAM store, the

bottleneck shifts from being the server’s CPU for IO

sizes up to 16 KB to the network for larger IOs. The

worst-case reduction in average throughput between the

original system and IOFlow is 14%. For the SSD and

disk stores the bottleneck is always the storage device.

The worst-case reduction in average throughput was 9%
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Figure 10: Performance overheads of IOFlow when compared to unmodified storage stack. Error bars show

minimum and maximum values from 5 runs. Note that y-axis is different for each graph.
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and 5% respectively. This reduction does not come from

any CPU overheads. Instead, it comes from a slight re-

duction in parallelism at the SSD or disk. This reduction

happens because with IOFlow the queues are drained

in a certain order. Without IOFlow the request mix is

sent directly to the device. Thus, the price to pay for

workload isolation is a slight drop in overall throughput.

Across all devices, the worst-case overhead in average

CPU consumption at the hypervisors is less than 5% (not

shown in Figure 10).

6.2.2 Control plane overheads

When a policy for an IO flow is specified, the controller

needs to configure stages along the flow’s paths. We start

by creating just one flow to measure its latency. Then we

ask the controller to create an increasing number of flows

to measure throughput. Intuitively, we expect through-

put to benefit from batching several flow creation opera-

tions into one operation to the stages. Each flow’s policy

is dynamic point-to-point, like P2. One hypervisor and

one storage server machine are used, with one SMBc

and one SMBs stage in each respectively.

Creating a flow involves the controller reading the

flow policy from a file on disk, then creating a new queue
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Figure 12: Memory and network overheads associ-

ated with creating flows and getting flow statistics.

at each stage, mapping IO headers to that queue and set-

ting the queue properties. Figure 11 presents the results.

Creating a single flow takes on average 88 ms (domi-

nated by the time to read the policy file). Batching flow

creations is beneficial until a batch size of 1000 flows,

beyond which batching does not help further. The peak

throughput observed (not shown in the graph) is 13000

flows created per second, using a batch size of 2500

flows. At that point, the CPUs of the storage server stage

SMBs are saturated. The controller itself is not a bottle-

neck and only 0.3% of its CPUs are utilized.

Figure 12 shows soft-state memory and network over-

heads at the controller and at one SMBs stage. As seen

from the Figure, the memory overhead is low (at most

17 MB at the controller and 10 MB for the combined

driver and slave at the server). The network overhead

includes updates from controller (creating queue rules

and configuring queue properties) and statistics the con-

troller collects from stages every control interval. When

creating 10000 flows the network overhead is 2 MB.

When querying them for statistics the network overhead

is around 0.4 MB/s.
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Figure 13: Convergence time for achieving target

rate when enforcing at SMBc or SMBs stages. Best

place to enforce is SMBc stage. Note that y-axis is in

IOs/sec and each IO is 0.5 KB in size.

Convergence time. We measure next the lag between

the time the controller changes a drain rate at the SMBc

stage and the time the target rate is achieved end-to-

end. To do so we use the 120 VMs across 10 hyper-

visors setup and the RAM store. The controller changes

the policy every minute to reduce the previously allo-

cated bandwidth by 81920 IOs/s. Figure 13 shows the

achieved rate in IOs/s. All rates converge to the target

ones in less than the control interval of 1 second.

6.2.3 Deciding where to enforce

The controller has global visibility and can choose

where to enforce a policy. One heuristic it uses is to

distribute the enforcement to minimize its performance

overhead. For example, enforcing a multi-point band-

width policy like P5 can be done either at the storage

server SMBs stage, or across all hypervisors’ SMBc

stages. Since the storage server is a single enforcement

point, enforcing there can lead to non-negligible over-

heads at very high rates. To measure this, we repeat the

convergence time experiment, this time enforcing at the

SMBs stage. Figure 13 shows the achieved rate in IOs/s.

At high IO rates, we observe a 20% drop between the

average target and achieved rates. The storage server’s

CPU is already saturated and adding the rate control pro-

cessing leads to this drop. Using the above heuristic

the controller is able to enforce at the SMBc stages and

avoid the performance overhead.

The controller may choose distributed enforcement

for reasons other than efficiency. Some policies, like P4

that offers high priority, are not amenable to single-stage

enforcement. Figure 14 shows that this policy is best en-

forced at two stages rather than one. The setup is as

follows: 8 identical VMs generate IOs from a single hy-

pervisor to the SSD store. Flow ID 1 is assigned a high
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Figure 14: Graph shows 95th percentile and average

number of outstanding IO requests on the SSD back-

end. Flow ID 1 is the high priority flow. S refers to

enforcement on the storage SMBs stage whereas C

refers to enforcement on the hypervisor SMBc stage.

priority. The other flows have the same low priority. We

expect a high priority flow to have the highest number of

requests outstanding in the SSD queue.

Each IoMeter uses 8 KB random-access reads and is-

sues 128 requests at a time (the 8 SSDs can process re-

quests in parallel hence the plotted numbers are usually

less than 128) over a period of 60 seconds. Each time an

IO arrives in the system, the number of outstanding IOs

at the SSD is logged and the 95th percentile is calculated

at the end of the 60 seconds.

The figure shows that enforcing the policy at the stor-

age server only can lead to head-of-line blocking at the

hypervisor, thus effectively negating the priority of the

flow. The controller enforces the policy by having both

stages apply priority treatment.5

7 Related work

The closest related work is on centralized control algo-

rithms and APIs in software-defined networking (SDN)

designs that decouple the data and control plane for net-

work devices (NICs, switches, routers) [5, 6, 12, 21, 24,

32]. SDN designs build upon data plane primitives that

have long been taken for granted in networks, such as

traffic classification based on source and destination ad-

dresses, forwarding tables and queues. OpenFlow [13]

extends and offers a standard interface to these primi-

tives. Analogously, we have built a similar set of pro-

grammable data plane primitives and a logically central-

ized control plane for the storage IO stack. This required

addressing challenges pertaining to storage.

5Note that in this simple scenario with one hypervisor, enforcing

priority at SMBc would suffice (not shown in the figure), but that does

not hold true when there are multiple hypervisor machines.



This paper also proposes a simple graph-based API

exposed by the controller that we have used to build

control applications. This API could benefit from policy

languages, abstractions and compilers on top of current

SDN stacks [6, 17], with benefits such as formal reason-

ing and automatic policy conflict checking.

SEDA showed how an application can be built as a

series of stages with queues and controllers [30]. The fo-

cus there was on event and thread-driven ways to build

high performing systems. Similarly, Click [11] allows

software routers to be composed from modular elements.

We have a very different focus in enabling control for the

IO stack and the scope is a data center setting. Nonethe-

less these efforts resonate with our flexible queues and

control building blocks.

A key challenge we address in this paper is mapping

high-level IO identifiers to stage-specific IO identifiers

to classify traffic end-to-end. Recent related work by

Mesnier et al. [14] has applications label IO requests.

The label then propagates with the request from the file

system to a block device using the SCSI protocol. Oth-

ers have also used explicit labels for IO requests in dis-

tributed systems [23,27]. IOFlow does not require appli-

cations to label their IO or any system protocol changes

to support the extra label. However, it can make use of

such labels if they already exist and set per-stage queu-

ing rules based on them.

Tenant performance isolation is a key controller ap-

plication in this paper that illustrates the benefits of the

architecture. The isolation problem itself has been ex-

tensively studied and there are many customized solu-

tions in the context of several resources: for example, for

disks [9, 28], for multi-tenant network control [2, 3, 20],

for multi-tenant storage control [8, 25], for latency con-

trol in networks [1] and for multi-resource centralized

systems [7]. Distributed rate limiting has also been stud-

ied in the past [22]. In contrast to these proposals,

IOFlow offers a single framework for a wide range of

performance isolation policies. The presence of a con-

troller with global visibility and the programmable data-

plane stages allowed us to write simple centralized algo-

rithms to achieve the policies. As such, we believe that

other algorithms, such as recent ones by Shue et al. [25]

would equally benefit from our system’s support.

8 Conclusion

This paper presents IOFlow, an architecture that enables

end-to-end policies. It does so by decoupling the con-

trol of IO flows from the data plane and by introducing

programmable data plane queues that allow for flexible

service and routing properties. IOFlow extends SDN de-

signs, and allows IO control close to source and destina-

tion endpoints: the hypervisor and storage server in this

instance. This control allows for high-level policies ex-

pressed in terms of a four-tuple: {VMs, operations, files,

shares}. A key strength of the architecture is that it does

not require application or VM modifications. Through

two control applications, we show that IOFlow enables

useful policies that are hard to achieve today.
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